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Abstract

The loss function is an integral component of any successful deep neural network
training; it guides the optimization process by reducing all aspects of a model
into a single number that must best capture the overall objective of the learning.
Recently, the maximum-likelihood parameter estimation principle has grown to
become the default framework for selecting loss functions, hence resulting in the
prevalence of the cross-entropy for classification and the mean-squared error for
regression applications (Goodfellow et al., 2016). Loss functions can however be
tailored further to convey prior knowledge about the task or the dataset at hand
to the training process (e.g., class imbalances (Huang et al., 2016a; Cui et al.,
2019), perceptual consistency (Reed et al., 2014), and attribute awareness (Jiang
et al., 2019)). Overall, by designing loss functions that account for known priors,
a more targeted supervision can be achieved with often improved performance.

In this work, we focus on the ubiquitous prior of prediction sparsity, which
underlines many applications that involve probability estimation. More precisely,
while the iterative nature of gradient descent learning often requires models to
be able to continuously reach any probability estimates between 0 and 1 during
training, the optimal solution to the optimization problem (w.r.t. the ground-
truth) is often sparse with clear-cut probabilities (i.e., either converging towards
1 or 0). For instance, in object detection, the decision that must be made by the
models to either keep or discard estimated bounding-boxes for final predictions
(e.g., non-maximum suppression) is binary. Similarly, in music onset detection, the
optimal predictions are sparse: it is known that only a few points in time should
be assigned a high likelihood, while no probability mass should be allocated to all
other timesteps. In these applications, incorporating this important prior directly
in the training process through the design of the loss function would offer a more
tailored supervision, that better captures the underlying objective.

To that effect, this work introduces a novel loss function that relies on instance
counting to achieve prediction sparsity. More precisely, as shown in the theoretical
part of this work, modeling occurrence counts as a Poisson-binomial distribution
results in a differentiable training objective that has the unique intrinsic ability
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to converge probability estimates towards sparsity. In this setting, sparsity is
thus not attained through an explicit sparsity-inducing operation, but is rather
implicitly learned by the model as a byproduct of learning to count instances. We
demonstrate that this cost function can be leveraged as a standalone loss function
(e.g., for the weakly-supervised learning of temporal localization) as well as a
sparsity regularization in conjunction with other more targeted loss functions to
enforce sparsity constraints in an end-to-end fashion. By design, the proposed
approach finds use in the many applications where the optimal predictions are
known to be sparse. We thus prove the validity of the loss function on a wide
array of tasks including weakly-supervised drum detection, piano onset detection,
single-molecule localization microscopy, and robust event detection in videos or in
wearable sensors time series. Overall, the experiments conducted in this work not
only highlight the effectiveness and the relevance of Poisson-binomial counting as
a means of supervision, but also demonstrate that integrating prediction sparsity
directly in the learning process can have a significant impact on generalization
capability, noise robustness, and detection accuracy.
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Chapter 1

Introduction

Learning to count is a ubiquitous task in machine learning. Not only does it
find direct practical applications in the form of crowd counting (Zhang et al.,
2015a, 2016), object counting (Onoro-Rubio & López-Sastre, 2016), microscopy
cell counting (Xie et al., 2018), vehicle counting (Mundhenk et al., 2016; Zhang
et al., 2017b) or even fruit counting (Rahnemoonfar & Sheppard, 2017), but it
can also be leveraged for self-supervised visual representation learning (Noroozi
et al., 2017) or question answering (Trott et al., 2018; Acharya et al., 2019).
More indirectly, counting also implicitly underlies many other learning tasks.
For instance, in object detection (Redmon et al., 2016), a model capable of
inferring accurate bounding-box locations has indirectly learned to count the
number of object instances. Similarly, in music transcription (Sigtia et al., 2016),
a model that can accurately detect notes can also count them. Reversely, a model
consistently outputting too few or too many boxes—or notes respectively—is
inevitably bound to perform poorly; the inference of correct instance counts is
thus a necessary underlying condition for precise and consistent detection. These
examples highlight both the intrinsic link between instance counting and object
(or event) detection, as well as the nature of counting as a weaker sub-task of the
more complex localization objective in most spatial and temporal detection tasks.

In many applications, instance countability, comes in tandem with prediction spar-
sity, i.e., the optimal probability estimates are clear-cut with value 0 or 1. For
instance, in object detection, it is quite common for models to first output nu-
merous bounding-boxes that then have to be selected through non-maximum
suppression (NMS) or other thresholding heuristics. Thus, the decision that
eventually must be made by the models to either keep or discard estimated
bounding-boxes as final predictions is binary and, by extension, sparse selection
probabilities have to be assigned to each bounding-box. Similarly, in drum tran-
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2 1. Introduction

scription (Wu et al., 2018) and piano onset detection (Hawthorne et al., 2017),
only a few of the hundred timesteps per second contain a note onset; thus, the
non-zero values of the label time series (i.e., the event locations) are sparsely
scattered over time. In all these examples, it is the sparsity of instances that make
them countable and vice versa. For instance, in object detection, objects can be
represented as sparse bounding-boxes because of their countability and, conversely,
the number of boxes can be counted because of their sparse and scattered nature.
In contrast, water drops in the sea cannot be counted because they are densely
distributed in space, nor can their location be precisely determined because they
are indistinguishable from one another and thus uncountable.

Despite being a prevalent prior in numerous applications, prediction sparsity
is often modeled separately from the learning process or even overlooked. For
instance, many object detection methods (Girshick, 2015; Ren et al., 2015; Redmon
et al., 2016; Liu et al., 2016) heavily rely on non-maximum suppression to select
clear-cut final predictions from the pile of overlapping bounding-boxes they
generate, while temporal detection models often require the use of heuristics such
as peak-picking (Cogliati et al., 2016; Wu et al., 2018), thresholding (Schlüter &
Böck, 2014), or argmax operation (McNally et al., 2019) to achieve the desired
prediction sparsity. By splitting the detection process into a trainable component
and a fixed heuristic, these approaches break the end-to-end learning paradigm
that allows deep learning models to best learn the mapping between input data
and learning objective (Krizhevsky et al., 2012; Sutskever et al., 2014; Long et al.,
2015; Levine et al., 2016). In contrast, modeling prediction sparsity directly
as part of the training process can offer a more tailored and fully end-to-end
supervision, which can ultimately lead to improved generalization capabilities.

This thesis proposes a novel paradigm based on the intrinsic link between instance
countability and sparsity: learning to count as a way of learning prediction
sparsity. More specifically, this work introduces a novel loss function (Chapter 2)
that relies on instance counting as a means of supervision. The usefulness of
the proposed counting-based training objective stems from its unique ability
to indirectly drive probability estimates towards sparsity (i.e., towards either
0 or 1) as the learning progresses (Chapter 3). This work thus shows how instance
counting can be leveraged to incorporate the common prior of prediction sparsity
into the learning of almost any task dealing with probability assignments of
countable instances without harming the end-to-end training process.
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1.1 Related Works

The loss function introduced in this work has the unique ability to achieve
prediction sparsity through count supervision. This section thus highlights how
this paradigm relates to other count-based learning models and other sparsity-
achieving methods.

1.1.1 Count Supervision

Humans are capable of instantaneously discerning how many objects are present in
a visual scene without having to sequentially count or spot each individual instance
when the number of objects is small (Kaufman et al., 1949; Mandler & Shebo,
1982). This ability, known as subitizing, is not specific to the visual domain, but
also applies, among others, to tactile perception (Riggs et al., 2006) and auditory
perception (Camos & Tillmann, 2008). However, beyond the subitizing range
(3–4 objects), the enumeration of objects is less intuitive and often requires the
explicit counting of individual instances to be accurate. This known dichotomy
in the way humans handle the task of counting also appears in the literature on
count-based learning models. Indeed, models that learn through count supervision
can be split into two distinct categories: direct approaches which directly map
the input data to the objective counts (i.e., similar to subitizing) and bottom-up
approaches which first identify positive instances before aggregating them into a
global count (i.e., similar to explicit instance counting).

Direct Classification

In the realm of direct counting, the closest equivalent to human subitizing consists
in formulating the task of counting as a classification problem by viewing each
potential count outcome as an independent class. In terms of model training, this
straightforward framework allows for a seamless parameter optimization using the
standard cross-entropy. This learning approach has been leveraged to train models
in numerous application domains including object counting (Zhang et al., 2015b),
digit and crowd counting (Seguí et al., 2015), embryonic cell counting (Khan
et al., 2016), chimpanzee recognition (Bain et al., 2019), and counting-based
visual question-answering (Acharya et al., 2019). However, as each potential
count value is mapped to an independent class, all information about the actual
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ordering of count values (e.g., 4<7<13) is indirectly discarded. This lack of
underlying hierarchy between count classes is problematic since models cannot
rely on known structures of counts (e.g., 3 lies between 2 and 4) to learn to count.
In such a framework, the ambiguity between the different classes thus increases
exponentially with the number of count classes. As a result, similarly to subitizing,
this approach does not scale well to larger count values, and thus may only be
used for applications with a limited range of potential counts.

Several alternatives have been proposed to alleviate the modeling weaknesses
inherent to direct count classification. For instance, Mundhenk et al. (2016)
suggested performing car count classification on smaller sub-patches instead of on
the larger original image. While this approach artificially reduces the number of
instances per processed region and thus ensures that the counts stay close to the
subitizing range, this method is limited to applications where the space can be
clearly partitioned and where the instances can be uniquely assigned to a single
sub-partition. Another approach, proposed by Stöter et al. (2018) in the context
of audio source counting, consists in modeling counts not as a Dirac distribution,
but rather as a Poisson distribution—a common distribution for counting (Chan &
Vasconcelos, 2009; Fallah et al., 2009) and set cardinality in general (Rezatofighi
et al., 2017). In this setup, models are thus trained to estimate the value of each
count class, which amounts to inferring the mass of the corresponding bins of the
Poisson distribution. Overall, by spreading the probability mass across several
count classes, this method correlates neighbouring classes, and thus implicitly
incorporates a sense of ordering into the classification model. However, while
providing a simple solution to the lack of hierarchy between count classes, this
approach also presents several drawbacks (e.g., models output a spread-out count
distribution rather than a clear-cut count value, models have to invest resources
to explicitly learn to replicate a given distribution rather than to directly learn to
count).

Direct Regression

Count classification ensures that predicted counts are integer values. However, by
relaxing this setting and allowing for fractional counts, the counting problem can be
cast as a regression problem. Overall, while non-integer counts can cause modeling
issues in some settings, regression—unlike classification—possesses an intrinsic
ordering of values, which can benefit the learning process. This framework is thus
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more suited than direct classification for counting applications that handle counts
beyond the subitizing range. In practice, count regression has been leveraged in
numerous domains (e.g., crowd counting (Kong et al., 2006; Shang et al., 2016;
Huang et al., 2017), fruit counting (Rahnemoonfar & Sheppard, 2017), leaves
counting (Giuffrida et al., 2016), and object counting (Song & Qiu, 2018)). During
training, the model parameters are commonly optimized using the mean squared
error (MSE), but other loss functions have also been considered (e.g., Huber
loss (Chattopadhyay et al., 2017) and ratio loss (Giuffrida et al., 2016)).

Count regression can also be used to accurately model counts when, as mentioned
above, the original sample is sub-divided into non-overlapping sub-samples in an
effort to limit the complexity of the input and reduce the range of counts. Indeed,
since in such settings instances often lie in several partitions, it is essential to be
able to split and distribute integer counts across several partitions in order to
accurately model this effect. The use of count regression is therefore a natural and
effective choice in this context, as it offers the possibility of inferring fractional
count targets. This specific approach has been used, among others, for crowd
detection (Ryan et al., 2009; Hu et al., 2016), dynamic non-maximum suppres-
sion (Chattopadhyay et al., 2017), and self-supervised count-based representation
learning (Noroozi et al., 2017).

Explicit Instance Counting

While direct counting offers a simple and streamlined modeling of counts, it
often lacks both the explainability and the generalization capabilities of models
that perform counting through explicit instance identification (e.g., detection
of individual objects in computer vision applications). Indeed, for instance,
performing car counting through explicit car detection (Moranduzzo & Melgani,
2013; Hsieh et al., 2017) (instead of direct count regression or classification)
results in both more interpretable count predictions that can be traced back to
the individual detections and a stronger supervision of the learning that can
leverage labeled car positions for training. This latter feature is expected to
significantly facilitate, among other benefits, the learning of car representations,
and thus improve the overall generalization performance of the approach. As a
result, such bottom-up approaches often have to rely on finer-grained annotations
(e.g., point location of individual instances vs global counts). This additional
annotation burden is however minimal when taking into account the way humans
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Figure 1.1: Count Supervision. This work proposes a novel bottom-up classifi-
cation approach to counting. Our model-based method preserves the implicit
hierarchy between the count classes (e.g., 3 lies between 2 and 4) in contrast to
standard classification-based models, which often discard all information about
the underlying ordering of the count classes.

actually count. Indeed, when the number of instances exceeds the subitizing range,
annotators have to explicitly identify individual instances in order to determine
the correct count; thus, reporting these individual instances on top of the global
count does not substantially complicate the annotation process.

In computer vision, numerous methods cast counting purely as an instance detec-
tion or localization problem. For instance, in dense scenes (e.g., crowd counting,
car counting, and microscopy cell counting), models are directly trained to infer
densities through heatmap-matching without any explicit count supervision (Lem-
pitsky & Zisserman, 2010; Arteta et al., 2014, 2016; Boominathan et al., 2016;
Onoro-Rubio & López-Sastre, 2016; Zhao et al., 2016; Walach & Wolf, 2016;
Paul Cohen et al., 2017; Xie et al., 2018; Cao et al., 2018; Cheng et al., 2019). In
such a framework, while the total number of instances can be inferred through
density integration, counts do not explicitly appear in the training process but
only exist implicitly in the number of point labels. Thus, in order to integrate
the actual objective of the pipeline (i.e., counting) more explicitly in the learning,
several methods include the target count as a training objective through count
regularization (Idrees et al., 2018; Sam & Babu, 2018; Wan & Chan, 2019) or al-
ternate between density estimation learning and count regression learning (Zhang
et al., 2015a). In that context, the counting loss is generally defined as the (mean)
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squared difference between the integrated and the ground-truth counts. Thus, this
kind of approach can be viewed as a count regression, where counts are sums of
deterministic sub-counts. Other approaches that include count supervision in the
learning process exist . For instance, Ma et al. (2019) propose a Bayesian variation
of density estimations where point labels are considered as priors rather than
learning targets. While the counts are still inferred through density integration,
training is based on the `1-loss between ground-truth and predicted count which
is computed through the multiplication of the density estimate and the posterior
label probability. Similarly, in temporal event localization, Narayan et al. (2019)
propose including count supervision on top of the standard category-based weakly-
supervised approach. Once again, the ground-truth counts are compared to the
predicted counts, which are the result of integration over the count densities com-
puted as the product of the temporal attention and the temporal class activation
map. Finally, (Laradji et al., 2018) perform object counting though the explicit
localization and counting of object blobs, which are learned through count and
point location supervision.

In count-based visual question-answering, Trott et al. (2018) propose sequentially
selecting bounding-boxes until all objects have been accounted for. In this setup,
since the model makes hard decisions, the counting loss—which is defined as the
absolute error between the total number of selected boxes and the ground-truth
count—is not differentiable and thus has to be optimized through reinforcement
learning. Their work also introduces as benchmark a softer approach, where each
bounding-box is assigned a probability. The count is thus defined as the determin-
istic sum of these probabilities and the training is done through backpropagation
using a Huber loss (Huber, 1964). In terms of explainability, these two bottom-up
approaches output count predictions that are significantly more interpretable than
the ones obtained though direct count classification (Acharya et al., 2019). Indeed,
even though the softer approach yields less clear-cut predictions, the contribution
of each bounding-box to the count prediction can be clearly measured by the
probability assigned to them.

Other Approaches

There exist several alternative approaches that take advantage of counting as
a means of supervision. For instance, Zhang et al. (2017b) propose a hybrid
method to tackle temporal vehicle counting that leverages two different approaches
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to counting: integration of a density map to count spatially and direct count
regression to count temporally. Liu et al. (2018) introduce a ranking loss (pairwise
ranking hinge loss) which allows the model to exploit the implicit property that
image crops contain lower counts than the original image. Finally, Gao et al. (2018)
leverage count-based multiple-instance learning to perform weakly-supervised
object detection.

Our Approach

This work proposes a novel bottom-up counting loss function. However, in
contrast to other explicit instance counting methods which often view count as a
deterministic sum of individual instance contributions, this work models count as
a sum of Bernoulli distributions (see Chapter 2 for more details). Thus, instead
of predicting scalar counts and training the model using regression-based loss
functions (e.g., MSE), our proposed approach infers count distributions and the
model training is performed through KL-divergence. Overall, while the differences
between the two approaches might seem subtle, modeling counts as a sum of
individual Bernoulli distribution (i.e., Poisson-binomial counts) offers several key
advantages, such as an implicit convergence towards sparse instance predictions
(see Chapter 3).

This novel approach can also be viewed as a count classification model with an
implicit hierarchy (i.e., ordering) between the count classes. In fact, inferring
count distributions can be interpreted as a means to augment the otherwise
independent count classes of standard classification approaches with an explicit
distribution that models the underlying ordering of the bins (e.g., modeling
counts as Poisson distributions implicitly tells that 3<4). However, in contrast to
Stöter et al. (2018) which explicitly estimate the probability assigned to each bin of
the count distribution and which add the distribution modeling through a custom
loss function, our work estimates the distribution indirectly through a bottom-up
counting approach. Indeed, in our framework, the bins of the count distribution
do not require a direct and explicit estimation since their value is uniquely defined
by the individual instance predictions and the choice of underlying distribution:
the Poisson-binomial distribution of count.
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1.1.2 Prediction Sparsity

Actionable decision making often calls for hard and definitive choices. For instance,
when grocery shopping, someone wishing to buy five tomatoes has to decisively
select exactly five whole fruits from the stand to fulfill their objective; they
cannot choose ten halves nor select a chunk of each available tomato to reach the
desired outcome. Similarly, when a medical professional has to make a decision
about a procedure—although it is useful to weigh up its risks and benefits, the
final choice whether or not to proceed with the intervention is ultimately binary.
Thus, while in some settings it might be beneficial to train deep neural models
to quantify uncertainty or to account for outcome variability, in other setups,
clear-cut decisions are required.

Training models to make hard decisions in an end-to-end manner is however a
challenging feat. Indeed, one of the prerequisites for end-to-end backpropagation-
based learning is the continuous differentiability of the loss functions with respect
to every model parameter. Thus, for instance, the task of finding (or training)
a non-trivial differentiable function that maps continuous inputs to clear-cut
categorical outputs (e.g., “yes or no?” rather than “what is the probability of
yes?”) is mathematically unfeasible (e.g., Heaviside function). As a consequence,
any practical approach to prediction sparsity is required to slightly loosen the
overall setup. In recent years, two main alternatives have been proposed: either
discarding the differentiability assumption or relaxing the hard-sparsity objective.

Non-differentiable Approaches

Dropping the requirement for continuous and well-defined gradients is a straight-
forward way to output sparse predictions. A common approach to train models in
this context is to rely on reinforcement learning to optimize the non-differentiable
loss function. For instance, Trott et al. (2018) leverage reinforcement learning to
train a hard sequential decision process to select bounding-boxes and decisively
answer counting-based questions. Multiple variations of this principle exist in
sequential search or detection algorithm (Caicedo & Lazebnik, 2015; Mathe et al.,
2016). Another widespread approach in this domain consists in training the model
end-to-end on a sub-objective before relying on additional heuristics to perform
the non-differentiable sparsity-inducing operation. For instance, this principle
is widely applied in object detection where models (Girshick, 2015; Ren et al.,
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2015; Redmon et al., 2016; Liu et al., 2016) are often trained to output a large
collection of potential bounding-boxes (with a wide range of detection scores that
are not necessarily close to 0 nor 1), while the clear-cut selection of the final
boxes is performed, as a second step, through a fixed non-maximum suppression
operation. The same observation holds for temporal detection applications where
most models heavily rely on non-differentiable components (e.g., argmax opera-
tion (McNally et al., 2019), peak-picking (Cogliati et al., 2016; Wu et al., 2018),
and thresholding (Schlüter & Böck, 2014)) to obtain sparse predictions. Overall,
the main drawback of this approach is that the optimization does not include all
parts of the model, and thus optimality on the sub-task might not necessarily
equate to optimality on the actual overall objective.

Soft Sparsity

An alternative consists in relaxing the hard-sparsity objective by allowing for
softer probability assignments, and thus keeping the continuous differentiability
assumption. More precisely, instead of incorporating the process of hard decision
making directly on top of the model, the loss function or the architecture itself
can be designed in a way that encourages the sparsity of the predictions rather
than explicitly imposes it. For instance, instead of performing hard bounding-box
selection (e.g., non-maximum suppression), Hosang et al. (2017) propose a method
that relies on the rescoring of the original detection probabilities assigned to each
bounding-box; while sparsity is not guaranteed, this softer approach encourages
the scores to converge towards a sparser representation. Another strategy consists
in replacing the softmax with alternative activation functions that explicitly
yield sparser predictions (Martins & Astudillo, 2016; Martins & Kreutzer, 2017;
Malaviya et al., 2018). This approach is especially common in text modeling where
instances are of a discrete nature. Finally, the Gumbel softmax trick (Jang et al.,
2017; Maddison et al., 2017), which allows to sample discrete random variables in
a differentiable way, can be considered as a sparsity-inducing operation. While
this approach outputs perfectly sparse predictions (i.e., one-hot vectors) in the
forward pass, it still relies on soft probability assignments in the backward pass.
Thus, in terms of sparsity, this method can still be considered as a relaxation of
the hard decision objective.
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Our Approach

In this work, prediction sparsity is learned in an end-to-end fashion through
count supervision. Similarly to the bounding-box rescoring approach (Hosang
et al., 2017), sparsity is not an objective on its own, but models are indirectly
driven towards outputting sparser predictions as the learning progresses. More
specifically, the loss function is designed in such a way that models are bound
to output sparse predictions in order to count successfully (see Chapter 3); thus,
predictions sparsity emerges implicitly as the models learn to count instances.
In contrast to sparse activation-based loss functions (Martins & Astudillo, 2016;
Martins & Kreutzer, 2017; Malaviya et al., 2018) or to the Gumbel softmax
trick (Jang et al., 2017; Maddison et al., 2017), the approach introduced in
this work does not rely on any explicit sparsity-inducing operation but rather
encourages the model itself to learn to output sparse predictions. Finally, by
transforming the sparse selection process into a counting problem, the proposed
model allows to explicitly control and learn the number of non-zero instances;
this contrasts with numerous previous works which achieve sparsity without any
direct control on the number of non-zero instances.

1.2 Thesis Structure and Content

Thesis Structure

The first part of the thesis introduces the novel Poisson-binomial counting loss
function (Chapter 2) and its unique sparsity-inducing property (Chapter 3). The
remainder of the work presents a wide array of applications that demonstrate the
effectiveness, versatility, and usability of the proposed loss function: counting-
based weakly-supervised temporal localization (Chapter 4), robust temporal event
detection (Chapter 5), and multi-instance sub-pixel point detection in images
(Chapter 6). Finally, several avenues for future research are also considered
(Chapter 7).

The experiments of this work cover a wide array of tasks including counting-based
visual question answer (Section 3.3), drum detection (Section 4.3.1, Section 5.6.4),
piano onset detection (Section 4.3.2, Section 5.6.3), digit detection (Section 4.3),
golf event sequencing in videos (Section 5.6.1, Section 6.4.3), smoking puff detection
using wearable sensor data (Section 5.6.2), single molecule localization microscopy
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(Section 6.4.1), checkerboard corner detection (Section 6.4.2), and adversarial
attack on object classification (Section 7.2).

Publications

The content of this thesis is based on the following publications:

1. Schroeter, J., Sidorov, K., and Marshall, D. Weakly-supervised temporal
localization via occurrence count learning. In Proceedings of International
Conference on Machine Learning (ICML), pp. 5649–5659, 2019.

2. Schroeter, J., Sidorov, K., and Marshall, D. Robust temporal point event
localization through smoothing and counting. In ICML Workshop on Un-
certainty & Robustness in Deep Learning (UDL), 2020.

3. Schroeter, J., Tuytelaars, T., Sidorov, K., and Marshall, D. Learning multi-
instance sub-pixel point localization. In Asian Conference on Computer
Vision (ACCV), 2020.

4. Schroeter, J., Sidorov, K., and Marshall, D. Learning Precise Temporal
Point Event Detection with Misaligned Labels. In AAAI (to appear), 2021.

Novelty

The Poisson-binomial loss function, the derivation of its properties, its applications—
both as a standalone training objective and as regularizer—to the various tasks
included in this work (weakly-supervised temporal localization, robust temporal
event detection, and multi-instance sub-pixel point detection in images), the
SoftLoc loss function for the robust learning of temporal point event detection,
the multi-instance subpixel point detection model based on offset regression, soft
localization learning and sparsity regularization, as well as the discussion of future
research avenues are all novel contributions of this work.

New Content

While the content of this thesis is mainly based on work presented in (Schroeter
et al., 2019, 2020a,b, 2021), many new elements have been incorporated into the
text. The most significant of these include more detailed proofs (Section 2.1.1,
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Chapter 3), additional implementation details (Section 2.3), a full section about
the intuition behind the sparsity-inducing ability of the Poisson-binomial loss
function (Chapter 3.1), additional properties of the loss function (Section 3.2.1),
an illustrative visual question answering experiment (Section 3.3), a more detailed
explanation about the convergence of the weakly-supervised model (Section 4.2.3),
extended experiment results and discussions (Section 4.3, Section 5.6, Section 6.4),
a succinct extension of the model to semi-supervised learning (Section 7.1), an
additional counting-based adversarial attack experiment (Section 7.2), a discussion
about learning non-maximum suppression in object detection (Section 7.3), as
well as additional illustrations.





Chapter 2

Poisson-Binomial Counting

The action of counting is an unequivocal operation when the instances that have
to be counted are well-defined. Indeed, it simply consists in identifying individual
instances and enumerating them. However, in the presence of uncertainty about
the existence of an instance, counting becomes an ambiguous action. For example,
when counting people in a low-resolution image, it can be unclear whether a
blurry spot corresponds to a person or should be discarded as noise. In this case,
the counting operation cannot simply rely on instance enumeration anymore: it
has to take into account the uncertainty underlying the nature of such ambiguous
instances.

In fact, integrating such an ambivalent instance—with probability p of being of
interest, and consequently with probability (1−p) of being irrelevant—into the
global count can be done in two different ways. One the one hand, the value
of the instance probability p can be directly added as a non-integer fractional
contribution to the count (see Figure 2.1a). This deterministic approach to
counting appears in numerous applications—e.g., heatmap integration (Lempitsky
& Zisserman, 2010; Idrees et al., 2018) and sub-sample count aggregation (Hu

2 +

p=0.5

= 2.5

(a) Deterministic Counting

2 +

p=0.5

=


2, B(0.5)=0

3, B(0.5)︸ ︷︷ ︸
Bernoulli

=1

(b) Poisson-Binomial Counting

Figure 2.1: Two different approaches for performing addition with uncertain
instances: deterministic and stochastic (i.e., Poisson-binomial) counting.
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et al., 2016; Noroozi et al., 2017)—as it offers a straightforward means to model
and infer counts. However, by mapping stochastic instances to deterministic
fractional count contributions, this method discards all uncertainty, and thus the
final count scalar does not accurately reflect the ambiguity present in the sample.
For instance, in this framework, two instances with probability p=0.5 each or a
single instance with probability p=1 would both yield the same overall count,
even though the two situations are fundamentally different.

On the other hand, a full contribution of 1 can be added to the count with
probability p (see Figure 2.1b). While equivalent to its deterministic counterpart
in unambiguous settings (i.e., p∈{0, 1}), this approach differs in its unique way of
modelling counting as a stochastic—rather than deterministic—operation. For
instance, in this setup, a single instance with probability p=1 or two instances
with probability p=0.5 each do not produce the same overall count. In fact, the
instance summation results in a distribution of counts, rather than a scalar, which
overall reflects the actual uncertainty contained in the sample more accurately.

This work focuses on the latter stochastic approach to counting and its novel
application to machine learning. This chapter formalizes this operation which will
be referred to as Poisson-binomial counting from now on.

2.1 Model Definition

This section formalizes the two counting operations described above. Both can
be characterized as bottom-up counting approaches (see Section 1.1.1) since they
rely on the identification of individual instances to infer counts. In practice, these
instances are drawn from an input sample X using a model f . To account for
the uncertainty underlying the counting process, the model not only identifies
the instances, but also also assigns to each of them a probability pi∈ [0, 1] which
reflects their respective likelihood of being relevant to the count, i.e.,

{p1, . . . , pN} = f(X) ∈ [0, 1]N , (2.1)

For example, these probabilities can correspond to bounding-boxes detection
scores in object detection (Redmon et al., 2016; Hosang et al., 2017), pixel
densities in density-based object counting (Zhang et al., 2015a; Idrees et al., 2018),
and temporal event occurrence probabilities in audio detection (Schroeter et al.,
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2019) (see Chapter 4). This general setting thus encompasses a wide array of
applications.

Definition 2.1 (Deterministic Count). As mentioned above, counting is
commonly performed by summing the instance probabilities {p1, . . . , pN}
(Zhang et al., 2015a; Idrees et al., 2018; Trott et al., 2018), i.e.,

C =
∑N

i=1 pi . (2.2)

In this framework, the operation of counting is simply viewed as a deterministic
sum of individual fractional contributions. While inferring scalar counts allows
for a straightforward training of the model through mean squared error (MSE) or
other standard regression-based loss functions, this approach does not account
for the stochastic nature of the individual contributions. Indeed, for example, if
someone has a probability p=0.5 of picking up a tomato, they do not actually cut
the fruit in half and pick one of the two pieces (C=0.5), but rather either take the
entire fruit or leave it on the shelf with equal probability. Similarly, instances in
many domains are indivisible and come in integer amounts (e.g., object detection
and human pose estimation). Thus, modeling counts as a sum of fractions of
indivisible objects does not offer an effective solution for all counting applications.

Definition 2.2 (Poisson-Binomial Count). In contrast, we propose mod-
eling counts as a sum of independent Bernoulli trials B with probabilities
p1, . . . , pN , i.e.,

C =
∑N

i=1 B(pi) , (2.3)

where the random variables B(pi) are independent of one another. This approach
better accounts for the stochastic nature of the individual instances. Indeed, since
it is defined as a sum of distributions, the count is itself a distribution—rather
than a scalar—thus allowing for a more accurate representation of the variability
observed in the sample. For example, if someone has a probability p=0.3 of
picking up a tomato, then there is a 30% chance that they will end up with 1

tomato and a 70% chance they will end up with 0. Thus, this stochastic approach
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accurately captures this effect, while the deterministic variant simply reports a
single scalar value (i.e., C = 0.3) that does not retain any information about the
underlying uncertainty. The properties of this counting model are discussed in
Section 2.1.1 and Chapter 3.

Independence of the Bernoulli Random Variables

In many applications, the instance probabilities pi are correlated. This is especially
the case in temporal applications where the content of two consecutive timesteps
are highly dependent. For instance, in piano music, if a note is played at a given
time, it is almost certain that this same note will not be played again in the
following few milliseconds, simply because of the mechanical and physiological
constraints inherent to piano playing. Similar temporal constraints apply, for
example, to the detection and counting of events in videos. Thus, in such
settings, the predictions pi in the sequence p1, . . . , pN cannot be independent of
one another, if the temporal dynamics are to be modeled properly. The same
observation also holds in the spatial domain (e.g., object counting in images)
where features are often highly correlated locally. Although this modeling need
for mutually dependent instances might appear to be in contradiction with
the independence assumption of the Bernoulli random variables introduced in
Definition 2.2, the assumption only requires the trial B(pi) to be independent
and not the success probabilities pi themselves. Thus, the individual instances
can be correlated through the model f without affecting the independence of
the Bernoulli distributions; consequently, the individual probabilities pi are not
subject to any restriction.

Higher-order Generalization

In the proposed Poisson-binomial counting setup, each instance can only contribute
a maximum of 1 to the count C . While this assumption is met in numerous
applications, the current framework might have to be generalized slightly in some
very specific cases. For instance, in basketball, shots are awarded between 0

and 3 points depending on the situation (e.g., 0 for a miss or 1 for a successful
free-throw). Modeling the total number of points scored during a game as a count
using only sums of Bernoulli random variables is inconvenient, as it would require,
among others, to model each potential point awarded as a different class. To offer
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an effective generalization of the setup to such higher-order count contributions,
counts could be modeled as a sum of multinomial random variables instead.
However, this extension of the proposed model is not developed further in this
work.

2.1.1 Properties

Some properties of the Poisson-binomial counting model introduced in Defini-
tion 2.2 are derived in this section.

Property 2.1 (Poisson-Binomial Distribution). The count distribution, de-
fined in Equation 2.3 as a sum of independent Bernoulli random variables with
probabilities p1, . . . , pN , follows a well-known distribution: the Poisson-binomial
distribution, i.e.,

Pr(C = k) =
∑
S∈Fk

∏
i∈S

pi
∏
j∈Sc

(1− pj), (2.4)

Proof.

Pr(C = k)
(2.3)
= Pr(

∑
i B(pi) = k)

(LTP)
=
∑

S∈P ({1,...,N})

Pr(
∑

i B(pi) = k | B(p1) = 11∈S , . . . ,B(pN ) = 1N∈S)

· Pr(B(p1) = 11∈S , . . . ,B(pN ) = 1N∈S)

=
∑

S∈P ({1,...,N})

1|S|=k · Pr(B(p1) = 11∈S , . . . ,B(pN ) = 1N∈S)

=
∑

S∈P ({1,...,N})

1|S|=k ·
∏
i∈S

Pr(B(pi) = 1)
∏
j∈Sc

Pr(B(pj) = 0)

=
∑

S∈P ({1,...,N})

1|S|=k ·
∏
i∈S

pi
∏
j∈Sc

(1− pj)

=
∑
S∈Fk

1|S|=k ·
∏
i∈S

pi
∏
j∈Sc

(1− pj) +
∑
S∈F ck

1|S|=k ·
∏
i∈S

pi
∏
j∈Sc

(1− pj)

=
∑
S∈Fk

∏
i∈S

pi
∏
j∈Sc

(1− pj)

(2.5)

In these equations, P ({1, . . . , N}) stands for the power set of {1, . . . , N} (i.e., the
set of all subsets) and S represents a set of indices sampled from P ({1, . . . , N})
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Figure 2.2: Deterministic counting in action. Expressing counts as a sum of
fractional instance contributions leads to non-integer values, which do not model
well the numerous applications where objects are indivisible and only appear in
integer amounts.

that indicates which trials are equal to 1, while its complement Sc indicates which
trials are equal to 0. Finally, Fk is the set of all subsets of P ({1, . . . , N}) of size k.
The most important part of the derivation is the second equality which uses the
law of total probability (LTP) on all possible realizations of the Bernoulli random
variables. The rest follows seamlessly using the independence of the Bernoulli
distribution and elementary set and probability theory.

An important advantage of modeling counts as a discrete distribution, rather than
a continuous scalar, is that only integer counts are inferred. Thus, in contrast to
the classical approach to counting (Equation 2.2) which allows for the addition of
fractional counts, the proposed approach allows for a natural modeling of counts
for the numerous applications where objects are indivisible and only appear in
integer amounts. Indeed, reporting that 10.3 people attended an event or that 9.7

fingers were detected on a radiography image could raise more questions than it
actually answers (see Figure 2.2 for illustration).
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Property 2.2 (Unambiguous Instances).

C =
∑

i B(pi) =
∑

i pi = C, if and only if pi∈{0, 1}. (2.6)

The two approaches to counting (i.e., deterministic and Poisson-binomial) are
equivalent in the absence of uncertainty since, in such a scenario, the Bernoulli
random variables are identical to their respective success probabilities pi∈{0, 1}.

Property 2.3 (Expectation).

E[C ] = E[
∑

i B(pi)] =
∑

i E[B(pi)] =
∑

i pi = C. (2.7)

The classical approach to counting (Definition 2.1) can be replicated by taking the
expectation either of the count or of the individual Bernoulli random variables,
ultimately resulting in the loss of all information about the variability of the
individual instances. Thus, the standard approach of optimizing the deterministic
count can be viewed as a means to align the first moment of the underlying
count distribution with the observed count. While discarding information about
the higher moments of the count distribution might seem marginal in a context
where the objective is to infer the most accurate count prediction, it actually
has a significant impact on the learning process. Indeed, unlike its deterministic
counterpart, the stochastic approach can rely on the additional prior information
that, for instance, an annotated count of 4 corresponds to a distribution of count
with all the mass on 4 (i.e., a Dirac distribution 14). Such a clear-cut count can
thus only be the result of 4 unambiguous individual instances with probability 1.
In contrast, in the deterministic framework, a count of 4 can be the result of
infinitely many combinations of probabilities. Thus, by only considering the mean
of the count distribution, all information about the Dirac nature of the label
distribution is lost, and thus the predicted distribution can take any shape as long
as the means are aligned. This implicit prior knowledge about the sparsity of the
predictions is discussed in detail in Chapter 3 and stands at the core of this work.
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2.2 Loss Function

In practice, the instance probabilities and the count can be inferred using a
parameterized model f̂θ with parameter set θ:

{p̂θ,1, . . . , p̂θ,N} = f̂θ(X) ∈ [0, 1]N

Ĉθ =
∑

i B(p̂θ,i) .
(2.8)

In order to train such a model, a loss function has to be defined that compares
the estimated count Ĉθ with the observed count c. By definition, the count
distribution Ĉθ follows a Poisson-binomial distribution. Thus, the estimation of
the parameter set θ can be done by comparing the distribution Pr(Ĉθ=k |X) to
the target sample distribution determined by c (i.e., 1c). The Kullback-Leibler
divergence (1951), which in this specific case corresponds to the cross-entropy
and max-likelihood, is therefore a suitable choice for the loss function:

L(θ) = DKL(1c‖
∑

iB(p̂θ,i))

= −∑j Pr(1c=j) log
(

Pr(
∑
iB(p̂θ,i)=j)

Pr(1c=j)

)
= − log (Pr(

∑
iB(p̂θ,i) = c | X))

= − log
(

Pr
(
Ĉθ = c | X

))
.

(2.9)

For the sake of notation simplicity, only one sample was considered in the previous
equation. However, the extension of this loss function to multiple samples with
count estimates Ĉ

(i)
θ and count labels c(i) is straightforward:

L(θ) =
∑

i− log
(

Pr
(
Ĉ

(i)
θ = c(i) | Xi

))
. (2.10)

A similar extension can be done for applications with multiple prediction classes
(i.e., multivariate counts).

Structured Classification

As mentioned in Section 1.1.1, the proposed method is a classification approach
where the probability assigned to each count class is not directly inferred—unlike
direct classification approaches, but rather explicitly given by the individual
instance probability estimates and the underlying count model (i.e., Poisson-
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binomial counting). Thus, in contrast to standard count classification models,
this approach does not only implicitly take into account the natural ordering of
the count classes, but also allows to leverage finer-grained instance annotations to
learn to count. Nevertheless, as with any classification model, the training can be
done using the standard cross-entropy between the count distributions and the
count labels, which results in Equation 2.9.

Limitations and Opportunity

The Poisson-binomial loss function (Equation 2.9) is defined as the comparison of
a count distribution and a scalar label—via its corresponding Dirac distribution.
This definition is reminiscent of the classical use of the cross-entropy in classi-
fication tasks (e.g., image classification). Over the years, it has however been
shown that comparing distributions (over all classes) with variance-free one-hot
encoded labels—without any additional loss correction—is highly ineffective in
modeling class probabilities in uncertain settings (Mnih & Hinton, 2012; Natarajan
et al., 2013; Reed et al., 2014; Azadi et al., 2016). By extension, the proposed
Poisson-binomial loss function (as defined in Equation 2.9) is thus expected not
to fully capture the variability of the count distribution in uncertain settings.

Additionally, while the counting model underlying the Poisson-binomial loss
function is probabilistic, the loss function actually encourages the model to
output a count distribution that matches the nature of the label: a variance-free
count. This sparsity effect (i.e., the optimal prediction consists in assigning all the
probability mass to a single bin) might make our approach less effective in modeling
variability in the count than other standard probabilistic counting models, e.g.,
Poisson-regression (Chan & Vasconcelos, 2009; Fallah et al., 2009). Indeed, such
approaches are explicitly designed to infer spread-out count distributions.

This work will however show that, while the above properties might appear to
be limitations of the model, they are actually a blessing in disguise in many
circumstances. In fact, as will be demonstrated in Chapter 3, the sparsity effect
of the loss function can be leveraged to learn the non-differentiable function of
instance selection in a differentiable manner.
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2.3 Implementation Details

Notation Cn[k] := Pr
(
Cn = k

)
, Cn :=

∑
j≤n B(pj)

Cn[k] corresponds to the probability of having the partial count Cn (when only
considering the first n instances p1, . . . , pn) be equal to k. While this definition
assumes some ordering of the instances, the ordering itself has no impact on the
final count estimate CN as the Bernoulli random variables are assumed to be
independent; an ordering is only needed for practical purposes.

2.3.1 Loss Computation

The Poisson-binomial distribution is the core component of the loss function
defined in the previous section; its efficient and accurate computation is thus
crucial for the learning process. While being a straightforward option, the
closed-form definition (Equation 2.4) can only be computed efficiently when the
number of point predictions pi is limited. Indeed, given the exponential nature of
its complexity, this approach becomes too computationally expensive for most
practical applications.

Fortunately, numerous solutions have been proposed over the years to overcome
this specific issue (Le Cam, 1960; Roos, 2001; Fernández & Williams, 2010;
Howard, 1972; Shah, 1973; Gail et al., 1981; Chen et al., 1994; Chen & Liu, 1997).
However, while approximation-based methods (Le Cam, 1960; Roos, 2001) can be
very efficient, they are inappropriate in this case since an exact computation of
the loss is imperative for gradient descent learning. Additionally, Fourier-based
closed-form formulas (Fernández & Williams, 2010) can also be directly discarded
from consideration as they are too complex and might be too unstable for the loss
computation. Thus, recursive formulas are the only viable alternative (Howard,
1972; Shah, 1973; Gail et al., 1981; Chen et al., 1994; Chen & Liu, 1997).

As a compromise between simplicity, numerical stability, and computational
complexity (O(N2)), the following recursive formula—which is in fact a special
case of the more general recursion proposed in (Howard, 1972; Gail et al., 1981)—is
preferred in this work:
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Property 2.4 (Recursion Property).

Cn[k] =

(1−pn) Cn−1[k] k=0

(1−pn) Cn−1[k] + pnCn−1[k − 1] k>0,
(2.11)

where C0[k] = 1k=0.

This recursive formula can easily be derived using the law of total probability, the
independence assumption of the Bernoulli distribution, and the definition of the
Poisson-binomial distribution:

Proof.

Cn[k] := Pr
(∑
j≤n
B(pj) = k

)
(LTP)
= Pr

(∑
j≤n
B(pj) = k | B(pn) = 1

)
Pr
(
B(pn) = 1

)
+ Pr

(∑
j≤n
B(pj) = k | B(pn) = 0

)
Pr
(
B(pn) = 0

)
= Pr

(∑
j≤n
B(pj) = k | B(pn) = 1

)
pn

+ Pr
(∑
j≤n
B(pj) = k | B(pn) = 0

)
(1− pn)

= Pr
(∑
j≤n−1

B(pj) = k − 1
)
pn + Pr

(∑
j≤n−1

B(pj) = k
)

(1− pn)

= pnCn−1[k − 1] + (1− pn) Cn−1[k].

(2.12)

The initial condition C0[k] = 1k=0 comes from the fact that the probability of
having a count of zero when observing no instances is trivially equal to 1.

2.3.2 Mass Truncation

The extent of the count distribution’s (Ci) sample space is naturally bounded
by i. Indeed, since each individual instance p̂i can only increase the count by at
most 1, the range of values that the count distribution Ci can possibly take spans
from 0 to i (see definition 2.3). From a practical standpoint, it can however be
beneficial to impose a single stricter bound (cmax) on the distribution. Such a
threshold allows to truncate the count distribution after the first cmax+1 bins and
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put all the remaining mass above the threshold—i.e., Pr(Ci > cmax)—on the last
bin, i.e.,

C̄N [k] :=

CN [k] k≤cmax∑
j>cmax

CN [j] k=cmax + 1.
(2.13)

Such truncation of the count distribution has the main advantage of reducing the
complexity of the loss computation from O(N2

i ) to O(cmaxNi). Additionally, having
a unique and harmonized count distribution length (i.e., cmax + 2) regardless of
the number of individual instances facilitates the implementation of the loss.

In practice, imposing a stricter bound is often straightforward as most applications
are already subject to natural restrictions. For instance, the number of notes
played within a second of piano music is bounded by physiological and mechanical
constraints, while the number of yellow cards received during a football game is
limited by the rules of the game. In these scenarios, it would be highly sub-optimal
to compute the probability assigned to each count up to the number of sound
samples in the audio sequence (44100 samples per second is common in music) or
the number of frames in a football game video respectively.

2.3.3 Weight Initialization

The multiplicative nature of the Poisson-binomial distribution calls for caution
when initializing the network’s weights. Indeed, it is essential to avoid extreme p̂i
values that may cause cross-entropy surges and exploding gradients. For instance,
assuming both that the predictions are obtained via a sigmoid transform of the
network’s output and that all weights are set to zero (an initialization that is
often far from optimal), then p̂i = 0.5, ∀i ≤ N . Consequently, in such a case, the
probability mass of the Poisson-binomial distribution that lies on count zero
(i.e., no event occurrence) is equal to Pr(CN = 0) = 0.5N . In most applications,
the number of probability estimates can be quite large, which would lead to
almost zero mass on the first bin of the count distribution. This can cause
significant computational issues when computing the loss function or performing
backpropagation (e.g., exploding gradients) if the true count is actually equal to
zero.
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A simple solution consists in initializing the bias of the final prediction layer in
such a way that the count distribution contains a reasonable amount of mass on
each of its bins. For instance, one can define an appropriate amount of mass that
should initially lie on a count of zero (ω0), and then the initial corresponding
bias (β0) can be computed analytically:

β0 = − log
(

1− 1

ωN0

)
(2.14)

By adding such a bias to any traditional initialization method such as Xavier (Glo-
rot & Bengio, 2010) or He (2016), the count distribution C = CN is ensured to
have some non-negligible amount on each of its potential outcomes. This simple
operation thus significantly reduces the risk of exploding gradients or loss surges
caused by an improper initialization.

2.3.4 Optimization on a Subset of Predictions

While the truncation of the count distribution (Equation 2.11) allows for a more
efficient computation of the recursive formula, the loss computation—with a
complexity of O(cmaxNi)—can still be computationally intensive. Indeed, when
working on a small network with numerous output probabilities pi, the loss
computation itself can become a computational bottleneck. Thus, in order to
avoid this issue, the probabilities pi that do not impact the learning in any
significant way can be discarded from the optimization. More specifically, in
the case that some pi converge towards zero (see Chapter 3 for a full discussion
about the prediction sparsity property of the loss function), the impact of these
predictions on the overall loss function and by extension on the learning process
becomes negligible. Therefore, these predictions can be removed from the loss
computation and from the gradient computation without any effect on the training.
Overall, while this trick cannot be applied at the early stages of the training,
discarding the irrelevant pi can lead to significant gains in efficiency in the later
stages, and thus on the training in general.
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2.4 Conclusion

This chapter proposes Poisson-binomial counting (Definition 2.2) as an alternative
to the standard deterministic counting framework (Definition 2.1). One of the
main advantages of this approach resides in its ability to better account for the
stochastic nature of the individual instances that are being counted. Indeed, while
both methods are equivalent when counting unambiguous instances (Property 2.2),
modeling counts as random variables, rather than a scalar, preserves more infor-
mation about the underlying instances in the presence of uncertainty. In fact, the
deterministic approach to counting only conserves the first moment of the count
distribution, discarding all information about the higher moments (Property 2.3).

As a consequence, the resulting Poisson-binomial loss function (Equation 2.9)
offers a more tailored supervision that not only directs models to aligns expected
counts, but that ensures that the higher moments of the count label are taken into
account. The next chapter actually shows how this more constrained supervision
implicitly integrates the prior knowledge about the sparsity of the underlying
instance into the learning process.



Chapter 3

Prediction Sparsity Properties

The Poisson-binomial counting model introduced in the previous chapter is not
only a bottom-up distribution-based approach to infer counts, but it is also a
means to achieve prediction sparsity through count supervision. This chapter
covers, in detail, how learning to count instances using the Poisson-binomial model
can implicitly lead to sparse probability predictions.

3.1 Intuition behind Prediction Sparsity

3.1.1 Matching Distributions Rather Than Scalar Expectations

The Poisson-binomial loss function (Equation 2.9) encourages models to align the
count distribution Ĉ—uniquely determined by the individual instance probability
estimates p̂1, . . . , p̂N—with the label count distribution 1c (i.e., a Dirac distribu-
tion). The overall objective is thus not only to maximize the amount of mass
on the bin corresponding to a count of c, but also to minimize the probabilities
attributed to all other counts. This convergence towards a variance-free count
distribution has a direct impact on the underlying probability estimates p̂1, . . . , p̂N .
Indeed, the variance of the Poisson-binomial distribution is given by:

σ2(Ĉ ) =
∑

i(1− p̂i)p̂i. (3.1)

In fact, in order to closely match the variance of the label distribution (i.e.,
σ2(1c) = 0), the probability estimates are bound to converge towards the 0, 1

extremes as the learning progresses, i.e.,

σ2(Ĉ ) ≡ σ2(1c) = 0 ⇐⇒ p̂i ∈ {0, 1}, ∀i ≤ N. (3.2)

29
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Thus, this prediction sparsity property emerges naturally from constraining the
estimated count distribution to take the form of a Poisson-binomial distribution.

In contrast, as highlighted by Property 2.3, standard counting approaches only
encourage models to align the expectation of the estimated count distribution with
the label count c. In such a framework, the higher moments of the distribution
are not taken into account, and thus, as long as the first moments are aligned,
the count distribution can take any form. This lack of implicit restriction on
the shape of the estimated distribution—especially on the variance, results in a
training objective that, while being suitable for numerous counting applications,
only loosely captures the complexity of the learning target.

Overall, training with the Poisson-binomial loss function, rather than traditional
counting loss functions, allows to implicitly incorporate into the learning process
the common prior that counts are the sum of sparse integer contributions.

3.1.2 Toy Example: Bounding-Box Selection

Object detection methods often heavily rely on non-maximum suppression to
select a small set of relevant bounding-boxes per sample. While existing algorithms
often use fixed heuristics (Girshick, 2015; Ren et al., 2015; Redmon et al., 2016;
Liu et al., 2016) for this selection process, trainable methods also exist. For
instance, Hosang et al. (2017) propose to rescore the original detection scores in
an attempt to obtain only a few high-probability outputs, rather than numerous
scattered predictions. In such a setting, as the optimal solution of the selection
process requires the number of selected bounding-boxes to match the number of
labeled objects in the image, object counting could be leveraged as an additional
means of supervision. This section assesses the impact of adding a counting-based
loss function as a regularizer to the rescoring process on a simple two-instance
example.

In this example, for the sake of simplicity, it is assumed that the detection model
outputs exactly two bounding-boxes (with detection scores p̂1 and p̂2 respectively)
and that the number of ground-truth bounding-boxes is equal to 1 (i.e., c = 1).
Thus, if considering the detection scores only, a rescoring scheme would be optimal
in this setup only if it yields exactly one high-probability bounding-box while
discarding the other (i.e., (p̂1, p̂2)→ (0, 1) or (p̂1, p̂2)→ (1, 0)).
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(a) Deterministic Counting
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(b) Poisson-Binomial Counting

Figure 3.1: Gradients of (a) the deterministic counting loss function (LMSE) and
(b) the Poisson-binomial loss function (LPB) with respect to instance probability
estimates p̂1, p̂2 with a label count of c=1.

The following evaluates whether the integration of deterministic or Poisson-
binomial counting-based supervision helps the training converge towards these
optimal probability assignments.

Deterministic Counting

The loss function most commonly associated with the standard deterministic
approach to counting is the (root) mean squared error between the predicted and
the label count which, in this example—with two instances and a target count
of 1—results in the following loss:

LMSE = MSE
(
Ĉ, 1

)
= (p̂1 + p̂2 − 1)2. (3.3)

This loss function is minimized if and only if

p̂1 + p̂2 = 1. (3.4)

Thus, any combination of p̂1, p̂2∈ [0, 1] that satisfies this condition is a stable
solution to the minimization of LMSE. This elementary observation is visually
confirmed by Figure 3.1a which displays the gradient of the loss function with
respect to the probability estimates p̂1, p̂2. This loss function does therefore not
converge the probability estimates towards the overall objective of the rescoring
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scheme which consists in outputting only one single high-probability detection—
either (p̂1, p̂2)→ (0, 1) or (p̂1, p̂2)→ (1, 0)—in this scenario. Incorporating LMSE as
a count-based regularization would thus not benefit the learning of bounding-box
selection as it has no impact on the sparsity of the predictions.

Poisson-Binomial Counting

In contrast, in the same scenario, the proposed Poisson-binomial loss function
(Equation 2.9), i.e.,

LPB = − log
(

Pr
(
Ĉ =1

))
= − log

(
Pr
((
B(p̂1)=1 ∧ B(p̂2)=0

)
∨
(
B(p̂1)=0 ∧ B(p̂2)=1

)))
= − log

(
Pr
(
B(p̂1)=1,B(p̂2)=0

)
+Pr

(
B(p̂1)=0,B(p̂2)=1

))
(ind)
= − log

(
Pr
(
B(p̂1)=1

)
·Pr
(
B(p̂2)=0

)
+Pr

(
B(p̂1)=0

)
·Pr
(
B(p̂2)=1

))
(def)
= − log

(
p̂1 (1− p̂2) + (1− p̂1) p̂2

)
(3.5)

is minimized if and only if (p̂1, p̂2) = (0, 1) or (p̂1, p̂2) = (1, 0). Figure 3.1b confirms
that the probability estimates converge towards clear-cut values when minimiz-
ing LPB. Indeed, the gradients of the loss with respect to the detection probabili-
ties p̂1, p̂2 show that the estimates are drawn to either one of the two extremes as
the learning progresses. While a saddle point exists at (p̂1, p̂2) = (1/2, 1/2), this
solution is highly unstable and any deviation from it will cause the predictions to
converge towards one of the two global minima. The likelihood of being stuck
around that point, like the Buridan’s ass between the two stacks of hay, is highly
unlikely given the stochastic nature of the training process.

Thus, in contrast to the classical count-based loss function, adding the Poisson-
binomial loss function as an additional optimization target would certainly benefit
the convergence of the detection scores towards the optimal sparse solutions.

Remark

In this example, the counting loss function itself does not take into account the
content, nor the context of the bounding-boxes, and thus has to be leveraged
in conjunction with another loss function in order to successfully select relevant
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bounding-boxes. The global minimum towards which the predictions will be
drawn highly depends on that other loss function. Overall, in this scenario,
the Poisson-binomial counting loss function only acts as a means of achieving
predictions sparsity, and not as a means of making meaningful selections.

Higher Dimensions

As the number of instances increases, training with a classical counting loss
function might result in highly dispersed predictions. Indeed, a contribution of 1

to the global count could be split into numerous small instance contributions, thus
leading to uninterpretable results. In contrast, the ability of the Poisson-binomial
loss function to converge the probability estimates towards sparsity remains in
higher dimensions (see the next section).

3.2 Prediction Sparsity

The sparsity-inducing capability of the Poisson-binomial loss function is addressed
more formally in this section.

3.2.1 Global Minima of the Loss Function

At the minima of the loss function, the predictions p̂θ are sparse. More precisely,

Theorem 3.1 (Count Sparsity). For all c ∈ N,

DKL(1c‖
∑

iB(p̂θ,i))= 0 ⇐⇒ (‖p̂θ‖0 =c) ∧ (p̂θ∈{0,1}N ), (3.6)

where ‖ · ‖0 corresponds to the `0-norm, which actually counts the number of
instances that are not equal to zero.

Proof. The equivalence in Theorem 3.1 (i.e., P ⇐⇒ Q) can be proven by showing
that each conditional (P =⇒Q and Q=⇒P ) holds:
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=⇒

DKL(1c‖
∑

iB(p̂θ,i))= 0

=⇒

µ(1c)=µ(
∑

iB(p̂θ,i))

σ2(1c)=σ2(
∑

iB(p̂θ,i))

⇐⇒

c =
∑

i p̂θ,i

0 =
∑

i(1−p̂θ,i)p̂θ,i

⇐⇒

c =
∑

i p̂θ,i

p̂θ,i∈{0,1}

=⇒ (‖p̂θ‖0 =c) ∧ (p̂θ∈{0,1}N )

(3.7)

⇐=

(‖p̂θ‖0 =c) ∧ (p̂θ∈{0,1}N )

=⇒∑
iB(p̂θ,i) =

∑
{i|p̂θ,i=1}11+

∑
{i|p̂θ,i=0}10

=
∑c

i=111 = 1c

(3.8)

This theorem highlights two important characteristics of the loss function: its
ability to control the number of non-zero instances and the normalized nature of
its solutions.

Controlled Sparsity

The first condition on the right-hand side of the equivalence (i.e., ‖p̂θ‖0 =c)
indicates that the number of non-zero predictions can be controlled through
the loss function. While this feature is intuitive—since the loss function is
defined as a comparison of count distributions, this ability to enforce a strict
number of non-zero predictions sets Poisson-binomial counting apart from several
other traditional means of achieving prediction sparsity. Indeed, for instance, non-
maximum suppression in object detection and sparse activation functions (Martins
& Astudillo, 2016; Martins & Kreutzer, 2017; Malaviya et al., 2018), even though
they guarantee a sparse selection of instances, do not allow for such a level of
supervision.
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Nature of the Predictions

The second term on the right-hand side of the equivalence (i.e., p̂θ∈{0,1}N)
highlights one of the main underlying assumptions of the model: the optimal non-
zero predictions must be equal to 1. This contrasts with several classical sparsity-
inducing approaches, which only take into consideration the number of non-zero
instances regardless of their value. While often trivially met in applications dealing
with probability assignments (e.g., bounding-box selection, existence probability,
and class probability), this condition requires careful attention in other settings.
For instance, in contrast to the `1-regularization (i.e., Lasso (Tibshirani, 1996)),
the Poisson-binomial loss function cannot directly be used to achieve parameter
sparsity in linear regression as the optimal non-zero weights are not necessarily
equal to 1.

3.2.2 Local Minima of the Loss Function

While Theorem 3.1 demonstrates that prediction sparsity is a necessary condition
for the global minimization of the loss function, it does not show that learning
to count instances with the Poisson-binomial loss function implicitly converges
the probability estimates towards these global minima. Indeed, gradient-based
optimization algorithms are prone to being drawn to the local minima of the loss
function, and therefore do not necessarily converge towards the global minima.

However, despite not being convex with respect to the instance probabilities, the
Poisson-binomial loss function implicitly has a property that is important for its
successful optimization through gradient-based learning: the set of local minima
of the loss function (w.r.t. the instance probabilities) is equivalent to the set of
global minima of the loss function, i.e.,

Theorem 3.2 (Local Minima). Let l(x) :=DKL(1c‖
∑

iB(xi)), then ∀c≤N{
p = {p1, . . . , pN} ∈ [0, 1]N | p is a local minimum of l(x)

}
≡
{
p = {p1, . . . , pN} ∈ [0, 1]N | l(p) = DKL(1c‖

∑
iB(pi))= 0︸ ︷︷ ︸

Global Minimum

}
(3.9)
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Proof. The complete proof can be found in Appendix A. In summary, the main
idea of the proof consists in showing that the function

h(x) := Pr
(∑

i B(xi) = c
)

(3.10)

has no local maxima in (0, 1)N by proving that its Hessian Hh(p) is not negative-
definite at any point p∈ (0, 1)N for all values of c≤N . Once this is proven, it
directly follows that the local maxima of h(p) can only lie at the border of the
bounded interval [0, 1]N and it can further be shown that the maxima only lie at
the corners of the hypercube (i.e., p∈{0, 1}N ). Finally, using the definition of
the loss function, it can easily be demonstrated that only the corners that satisfy
the global maximality criterion DKL(1c‖

∑
iB(pi)) are local minima of the loss

function.

Thus, the theorem follows from the fact that the Poisson-binomial loss function is
locally minimized in p if h(p) is locally maximized in p since the log is a strictly
monotonically increasing function on the (0, 1] interval.

Other Critical Points

As mentioned in Section 3.1.2 and as reflected in Figure 3.1b, the Poisson-binomial
loss function can present saddle points. In practice, given the stochastic nature
of batch-based optimization and given the instability of these critical points, it
is highly unlikely that the optimization might get stuck there. These points can
nevertheless slow down the learning process since the gradients are relatively small
around them. This detrimental effect can however be alleviated by adapting the
learning rate accordingly.

There also exist points on the boundary of the domain (e.g., p∈{0, 1}N ) that
are not local minima but whose individual gradients are all equal to zero. For
instance, if p=0 and if the labeled count c is strictly greater than 1, the derivative
of the loss with respect to the individual instance probabilities is equal to zero1,
i.e., ∂

∂pi
l(p)= 0. However, despite the value of the individual gradients, this point

does not constitute a local minimum of the loss since, for example, the point
p′ = 0 + ε for any 0< ε< 1 yields a strictly smaller loss (see full discussion in
Appendix A). These shortcomings can thus be overcome either by selecting an

1Note that in order to avoid cases where log(0)=−∞, a small value can be added to each bin
of the count distribution in the loss computation without significantly affecting its optimization.
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appropriate optimization algorithm or simply by setting the initialization away
from these critical points (i.e., away from the strict border of the domain). In
practice, if the probability estimates are the result of a sigmoid or a softmax
activation function, the instance probabilities implicitly cannot take the value 0

or 1, and thus the problem is non-existent.

Consequence

In conclusion, since the loss function is continuously differentiable over the entire
domain, the optimization of the Poisson-binomial loss function is bound to converge
towards one of the global minima. This result combined with Theorem 3.1 proves
that learning to count instances with the Poisson-binomial loss theoretically
converges the individual instance probabilities towards sparsity.

3.2.3 Mode Properties of the Poisson-Binomial Distribution

Additional insights into the convergence of the Poisson-binomial loss function
and the instance probabilities can be derived by investigating the mode of the
count distribution. Thus, as a preliminary step towards general convergence
results, a few important properties about the mass assigned to the mode of the
Poisson-binomial distribution are derived in this section.

Recall Cn[k] := Pr
(
Cn = k

)
, Cn :=

∑
j≤n B(pj)

Cn[k] is defined as the probability that the partial count Cn (when only con-
sidering the first n instances) is equal to k. Thus, the mode of the partial
count distribution Cn is given by arg maxk Cn[k] and its probability is equal to
Cn[arg maxk Cn[k]] = maxk Cn[k].

First, the probability maxk Cn[k] assigned to the mode of the partial count
distribution Cn[k] is a monotonically decreasing sequence in n:

Property 3.1 (Decreasing Maximum).

maxk Cn[k] ≤ maxk Cn−1[k], (3.11)
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Proof. This property can easily be proven by recalling the recursive formula derived
from both the law of total probability and the definition of the Poisson-binomial
distribution (Equation 2.11) and by defining, without loss of generality, Cn[−1] = 0:

Cn[k]
2.11
= (1−pn) Cn−1[k] + pnCn−1[k − 1], ∀k

=⇒ Cn[j] = (1−pn) Cn−1[j] + pnCn−1[j − 1], j = arg maxi Cn[i]

⇐⇒ maxk Cn[k] = (1−pn) Cn−1[j] + pnCn−1[j − 1], j = arg maxi Cn[i]

pn>0
=⇒ maxk Cn[k] ≤ (1−pn) maxk Cn−1[k] + pn maxk Cn−1[k]

= maxk Cn−1[k].

(3.12)

This property reveals that once the mass assigned to the mode of C is reduced,
it cannot be increased back. (Note that the probability assigned to the mode
decreases, not the location of the mode itself, which can only increase over time,
i.e., arg maxk Cn+1[k] ≥ arg maxk Cn[k].) In other words, any instance probability
that has not yet been included in the count can only cause the probability of the
mode to decrease. In fact, this feature comes in tandem with the observation that
the variance of Cn[k] is non-decreasing with n:

σ2(Cn[k])− σ2(Cn−1[k]) = (1− pn)pn ≥ 0. (3.13)

Indeed, once the mass of the count distribution has been dispersed, it cannot be
reconcentrated back.

Lemma 3.1 (First Upper Bound).

maxk Cn[k] ≤ 1
2 + minj≤n ‖1

2 − pj‖. (3.14)

Proof.

Cn def
=
∑
j≤n
B(pj)

ind.
= B(pi) +

∑
i 6=j≤n

B(pj) , i := arg min
j≤n

‖1
2 − pj‖

3.1
=⇒ max

k
Cn[k] ≤ max

k
B(pi) [k], i := arg min

j≤n
‖1

2 − pj‖
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= max{pi, 1− pi}, i := arg min
j≤n

‖1
2 − pj‖

= 1
2 + min

j≤n
‖1

2 − pj‖. (3.15)

This inequality highlights that even a single prediction p̂i around 1
2 can cause

the probability assigned to the mode of C to drop permanently. In fact, this
bound (Equation 3.14) is extremely loose as it only stems from a single p̂i;
according to the decreasing maximum property (Equation 3.11), all remaining p̂i
can only reinforce this effect.

3.2.4 Convergence of Instance Probabilities

These first results about the mode of the Poisson-binomial distribution can
appear abstract. However, the connection between distribution upper-bounds
and prediction convergence becomes more evident once the definition of the
Poisson-binomial loss function is restated:

L(θ) = − log
(

Pr
(
Ĉθ = c | X

))
= −

∑
i

log
(
ĈN [c]

)
(3.14)
≥ − log

(
1
2 + mink ‖1

2 − p̂θ,k‖
)
.

(3.16)

In other words, if a loss of −log (α) is reported, then there is no estimated instance
probability pi that can satisfy α≤ 1

2−‖1
2 − pi‖ regardless of the accuracy of the

predictions. Thus, a more in-depth understanding of maxk CN [k] can help uncover
convergence properties about the individual instance estimates as the learning
progresses.

To this end, further upper-bounds could be derived using Petrov’s theorem (2007)
that proposes a lower-bound for the tail of distributions with finite fourth moment.
However, the complexity of the final statements overshadows its potential relevance.
On the other hand, Le Cam’s theorem (1960) combined with the properties derived
so far yields a more interpretable result, which reveals that, as the loss decreases,
small pi will quickly converge towards zero:
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Property 3.2 (Le Cam Upper Bound).

max
k
CN [k]

(3.11)
≤ min

n≤N
max
k
Cn[k]

ind
= min

σ∈P
min
n≤N

max
k
CN,σ[k]

Le Cam
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def
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j≤n pj,σ

]k
e−[

∑
j≤n pj,σ]

k!
+ 2

∑
j≤n

p2
j,σ,

(3.17)

where P represents the set of all permutations and pj,σ stands for pj after permu-
tation σ; the same notation is used for C and λ. This property can be more easily
interpreted if one considers the permutation σ which sorts the pi in ascending
order.

Example (Numerous Small pi). Suppose that the hundred smallest pi are equal
to 0.01. Substituting into Equation 3.17 then yields maxk CN [k] ≤ 1

e + 0.02, which
leads to a sizable cross-entropy value. Consequently, as the learning progresses,
even the smallest pi have to decrease and converge towards 0 to avoid the count
distribution C to diffuse.

Prediction Sparsity

In conclusion, almost binary predictions will emerge implicitly from the model
constraints as a byproduct of learning to count instances. First, Theorem 3.1
demonstrates that the loss is minimized if and only if the predictions are sparse.
Second, Theorem 3.2 shows that the optimization is bound to converge towards one
of the global minima since the set of local minima of the loss function with respect
to the individual instance probabilities is the set of global minima itself. Overall,
the combination of these statements demonstrates that the predictions converge
towards sparsity as the learning progresses. These central theorems are further
supported by convergence properties which highlight how the probability estimates
converge towards one of these minima as the learning progresses. Indeed, on the
one hand, the upper-bound derived using Le Cam’s inequality (Equation 3.17)
states that, unlike most benchmark models, a contribution of 1 to the count cannot
be split into numerous small pi contributions as the loss decreases. This feature
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(a) Deterministic Counting (b) Poisson-Binomial Counting

Figure 3.2: Impact of sparsity on the action of counting. Deterministic counting
only takes into consideration the sum regardless of the nature of the individual
contributions (e.g., 1 pineapple is equivalent to a stack of pineapple leaves). In
contrast, Poisson-binomial counting ensures that counts can be traced back to
indivisible integer instance contributions (e.g., 1 pineapple is always equivalent to
a whole pineapple).

implies that most of the mass for a single occurrence must be assigned to a few
instances only. On the other hand, convergence property (Equation 3.16) derived
from the first upper-bound (Equation 3.14) shows that the instance probability
estimates converge towards clear-cut values (i.e., either towards 1 or 0).

In summary, if a model accurately learns to count using the Poisson-binomial
loss function, the instance probabilities it infers will implicitly be sparse.

Application Limitations

This unique prediction sparsity effect has a limiting effect on the use of the Poisson-
binomial loss function (Equation 2.9) as a counting model in uncertain settings
(i.e., in setups where the optimal count distribution has non-zero variance)—as
already mentioned in Section 2.2. Indeed, even though the counting approach
is stochastic, the model is trained to match the variance-free distribution of the
labels (scalar values), and thus does not necessarily have the leeway to infer or
capture the potential variability of the data. This is however not an issue for any
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of the applications presented in the next chapter since, in this work, counting is a
means to achieve a sparsity-inducing effect rather than an objective on its own.

Further, since the loss function forces the model to make hard decisions, it does
not allow for a flexible quantification of the uncertainty of the individual instances.
For instance, in object detection tasks, it is highly likely that several similar
bounding boxes cover the same object. In such a setup, the optimal detection
probability with respect to the Poisson-binomial loss function consists in assigning
all the probability mass to any one of these bounding boxes and setting all
remaining probabilities to zero. This sparsity effect does thus not allow to model
the fact that any of the bounding boxes that cover the object of interest could
also have been selected as final detection. Overall, the Poisson-binomial model
offers a differentiable way to learn instance selection, but does not reflect the
uncertainty of the individual instance probabilities without the use of additional
techniques—e.g., MC-dropout (Gal & Ghahramani, 2016).

3.3 Illustration: Visual Question Answering

The work of Trott et al. (2018) addresses a specific visual question answering (VQA)

(Antol et al., 2015) sub-task, namely answering counting-based questions about
images (e.g., “How many people are wearing blue shorts in this image?” and “How
many cars are there in this image?”). While their main contribution resides in the
proposed hard sequential bounding-boxes selection process that is trained through
reinforcement learning, the simple counting-based baseline proposed in the paper is
of particular interest for this section. In fact, the benchmark is very similar to the
deterministic counting-based approach defined in Equation 2.2 and described in
Section 3.1.2. Indeed, the approach consists in weighting bounding-box proposals
obtained using a pre-trained detection model. The model thus assigns a value
p̂i∈ [0, 1] to each instance (i.e., the bounding-boxes) and infers counting-based
answers by simply summing these individual contributions, i.e., C =

∑
i p̂i. The

model is then trained using a squared loss between the estimated count and the
labeled count as described in Section 3.1.2.

In order to assess to what extent the theoretical sparsity-inducing abilities of the
Poisson-binomial loss function hold in practice, this section replicates the baseline
experiment conducted in (Trott et al., 2018) using the Poisson-binomial counting
loss function instead of the deterministic counting-based approach for training.
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All other components of the model (e.g., architecture and hyperparameters) are
kept unchanged so as to allow for an unbiased comparison.

Experiment Results

Replacing the original counting loss function with the Poisson-binomial counting
one has almost no effect on raw performance when considering the metrics
proposed in (Trott et al., 2018). Indeed, the test accuracy (i.e., the proportion of
rounded counts that match the label) slightly slides from 49.6% to 48.2%, while the
root-mean-square error faintly increases from 2.36% to 2.37%. However, the two
approaches differ significantly when considering the sparsity of the predictions. On
the one hand, as depicted in Figure 3.3b, the predictions yielded by the model after
training with the Poisson-binomial-based loss function are more clear-cut than
the ones obtained from models trained with the original objective. Indeed, in the
former case, only a fraction of the bounding-boxes are given a non-zero weighting
resulting in a very sparse probability assignment. On the other hand, the standard
approach relies on a large number of small but non-negligible contributions to
infer the count, see Figure 3.3a; almost every bounding-box is assigned a non-zero
weighting. While this difference in behavior has no direct impact on the overall
performance of the models in this specific task, the sparsity of the predictions of
the Poisson-binomial model yields counts that are significantly more interpretable.
Indeed, in the example showed in Figure 3.3, the count-based answers can directly
be traced back to only a few bounding-boxes, which is not the case for the
original approach. Thus, this example demonstrates that models trained with the
proposed loss can implicitly learn prediction sparsity in an end-to-end fashion as
a byproduct of learning to count instances.

Experiment Limitations

Changing the loss function does not solve the inherent shortcomings of the original
model. Indeed, the simple counting baseline proposed by Trott et al. (2018)
only relies on the visual content of the bounding-boxes, and thus discards any
information about their spatial location and relationship. (The full hard sequential
bounding-box selection process they propose integrates this crucial information
in the learning process.) This lack of spatial awareness is especially problematic
in the very common situation where several similar boxes are outputted by the
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(a) Deterministic Counting
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(b) Poisson-Binomial Counting

Figure 3.3: Counting-based visual question answering. The model—optimized
using either the original loss function (Trott et al., 2018) or the Poisson-binomial
loss function—is trained to answer counting-based questions by assigning a prob-
ability to each bounding-box and by aggregating these values. The color intensity
of the bounding-boxes represents the probability assigned to them. Overall, the
sparsity of the predictions resulting from the Poisson-binomial-based learning
makes the answers much more interpretable, since the individual contributions
can easily be traced back to a few high-probability bounding-boxes.
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bounding-box proposal model. In this case, the model has no possibility of
knowing whether the content of these boxes corresponds to the same instance
or to multiple similar objects scattered across the image. In fact, if the model
is given similar bounding-boxes, there exists an inherent uncertainty about how
much weighting has to be assigned to each of them.

In addition, there is no guarantee that the model is given at least one bounding-
box for each instance that needs to be counted. For instance, in order to correctly
answer the question “How many layers are in the cake?”—an actual question in
the dataset—the bounding-box proposal model must have outputted at least one
box per layer in the cake; a requirement that is understandably not always met.
When the condition is not fulfilled, the training process will encourage the model
to assign prediction mass to other unrelated bounding-boxes, which will further
increase the uncertainty surrounding the optimal probability assignment.

Overall, these limitations of the underlying model explain, in part, why incor-
porating to the learning process—through the use of the Poisson-binomial loss
function—the additional prior that predictions have to be sparse does not increase
the performance of the model. Indeed, in this specific example, the optimal
probability assignment is, in fact, not necessarily sparse.

3.4 Conclusion

This chapter shows how successfully learning to count instances using the Poisson-
binomial loss function implicitly teaches the model to achieve prediction sparsity.
This claim is supported theoretically by both an analysis of the global maxima
of the loss function (Theorem 3.1) and by several convergence theorems (Equa-
tion 3.16 and Property 3.2). Intuitively, this unique sparsity-inducing ability stems
from the modeling of counts as distributions rather than scalars (see Chapter 2),
which allows the model to take into account the higher moments of the label
distribution during the training process. Thus, by penalizing count predictions
that do not match the variance-free distribution of the labels, the Poisson-binomial
loss function implicitly rewards models that infer a sparser assignment of proba-
bilities. Overall, this approach offers the possibility to indirectly learn sparsity in
an end-to-end manner without the need for an explicit (often non-differentiable)
sparsity-inducing operation.
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The sparsity-inducing ability of the loss function is also demonstrated empirically
in the counting-based visual question answering experiment of Section 3.3. Indeed,
in contrast to standard counting loss functions, the Poisson-binomial loss function
trains models that infer much more interpretable answers as the individual
contributions constituting the count can easily be traced back to a few high-
probability bounding-boxes (Figure 3.3). The results have also highlighted that
sparser predictions both do not necessarily lead to improved performance and do
not necessarily overcome the shortcomings inherent to the original model. Indeed,
in order to be successful, the incorporation of prediction sparsity into the learning
process needs to be warranted by the task.

The rest of this work therefore focuses on applications where the optimal predic-
tions are known to be sparse. In these settings, the inclusion of a more tailored
supervision is expected to be beneficial to the performance and generalization ca-
pabilities of the models. The next chapter shows how valuable learning prediction
sparsity can be in some settings.



Chapter 4

Weakly-Supervised Temporal
Localization

Based on Weakly-Supervised Temporal Localization via Occurrence Count
Learning, Schroeter J, Sidorov K, Marshall D, ICML 2019

At first glance, the Poisson-binomial counting loss function appears more suitable
as an additional means of supervision used in conjunction with more traditional
fully-supervised loss functions, rather than as a standalone training objective.
Indeed, even though achieving prediction sparsity is certainly valuable in some
scenarios, making sure that the non-zero predictions are accurate and meaningful
is even more crucial. For instance, in discrete-time drum hit detection (Wu et al.,
2018), it is not only important to detect the correct number of event occurrences,
but also to detect the correct occurrence times. Prediction sparsity alone without
temporal correctness of occurrence is often of limited value.

This chapter demonstrates how the Poisson-binomial counting loss, introduced in
Chapter 2, can nevertheless be used as a standalone loss function for the learning
of temporal event detection in specific settings. As a matter of fact, in the context
of discrete-time temporal point event localization, being able to successfully count
and, by extension, detect the correct number of events is already in itself a relevant
feature. Indeed, if a model is capable of triggering the right number of times,
all that remains is to ensure that these triggers occur neither too early nor too
late (w.r.t. the ground-truth) in order to obtain accurate and precise temporal
point estimates. Overall, this chapter not only shows how training with the
Poisson-binomial counting loss implicitly and effectively prevents early detection
in causal settings, but also proposes a simple trick to encourage the model to infer
predictions without any temporal delay (i.e., thus avoiding any late bias). All

47
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in all, this chapter demonstrates that, in several setups, precise temporal point
event detection can be achieved merely by learning to count event occurrences in
a weakly-supervised fashion without any additional supervision.

4.1 Counting-based Weakly-Supervised Temporal De-
tection

This chapter tackles the precise temporal detection of instantaneous events in
causal sequences with applications in many domains including sports video analysis
(e.g., detection of goals, fouls, passes on video extracts), music transcription (e.g.,
detection of piano notes or drum hits in sound extracts), time series analysis (e.g.,
detection of events in wearable sensors time series). The difficulty of the detection
problem can often be attributed to the high temporal precision required of the
model predictions. Indeed, in music transcription, an error tolerance of 50ms for
considering a prediction as correct is standard practice (Hawthorne et al., 2017;
Wu et al., 2018). In such a setting, models are challenged not only to classify
notes or drum hits correctly, but also to detect these events very accurately in
time. Further, temporal applications are often characterized by complex temporal
dynamics; there exist intricate underlying dependencies between the consecutive
timesteps of the training samples and their respective label sequences. For instance,
in order to detect the last jump of a triple jump, the first two jumps have to
be accurately detected and remembered long enough. In music, while a drum
hit is instantaneous, the sound produced by the action can resonate for multiple
seconds. Thus, in this case, the model has to learn not to trigger more than
once, despite hearing the drum sound over multiple timesteps. Overall, while
action occurrences can be instantaneous, they often cannot be detected without
complete awareness of their temporal context.

The two main assumptions underlying the problem definition (i.e., instantaneous
events and causal temporal setting) can appear to narrow the range of potential
applications; yet they are only weak constraints. First, in such a setup, event
durations can nevertheless be modeled by labeling the beginning and end of
events (event boundaries) as two separate event classes. Secondly, while the
causal setting assumption prevents the use of bi-directional architectures and
architectures comprised of representation learning with large temporal receptive
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fields, temporal dynamics can often be captured effectively through causal models,
since time itself is causal.

Novelty

The novelty of the framework introduced in this chapter is that the training of
precise temporal localization models is performed using only event occurrence
counts as labels. The drive towards weaker labels is motivated by the fact that
dataset labeling has become an ever-growing burden for the efficient deployment of
deep learning solutions to real work applications. Indeed, while an unfathomable
amount of unstructured and unlabeled data are being produced and stored every
day, their manual annotation is extremely tedious and time-consuming (Deng
et al., 2009b); dataset labeling remains the bottleneck in the dataset creation
process. While automated labeling based on external data (Abu-El-Haija et al.,
2016) (e.g., meta-data or comments on YouTube videos) can significantly speed
up the process, the produced annotations are often not reliable enough for precise
applications. In addition, both hand-labeling and automated-labeling suffer from
the inherent risk of introducing errors or imprecision in the dataset (Frénay &
Verleysen, 2014). In fact, even domain experts would struggle to label fast-paced
piano music extracts with perfect accuracy and millisecond precision.

In contrast, occurrence counts can be obtained fairly easily or are, in some
cases, readily available. For instance, in many sports, the total numbers of
events over the whole game are often made available in an aggregated form (e.g.,
number of fouls, goals, passes), while their exact timestamps are more rarely
provided. In piano music, counting the number of notes on a sheet of music
is straightforward, while spotting them with millisecond precision on an audio
extract is far more challenging. Additionally, given the continuous nature of
temporal event localization (i.e., events can lie anywhere in R), the annotation of
the exact timestamps is always subject to errors. Thus, in practice, the aim of the
annotation process is not to perfectly transcribe the unobtainable ground-truth,
but simply to limit as much as possible these inevitable temporal discrepancies.
In contrast, occurrence counts are often well-defined and take values in N, thus
alleviating the risk of introducing biases and imprecision in the data.



50 4.1. Counting-based Weakly-Supervised Temporal Detection

4.1.1 Formal Problem Formulation

Since the proposed learning paradigm (count-based supervision) slightly differs
from that of other works in weakly-supervised temporal localization, we begin
by formally defining the task tackled in this chapter in order to better grasp the
specificities of the approach.

Let D be the training data with N samples:

D :=
{(

X(i), c(i)
)

: 0 < i ≤ N
}
. (4.1)

Let us consider the relationship between predictor X(i) and dependent vari-
able c(i). First, each X(i) is assumed to be an observable temporal sequence,
i.e., X(i) =

(
x

(i)
t

)T (i)

t=1
∈ IRT (i)×λ. (Depending on the application, this can stand

for any λ-dimensional time-series such as spectrograms, financial time-series or
DNN-learned representations.) Second, we assume there exists an underlying
unobservable event process E(i) =

(
e

(i)
t

)T (i)

t=1
∈ {0, 1}T (i)×d, indicating the presence

of events. (For ease of explanation, instead of general multivariate event processes
we consider the univariate case (d = 1) throughout the remainder of this section.)
Each event process is assumed to be a function of its predictors:

(
e

(i)
t

)τ
t=1

= g
((

x
(i)
t

)τ
t=1

)
,∀τ ≤ T (i). (4.2)

This assumption is essential as it guarantees that there exists a direct—and
potentially learnable—function between the data and the underlying event process.
For instance, having a video of a tennis match as predictor X and a temporal
transcription of a piano piece as event process E is a clear violation of this
assumption since there is no direct connection between the two processes. In
terms of model training, the existence of such a function indicates that the event
process can potentially be estimated. The causal assumption further ensures that,
if the relationship function g is known, then no knowledge of future observations is
necessary to determine the existence of an event at any given time t. In fact, this
causal property is often already present implicitly in temporal applications since
time itself flows in only one direction. For example, the validity of a football goal
is only determined by the goal itself and the preceding actions. The fact that the
referee ultimately takes a stochastic decision does not change the intrinsic validity
of the action. Of course, there exist events that cannot be detected in a causal
setting. For example, detecting with certainty the first jump of a triple jump as
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it occurs—without any additional context nor future information—is extremely
difficult since it can easily be mistaken as a standard long jump. Nevertheless,
while such events can occur, the vast majority of actions can be modeled in a
causal setting. Indeed, even the occurrence of the first jump of the challenging
acausal triple jump scenario could be determined in a causal fashion by having
some additional temporal context (e.g., whether the previous contender did a
triple or a long jump), or by having some additional spatial context (e.g., position
of the sand-pit with respect to the takeoff board).

Finally, the observable dependent variables c(i) are defined as the total number of
occurred events:

c(i) =
∑

t e
(i)
t . (4.3)

In fact, the nature of the dependent variable (i.e., a count) is the main distin-
guishing feature of the approach. Indeed, while the objective is to estimate the
function g, and thus by extension to predict the underlying event process, only
aggregated event counts are available for training. This contrasts with standard
fully-supervised approaches which can rely on labels that are almost identical to
the event process e. More formally, the problem tackled in this section is the
following:

Objective (Weakly-Supervised Temporal Event Detection).

Estimate the event process E(new) =
(
e(new)
t

)T
t=1
∈ {0, 1}T underlying a new

test process X(new) using only the data D for training.

Remark (Other Application). In addition to localization in unseen data, the
capability of the model to estimate event processes from counts is useful in itself
and can be leveraged, for example, for enriching the training data. Indeed, once
trained, the detection model can be applied to infer precise event occurrence
estimates for each sequence in the training set. These finer-grained pseudo-labels
can then be used, for example, for training fully-supervised models that rely on
precise event location for learning or simply for analyzing the data.

This problem formulation entails additional implicit assumptions about the nature
of the event processes:

Event Uniqueness In this discrete-time setting, each timestep can only contain
a maximum of one event of each event class. Indeed, the event process—which
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takes values in {0, 1}Ti×d—only indicates the presence, or the absence, of an event
at each timestep. While this condition is often implicitly met in most datasets,
the issue, if present, can easily be alleviated by the use of smaller temporal
granularities.

Instantaneous Events As already mentioned, the events are assumed to be
instantaneous (i.e., lasting only one timestep in our discrete setting). In this
context, there are, nevertheless, multiple ways of modeling event duration. For
instance, the starting and end point of an action can be modeled as two separate
classes. Another approach could leverage the fact that this localization assumption
only needs to hold in the representation space, and thus that x(i)

t may correspond to
representations of longer time-intervals in the original data space (e.g., windowing).

4.1.2 Related Works

In recent years, research on weakly-supervised temporal localization has focused
on two main applications: video (Duchenne et al., 2009; Bojanowski et al., 2014;
Huang et al., 2016b; Graves et al., 2006; Richard et al., 2017; Niebles et al., 2008;
Nguyen et al., 2009; Gan et al., 2015; Singh & Lee, 2017; Wang et al., 2017;
Nguyen et al., 2018; Shou et al., 2018; Niebles et al., 2010) and audio (Xu et al.,
2017, 2018; Kong et al., 2017; Kumar & Raj, 2016; Liu & Yang, 2016; Lee et al.,
2017; Adavanne & Virtanen, 2017) event detection. These papers are briefly
examined in this section.

Weakly-Supervised Video Action Localization

Weakly-supervised temporal action localization in videos has been an active area
of research. First, Duchenne et al. (2009) proposed a discriminative clustering
approach to segment action snippets from the background. This clustering
framework was later revisited by Bojanowski et al. (2014) to handle temporal
assignment problems—i.e., to partition the sequence using an ordered list of
actions. This problem was also addressed by Huang et al. (2016b) using an
extended Connectionist Temporal Classification method (Graves et al., 2006) and
by Richard et al. (2017) who introduced a fine-grained subaction model.

Another prevailing problem in action localization consists in action intervals
prediction rather than temporal segmentation. Initial works include the unsuper-
vised generative “bag of spatio-temporal interest points” approach proposed by
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Niebles et al. (2008) which infers a more general spatio-temporal localization. The
same problem was also tackled by Nguyen et al. (2009) through the simultaneous
learning of segment selection and classification. Later, Gan et al. (2015) used
spatio-temporal saliency maps that were obtained by back-passing through the
classification CNN to achieve localization, while Singh and Lee (2017) extended
their Hide-and-Seek approach to action localization. Recently, attention-based
approaches have been used extensively. First, Wang et al. (2017) introduced the
UntrimmedNet—an attention model performing localization on pre-selected video
segments. The mechanism was further improved by Nguyen et al. (2018) with
class-specific activation maps, while Shou et al. (2018) replaced the fixed thresh-
olding with a dynamic approach based on the proposed Outer-Inner-Contrastive
(OIC) loss.

However, by focusing on subsegments regardless of their temporality, most methods
neglect additional temporal information contained in the data (e.g., the relative
order of events and what precedes an event). To address this issue, Niebles
et al. (2010) modeled actions as a composition of motion segments. In this
chapter, as the core of the proposed approach relies on recurrent units, the
temporal nature of the data is intrinsically taken into account.

Weakly-Supervised Audio Localization

As in action localization, attention-based models have become a common solution
to weakly-supervised audio localization tasks. Xu et al. improved their own
attention-based convolutional recurrent neural network (Xu et al., 2017) by
applying a trainable gated linear unit instead of the classical ReLU (Xu et al.,
2018), while Kong et al. (2017) performed joint detection and classification on
overlapping blocks. Alternatively, Kumar and Raj (2016) leveraged multiple-
instance learning to address the localization task. A similar method based on
convolutional networks rather than support vector machines or classical neural
networks was proposed later by Liu and Yang (2016). Lee et al. (2017) further
improved the framework by incorporating segment-level and clip-level predictions
ensembling. Finally, Adavanne and Virtanen (2017) used a stacked convolutional
and recurrent network to sequentially predict stronger and weaker labels.
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Overall, as for actions in videos, weakly-supervised localization in audio is also
commonly achieved explicitly using attention mechanisms or segment-level
detection and classification. This contrasts with the approach proposed in this
chapter which implicitly learns localization while the occurrence count is being
learned. Another unique feature resides in the temporal nature of the events:
this chapter focuses on localizing instantaneous events precisely (sometimes
in the order of milliseconds) rather than estimating the approximate extent
of longer actions.

4.2 Temporal Poisson-Binomial Counting Model

The main idea of this chapter is to design a model such that localization implicitly
emerges by constraint: the model is intrinsically bound to output clear-cut
estimates of event processes in order to make valid predictions of the number of
occurrences.

4.2.1 Model Definition

The specificities of the task at hand are reminiscent of the Poisson-binomial
counting model introduced in Chapter 2. Indeed, the labels provided for training
are counts which, in this case, correspond to the number of observed events. Most
importantly, each of one these counts is further defined as the sum of individual
and sparse occurrence timesteps. Thus, the Poisson-binomial counting framework
seems a natural fit for modeling the task addressed in this chapter:

C (i) =
∑

tE
(i)
t ,

E
(i)
t = B

(
p

(i)
t

)
, ind. Bernoulli,

p
(i)
t = f

((
x(i)
n

)t
n=1

)
,

(4.4)

where the event occurrences e(i) and counts c(i) are realizations of E(i) and the
(stochastic) count distributions C (i) respectively. Once again, the independence
assumption of the Bernoulli distributions is not problematic as temporal depen-
dencies can be carried by the instance probabilities p(i) (see Section 2.1).
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The main component of the model is the unspecified function f that ties the input
data X and the event occurrences together. In this chapter, given the causal
nature of the model, this function f is estimated using standard recurrent neural
networks—such as LSTM (Hochreiter & Schmidhuber, 1997) or GRU (Cho et al.,
2014) with model parameters θ:

p̂
(i)
θ,t = f̂θ

((
x(i)
n

)t
n=1

)
. (4.5)

4.2.2 Poisson-Binomial Loss Function

As described in detail in Chapter 2, the parameter set θ can be estimated using
the Poisson-binomial loss function introduced in Equation 2.9:

L(θ) = −∑i log
(

Pr
(
Ĉ

(i)
θ = c(i) | X(i)

))
, (4.6)

where the count distribution has the following form (see Equation 2.4),

Pr(Ĉ
(i)
θ = k | X(i)) =

∑
A∈Fk

∏
l∈A

p̂
(i)
θ,l

∏
j∈Ac

(1− p̂(i)
θ,j), (4.7)

with Fk the set of all subsets of {1, 2, . . . , T (i)} of size k. Thus, intuitively, the
optimization is done by comparing the estimated distribution Pr(Ĉ

(i)
θ =k |X(i))

to the target sample distribution determined by c(i) using the Kullback-Leibler
divergence (1951) which, in this specific case, corresponds to the cross-entropy
and max-likelihood. (see Section 2.3 for more comprehensive implementation
details about the computation of the loss).

The computation of this loss function is illustrated in Figure 4.1 for the specific
example application of drum detection in music sequences: first, the instance
probabilities p̂θ,1, . . . , p̂θ,N are estimated for each bin of the spectrogram—and
each event class—using a model f (a). The count distributions Ĉθ are then
computed for each drum type (b) before being compared to the label counts to
produce the final loss function (c). All in all, the model only learns to count
event occurrences; indeed, there is no finer-grained supervision (i.e., stepwise
supervision) nor complex attention mechanism for learning localization.
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Figure 4.1: Illustration of loss computation for drum event counting. The model is
given as input a spectrogram and successively estimates (a) the event occurrence
probabilities p̂θ,t for each timestep and each drum type, (b) the count distributions
Ĉθ for each class, and (c) the loss L(θ) through comparison of the estimated
count distributions and the observed counts.

4.2.3 Why Does It Work?

The number of observed events, as a metric, is invariant to the temporal location
of the occurrences. Indeed, if all notes of a piece of music were to be played a
few seconds earlier or later, the number of notes played during the extract would
remain unchanged. Therefore, it is unclear, at first sight, how using only such
weak information for the training could lead to the successful learning of precise
temporal event detection.

In this chapter, precise temporal event localization is achieved by concurrently
ensuring that the probability assignments are sparse, that the occurrences are
not detected too early, and that the model does not present a systematic late
bias. In fact, this section demonstrates that these three elements can be learned
successfully through count-supervision merely by relying on the properties of the
Poisson-binomial loss function and by using a simple implementation trick.
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Sparse Temporal Predictions

Learning temporal localization model through Poisson-binomial counting supervi-
sion, and thereby taking advantage of its implicit sparsity-inducing properties,
ensures both that the number of predicted events converges towards the cor-
rect number of events observed in the sequence and that the event occurrence
probability estimates converge towards sparsity. Thus, if the model successfully
learns to count instances, one clear-cut prediction with high probability (i.e.,
converging towards 1) will emerge implicitly for each event in the sequence, while
the probabilities assigned to every other timesteps will converge towards zero.
Therefore, as sparse predictions are guaranteed, the final step towards precise
temporal event localization is to ensure that these detections are made at the
correct times; not too late, nor too early with respect to the ground-truth.

No Early Triggering

The benefits of training with the Poisson-binomial loss function are not confined
to prediction sparsity. Indeed, the underlying counting model also presents some
inherent constraints that have a significant impact on the learning process:

Property 4.1 (Mass Shift Irreversibility).

The sequence of random variable
(
Cn
)T
n=1

is monotonically increasing.

This statement directly follows from the definition of Cn as a sum of non-negative
random variables (i.e., Cn :=

∑
j≤n B(pj)). Intuitively, the count can only increase

as new instance probabilities pi+1 are being observed. This feature implies that any
probability mass shift towards increasing count values can never be shifted back to
smaller counts. Thus, even if new evidence comes to light when processing the later
timesteps of a sequence, the count distribution cannot be reduced. This constraint
clearly sets our approach apart from other sequential count classification-based
models, which can freely update their mass distribution over time (e.g., standard
recurrent neural networks trained with cross-entropy).

This strong implicit model constraint actually prevents the model from triggering
early in causal scenarios. Indeed, this irreversibly of mass shifts deters the
model from anticipating events and triggering early since, if the actual event does
ultimately not occur, the model has no means of reducing the count a posteriori,
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leading to a significant surge in the loss. Counting models trained with the
Poisson-binomial loss function have thus no incentive to trigger early; to the
contrary, any anticipated mass movement can only result in an increase of the loss.
Consequently, as the count-based learning progresses and as the loss decreases, the
model is increasingly enticed to avoid the negative loss contributions stemming
from the anticipation of events, and thus the model implicitly and progressively
learns to reduce the occurrence of early detections until sparsity is achieved.

No Systematic Translational Late Bias

In contrast to early triggering, the loss function does not implicitly preclude the
model from triggering too late. While the ability of models to postpone detections
is implicitly hindered by the nature of the learning process—since it would require
them to keep detections in memory and thus allocate more of its resources to a
worthless (in terms of loss minimization) mechanism—there is no hard constraint
against such effect.

Nevertheless, this issue can be permanently addressed by training the model with
sequences of different lengths. Intuitively, this implementation trick strips the
model of its ability to learn the length of samples; the model thus never knows
when a given sequence will end. This constant uncertainty about the existence
of the next timestep prevents by itself the delaying of detections. Indeed, if the
model were to systematically postpone its decision, any event occurring at the
end of a sequence would be missed since the model has no opportunity to trigger
after the last timestep. In conclusion, systematic late bias can simply be avoided
by feeding sequences of variable lengths to the model for training.

In practice, there exist different ways of producing sequences of variable lengths.
For instance, in music transcription, the length of the extracts can be artificially
altered by slowing down or speeding up the rendition of the sequences through
the modification of the sampling rate. Of course, if the task is highly dependent
on the correctness of pitch (i.e., piano transcription), then an appropriate pitch
correction has to be implemented. Another approach consists in padding the
beginning of the sequence or in repeating timesteps (e.g., in video analysis).
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Model Convergence

In summary, if the model accurately learns to count occurrences and if the events
are detectable, then a coherent localization ability will emerge naturally:

Timely Detections Overall, since the model outputs a single clear-cut
trigger for each detection—because of the implicit prediction sparsity property
of Poisson-binomial learning (Chapter 3)—and since the model can neither
trigger too early nor systematically too late—because of the properties high-
lighted above, precise and accurate temporal event localization can be learned
in causal settings using only occurrence counts for training.

4.3 Experiments

In this section, the localization capability of our approach is assessed on three
challenging tasks: drum hits detection, piano onsets detection, and digits detection.
All these tasks are relevant real-world applications that could benefit from an
effective weakly-supervised model that alleviates the need for the costly manual
annotation of training samples. The code used for these experiments is publicly
available1.

4.3.1 Drum Detection Experiment

The detection and classification of drum hits in audio extracts is an important
task in music transcription. In the context of this chapter, the interest in these
experiments is two-fold. First, given the instantaneous and highly-localized nature
of drum hits, the model can be tested under minimal violation of our model
assumptions. Secondly, the task—which requires predictions to be within 50ms of
ground truth (Wu et al., 2018)—challenges the temporal localization precision of
our model.

In this section, we replicate standard experiments proposed by Wu et al. (2018) and
compare the effectiveness of our weakly-supervised model against fully-supervised
state-of-the-art drum detection models.

1https://github.com/SchroeterJulien/ICML-2019-Weakly-Supervised-Temporal-
Localization-via-Occurrence-Count-Learning

https://github.com/SchroeterJulien/ICML-2019-Weakly-Supervised-Temporal-Localization-via-Occurrence-Count-Learning
https://github.com/SchroeterJulien/ICML-2019-Weakly-Supervised-Temporal-Localization-via-Occurrence-Count-Learning
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Drum Datasets

The experiments are based on two standard drum detection datasets: IDMT-SMT-
Drums (Dittmar & Gärtner, 2014) and ENST Drums (Gillet & Richard, 2006)
each with a different purpose. On the one hand, IDMT-SMT-Drums is comprised
of real-world acoustic samples, as well as extracts from drum sample libraries
and drum synthesizers. The drum extracts included in this dataset are relatively
simple; the difficulty mainly comes from the significant sound differences between
synthetic and acoustic drum hits. Overall, as described in (Wu et al., 2018),
this dataset is used to test models on the specific task of “drum transcription of
drum-only recordings” (DTD). On the other hand, ENST-Drums minus-one (Gillet
& Richard, 2006) is considered a more challenging dataset, since it comprises
of drum extract played live by three drum players on different drum kits. In
addition, the dataset contains a significantly wider array of drum types. Thus, in
this context, the model not only has to learn to detect hits from the three classes
of interest—hi-hat (HH), snare drum (SD), and bass kick drum (KD), but it also
has to learn not to trigger when other drum types are being played. In fact, this
dataset can be a challenge even for fully-supervised models, since certain drum
types have similar acoustic features. Overall, as described in (Wu et al., 2018),
this dataset is used for the evaluation of “drum transcription in the presence of
percussion” (DTP).

While both are standard datasets in the field of drum detection, they contain only
a very limited number of extracts: 104 and 64 samples respectively. This is an
issue for the training of the model, as learning drum detection and classification in
a weakly-supervised manner with only the information conveyed by a few dozen
counts is unrealistic. Thus, in order to artificially increase the size of the dataset,
each audio extract is split into non-overlapping 1.5s snippets. For each of these
snippets, the total number of occurrences for each drum type (hi-hat (HH), snare
drum (SD), and bass kick drum (KD)) are then determined and used as training
labels, thus discarding any localization information.

Model Architecture

In order to avoid overfitting, the network architecture is kept simple as the
datasets are quite limited in size. First, the representation learning is comprised
of six convolutional layers of size 3×4 with 8 to 16 filters intertwined with ReLU
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activations and max-pooling layers (see implementation for more details). The
temporal dynamics are then captured through a 24-unit LSTM (Hochreiter &
Schmidhuber, 1997). The final predictions (i.e., event occurrence probabilities)
are obtained through a final 16-node fully-connected layer, followed by a sigmoid
activation. Finally, while not necessary for the effectiveness of our approach, three
separate models are trained to each detect a specific drum class in order to further
simplify the learning process.

Model Training

Mel-spectrograms (Stevens et al., 1937) stacked together with their first derivatives
are used as model input. The inclusion of the derivatives helps simplify the training
process, as the model does not have to allocate any capacity to learn these features.
In addition, data augmentation in the form of sample rate variations (i.e., playing
sequences faster or slower) is applied during both training and inference. As
the exact pitch of the drum hits is not essential to the task, there is no need to
compensate for the shift in pitch that is associated with sampling rate alterations.
This augmentation does not only constitute a simple way of artificially increasing
the richness of the dataset but, most importantly, helps ensure that the model
converges towards the actual event locations by generating sequences of variable
lengths—as explained in Section 4.2.3 . In this setting, the final predictions are
then obtained through the ensembling of predictions of a same extract sampled
with different sampling rates.

The loss function is optimized using the standard Adam algorithm (Kingma
& Ba, 2015). Finally, in order to speed up the loss computation, the count
distribution is truncated using cmax = 29, as described in Section 2.3. Note that
since no sequence in the training set contains more than 28 events of a same class,
this operation does not cause any loss of relevant information about the count
distribution.

Model Evaluation

The effectiveness of our model is evaluated on both the D-DTD and D-DTP
tasks (Wu et al., 2018), based on the IDMT-SMT-Drums (Dittmar & Gärtner,
2014) and ENST-Drums minus-one (Gillet & Richard, 2006) datasets respec-
tively. In their work, Wu et al. (2018) further define two ways of sampling
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the train/validation/test splits for the cross-validation. The first one consists in
randomly sampling extracts from the dataset regardless of the characteristics of
the sample (Eval Random). To account for the stochastic nature of the training
(i.e., the splits are sampled randomly), cross-validated results are then obtained
by aggregation of six independent runs. The second sampling approach consists
in partitioning the datasets based on drum specifications (i.e., drum synthesizers,
real drum, drum from sound libraries) for the D-DTD task and based on drum
players for the D-DTP task (Eval Subset). The models are then tested using a
leave-one-partition-out cross-validation. Overall, this experiment helps assess the
generalization capabilities of models, as they have to detect drum hits either from
sources or from drum kits on which they have not been trained. The detailed
evaluation protocol can be found in the work of Wu et al. (2018).

Drum Detection Results

Overall, our weakly-supervised approach is competitive against fully-supervised
state-of-the-art drum transcription models on almost all metrics, as shown by
the results in Table 4.1. Such a performance demonstrates that precise temporal
localization can be achieved without any localization information, using only
occurrence counts for training.

The model slightly under-performs in terms of snare drum detection on the Eval
Subset experiments, especially on the leave-one-partition-out of the D-DTD task.
A more in-depth analysis of these results reveals that these lower scores are caused
by the ambiguity of snare drum (and kick drums) in the synthetic drum splits—as
discussed above. Indeed, our weakly-supervised model is more conservative and
does not trigger as easily when out-of-sample events do not sound like in-sample
events. While this feature negatively impacts the overall score of the method on
the D-DTD task, this rigidity allows for a significant reduction of the number of
false positive triggers on the D-DTP task. Indeed, our method reports very high
precision levels, beating all fully-supervised models on that metric. The imbalance
between precision and recall can partially be explained by the design choice of
selecting a simple narrow architecture rather than a larger network. From a
practical standpoint, if needed, the precision and recall could be rebalanced by
leveraging model ensembling and by adjusting the selection threshold accordingly.
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Table 4.1: Drum Detection Results. Comparison between our weakly-supervised
model and fully-supervised models evaluated in (Wu et al., 2018). The F1 scores
per instrument (KD/SD/HH), as well as the average precision, recall, and overall
F1 are displayed, [%]. For details: RNN, ReLUts (Vogl et al., 2016), RNN,
tanhB (Southall et al., 2016), GRUts (Vogl et al., 2017) and lstmpB (Southall
et al., 2017).

Method

R
a
n
d
o
m

RNN
tanhB
ReLUts
lstmpB
GRUts
ours

S
u
bs
et

RNN
tanhB
ReLUts
lstmpB
GRUts
ours

D-DTD dataset

KD SD HH Pre Rec F1

97.2 92.9 97.3 95.7 96.9 95.8
95.4 93.1 97.3 93.9 97.1 95.3
86.6 93.9 97.7 92.7 95.0 92.7
98.4 96.7 97.4 97.7 97.6 97.5
91.4 93.2 96.2 91.8 97.2 93.6
96.0 90.4 97.1 95.1 93.9 94.5

88.0 85.3 93.2 86.0 95.1 88.9
91.9 89.9 94.4 95.1 91.2 92.1
91.2 90.9 91.6 89.2 95.8 91.2
96.0 88.7 93.8 93.8 94.0 92.8
89.1 90.6 91.7 89.6 94.2 90.5
88.0 79.5 93.9 90.6 84.3 87.1

D-DTP dataset

KD SD HH Pre Rec F1

94.7 79.5 88.3 84.1 93.3 87.5
92.4 84.6 87.1 86.3 92.1 88.0
91.3 83.8 85.2 83.7 92.3 86.8
94.4 84.1 91.4 90.8 90.8 90.0
94.2 87.1 87.7 88.6 92.7 89.7
92.3 81.2 93.0 90.9 87.1 88.9

91.0 57.8 82.2 72.8 88.3 77.0
82.7 61.6 84.8 74.1 83.8 76.4
79.4 62.1 80.8 69.6 84.2 74.1
85.8 68.8 83.7 78.3 84.7 79.4
87.7 62.3 79.4 73.0 85.2 76.5
84.9 59.4 90.0 84.8 73.5 78.1

While a temporal error tolerance of 50ms is strict and can seem particularly
challenging for a model that does not have access to any localization information
during training, the temporal localization error of our model is often significantly
smaller than this predefined threshold. For example, by reducing the tolerance to
20ms, the F1-score achieved by our model for hi-hats detection on the D-DTD
Eval Random task only drops from 97.1% to 96.3%. In this case, the standard
deviation of the distance between true and predicted timestamps is only 4.35ms,
which is smaller than the granularity of the mel-spectrogram features used as
model input. Overall, the results show that our model learns very precise temporal
detection through count supervision only.

Remark

It must be noted that the results obtained through specification-based partitioning
(Eval Subset) are slightly ambiguous. Indeed, in some extracts, the kick-drums
and snare-drums generated by the drum synthesizers do not acoustically resemble
the hits of real-life drums, nor the ones of sound libraries. Consequently, it is
questionable whether these hits should actually be counted as false negatives.
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While this is the case in standard evaluation protocols (Wu et al., 2018), the
inclusion of these ambitious samples blurs the line between models that trigger
more strictly and models that present a lack of generalization capabilities. In
fact, this setup highly benefits overly sensitive models that are prone to trigger
easily. This bias is exacerbated by the fact that the datasets only contain drum
and percussion hits: there is little room for models to produce false positives. A
clearer picture could thus be provided if the datasets were to include other sound
events (e.g., dog barks, or gunshots) since it would challenge over-sensitive models
not to detect resembling out-of-class events. Overall, while this bias cannot easily
be alleviated, it is important to be aware of it.

Conclusion

In conclusion, the performance of the proposed weakly-supervised model on
this task is remarkable, as it achieves, with much weaker labels, performance
comparable to that of fully-supervised methods. Indeed, even though occurrence
count labels do not convey any localization information to the network during
training, our approach is still able to successfully learn precise temporal localization
of drum hits. This confirms that, as long as the number of occurrences is estimated
correctly, precise localization emerges naturally.

4.3.2 Piano Onset Detection Experiment

Note onset detection—detecting when notes are being played—is an essential part
of music transcription. However, with 88 different channels, corresponding to
the number of keys on a standard piano, and complex interactions, the specific
task of piano onset detection is particularly challenging, especially for weakly-
supervised approaches. In fact, not only does the task require the simultaneous
detection of 88 different channels (i.e., notes) that are sometimes intertwined in
complex musical compositions, but piano notes are far from independent from one
another in terms of spectral representation. Indeed, the action of pressing a piano
key activates the string of the corresponding note, which, in turn, causes the
vibration of a multitude of other notes (i.e., harmonics) which combined produce
a harmonically complex sound. Thus, accurate piano note detection relies on the
ability of the models to learn to successfully recognize whether a note is heard as
a harmonic to another note, or as a note on its own—which constitutes a difficult
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task of its own. Finally, the task requires the detections to be extremely precise
with respect to the ground-truth; a tight temporal error margin of 50ms is often
set to consider a prediction as correct. This feature is particularly relevant to
our weakly-supervised approach since it has to achieve precise detection without
any localization information for training—only occurrence counts. All in all,
while being challenging, the task of piano onset detection is ideal to assess the
effectiveness of our approach in complex setups, both in terms of class accuracy
and temporal precision.

In this section, we replicate the experiment conducted by Hawthorne et al. (2017)
using our weakly-supervised loss function. Even though their model also predicts
note offsets and note velocities, only onset times are considered for this experiment
since the estimation of these additional metrics can be achieved separately.

Piano Transcription Dataset

The MAPS database (Emiya et al., 2010) is used for training and evaluation.
In order to strictly follow the dataset creation protocol from (Hawthorne et al.,
2017), the model is trained on the synthesized pieces, while the evaluation is
performed on the Disklavier pieces. Additionally, only the samples containing
actual piano pieces are kept, thus discarding all samples containing only chords
and single notes. Overall, these choices allow for a more realistic, albeit more
challenging, evaluation.

Similar to the drum experiment, each audio extract is split into 1.5s non-
overlapping segments to artificially increase the dataset size since the number of
piano pieces included in the dataset is extremely limited (i.e., 210 samples). Once
again, we train our model using only occurrence counts as labels.

Model Architecture and Training

The only difference between the model architecture chosen for this experiment
and the one used in Section 4.3.1 for drum transcription lies in the number of
convolution filters and recurrent units. These have been slightly increased by
a factor of 2 and 4 respectively since the task at hand presents more complex
events and dynamics. Once again, the loss is optimized using the Adam algo-
rithm (Kingma & Ba, 2015). To improve the model performance, we perform
slight data augmentation during training in the form of time stretching and extract
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Table 4.2: Piano Onset Detection Results. Comparison on the MAPS dataset
between our weakly-supervised approach and fully-supervised models evaluated
in (Hawthorne et al., 2017). Precision, recall, and F1 scores are shown in %.

Method Pre. Rec. F1

Sigtia et al. (2016) 44.97 49.55 46.58
Kelz et al. (2016) 44.27 61.29 50.94
Hawthorne et al. (2017) 84.24 80.67 82.29
ours 76.22 68.61 71.99

stacking (i.e., playing two samples simultaneously). As already highlighted for
the drum experiment in Section 4.3.1, the time stretching operation plays a key
role in the model, since it generates sequences of variable length (see Section 4.2.3
for a discussion of the importance of having sequence of different lengths in the
dataset). At inference time, we ensemble the predictions obtained for samples
augmented with different randomly sampled time stretching factors. Finally, we
truncate the count distribution after cmax =40 bins (see Section 2.3).

Model Evaluation

For the evaluation, as mentioned above, a prediction is considered correct if it falls
within 50ms of the ground-truth (Hawthorne et al., 2017). To be consistent with
the results in (Hawthorne et al., 2017), final metrics (i.e., precision, recall, and
F1-score) are reported as the mean across all pieces’ scores, which are computed
using the mir_eval library (Raffel et al., 2014).

Piano Onset Detection Results

The proposed weakly-supervised model achieves remarkable piano onset detection
performance as shown in Table 4.2. Indeed, despite only having access to much
weaker labels for training, the counting-based training yields results that are
almost comparable to that of fully-supervised models (Hawthorne et al., 2017),
while significantly outperforming the previous fully-supervised state-of-the-art
approaches (Sigtia et al., 2016; Kelz et al., 2016). Figure 4.2, which depicts the
out-of-sample detection performance of our model, shows that the approach yields
strong results on complex piano pieces. These observations emphasize once again
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Figure 4.2: Out-of-sample piano onset detection for the piece Lyric Pieces Book III,
Opus 43, No. 1 “Butterfly” by E.Grieg.

the effectiveness of our approach, which achieves precise temporal localization
(within 50ms) without using any localization information for training.

Additional investigations reveal that our model achieves very strong detection
performance for medium to high notes while being less effective in the lower
registers. This effect could be explained both by the richer harmonic structures
induced by lower notes, by the fact that these notes are simply less frequent in
the dataset, and by the increased inaccuracy of the spectrograms in the lower
register. These shortcomings could be alleviated by applying specific spectral
transformations to the sound extracts and by artificially increasing the number
of lower notes in the dataset (e.g., pitch-shifting). However, while incorporating
these heuristics in the localization pipeline would make our method even more
competitive, they are beyond the scope of this section. Indeed, the central aim of
this work is to show the potential of Poisson-binomial count-based supervision,
and not to evaluate additional heuristics in an attempt to optimize raw metrics.

As observed in the drum experiment (Section 4.3.1), training with the Poisson-
binomial counting loss yields a model that achieves significantly higher precision
than recall. This effect might emerge from the strong prediction sparsity properties
of the model (see Chapter 3). In fact, as the learning progresses and as the
predictions converge towards clear-cut probabilities (i.e., either towards 0 or 1),
the model has no means of expressing uncertainty when borderline cases arise.
Indeed, timesteps must either contain a detection or not, there is no other
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alternative. Therefore, it can be expected that the model is more reluctant to
trigger in highly ambiguous situations or in scenarios that have not been observed
before (refer to the drum experiment for a similar observation). Overall, rather
than a flaw, this cautious behavior is simply a feature of the model that has to
be taken into account when training with this unique loss function.

4.3.3 MNIST Digits Detection Experiment

In this section, we show the versatility of the Poisson-binomial counting by
learning to detect digits in images using only occurrence counts for training. This
experiment also allows for a more in-depth quantification of the representation
learning and the localization learning capabilities of the model separately.

Dataset Generation

The samples used for this experiment are generated using the well-known MNIST
dataset (LeCun et al., 1998). More precisely, for each image in our training
dataset, we randomly sample hand-written digits from the training set and place
them uniformly at random—subject to a non-overlapping condition—on the image
(see Figure 4.3 for examples). The test set is generated similarly by randomly
sampling digits from the MNIST test set.

From Images to Sequences

Our counting-based weakly-supervised temporal localization model requires both
the model inputs to be sequences and the model outputs to be point localizations.
Thus, in order to achieve image digit detection in this setup, we first have to map
the original images (RW×H×d space) into sequences of sub-images (RT×(w×h×d)

space). This can be achieved by sampling windows of size w × h along a space-
filling curve (Peano, 1890). For this experiment, we propose using the standard
Hilbert curve (1891). Given a sequence of sub-images, the model then outputs
temporal localization estimates {p1, . . . ,pT }, indicating for each digit class and
each sub-image of the sequence the probability that the sub-image contains a digit
of that class. Thus, in order to obtain the final spatial detection estimates, the
temporal sequence of probabilities is then mapped back onto the original image
space (see Figure 4.3 for examples of resulting detection).
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Prediction Sparsity

In such a setting, given how the sequences are generated, the same digit can
potentially be found on multiple sub-images of the input sequence. Therefore,
in order to be able to minimize the counting loss, the model has to learn to
trigger only once per digit. Overall, this is quite a challenging feat as the model,
while only having access to occurrence counts for training, has to learn how
the space is mapped (i.e., through a Hilbert curve) in order to avoid duplicate
detections—on top of learning to detect and recognize digits. Thus, while the
Poisson-binomial loss function was theoretically shown to encourage prediction
sparsity, this experiment tests the limits of its convergence ability since the task
tackled here requires sparsity, space mapping, detection, and recognition to be
learned simultaneously in a weakly-supervised manner.

Model Architecture and Training

The representation learning part of the network is identical to the convolutional
layers of the VGG-13 architecture (Simonyan & Zisserman, 2014)—without the
final fully-connected prediction layer, while the localization learning part consists of
a 48-unit LSTM. Finally, the temporal representations outputted by the recurrent
units are mapped to digit class probabilities using a 24-node fully-connected
prediction layer followed by a sigmoid transform. The simultaneous learning
of sparsity, digit representation, space mapping, and localization is done in a
weakly-supervised fashion using only the number of occurrences of each digit in the
original image—i.e., not in the individual sub-images—as training labels; indeed,
no additional information is given to the network.

Digit Recognition Performance

We first assess the digit recognition capability of our model—trained on the images
of digits described earlier—in comparison to that of the standard fully-supervised
VGG-13 architecture to test whether learning via count-based supervision is detri-
mental to recognition accuracy. This experiment focuses on the digit classification
ability of the models with no regard for localization. While the computation of
the recognition accuracy for the standard VGG-13 model is straight-forward (i.e.,
given the image of a digit, the final class prediction is defined as the class with
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Figure 4.3: Out-of-sample predictions for the detection of MNIST digits. (Raw
predictions without post-processing nor non-maximum suppression.)

the highest inferred probability), the evaluation of our model requires slightly
more work. Indeed, given the structure of our model, the original test digits from
the MNIST dataset cannot be inputted without modifications. Therefore, each
original test digit is first pasted onto a larger image—of the same size as the
images used for training, before being transformed into a sequence of sub-images,
as described above. The model is then used to infer an occurrence probability for
each digit class on each sub-image. These probabilities are combined—using the
sum of Bernoulli distribution as described in Chapter 2—to yield an estimated
count distribution for each digit class. As the objective of the classification task
is to output the most likely digit, we select the digit class with the highest mean
expected count (i.e., from the Poisson-binomial count distribution) as the final
prediction to compute the recognition accuracy.

Overall, our model achieves a digit recognition accuracy of 99.12%, which is re-
markably better than the score obtained by the fully-supervised VGG-13, 98.51%,
even though both networks share the exact same representation learning architec-
ture. This result shows that the learning of digit detection through count-based
supervision is not achieved to the detriment of raw recognition accuracy.

Representation Learning Performance

The representation learning capability of our model alone—i.e., without taking the
classification nor the localization ability into account—can be assessed by feeding
original (28× 28) MNIST digits as the sub-images composing our model’s input
sequence. Indeed, the intermediate convolutional representations yielded by the
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Figure 4.4: Digit Representations. Comparison of t-SNE digit feature representa-
tions resulting from the fully-supervised VGG-13 architecture (left) and from our
weakly-supervised approach (right).

network are independent of the localization and classification part of the model.
Thus, visualizing the learned features using t-SNE representations (Maaten &
Hinton, 2008) can help evaluate how well the model separates the different digit
classes early in the learning. In short, the t-SNE algorithm maps the N-dimensional
representations onto a 2-dimensional space, while trying to preserve the spatial
characteristics of the representations. The same analysis can be conducted for the
fully-supervised VGG-13 network, by visualizing the representations produced by
the last convolutional layer.

The convolution representations produced by our model and VGG-13 respectively
can be observed in Figure 4.4. Overall, both models yield representations that
are comparable in terms of class discrimination. The topological differences might
simply be a result of the t-SNE projection and do not affect the class separability.

This small experiment demonstrates once again that the indirect nature of the
counting-based learning and the overall weaker supervision have little to no impact
on the quality of the learned representations, which are almost similar to the ones
obtained using a comparable fully-supervised model.

Localization Learning Performance

We can finally assess the accuracy of the spatial localization by computing the
mean absolute distance between true and estimated bounding-box centers. Our
network achieves a value of 9.04 pixels, which is extremely close to the granularity
of the space-filling curve (8 pixels). Recall, these fine-grained detections are
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achieved using only occurrence counts for training without any prior knowledge
of localization and without any explicit example of the actual goal of the task
(i.e., clear-cut and spatially precise bounding-boxes). It is important to note
that the predictions displayed in Figure 4.3 are raw model outputs obtained
without any post-processing. This last feature highlights, once again, the unique
sparsity-inducing ability of the Poisson-binomial loss function.

In conclusion, the remarkable precision of the predicted bounding-boxes locations,
the high digit recognition capability, and the meaningful representation learning
ability of the model demonstrate, once again, the effectiveness of our weakly-
supervised approach.

Model Limitations

This array of experiments shows how effective the Poisson-binomial counting loss
can be in terms of localization learning. However, the setting used in this section is
quite narrow and the current approach presents several non-negligible limitations
when considering more advanced weakly-supervised object detection applications
(e.g., MS-COCO (Lin et al., 2014) or Open Images Dataset (Kuznetsova et al.,
2020)). For instance, the model couples the scale of the predicted bounding-boxes
to the size of the sub-images. Even though going beyond the fixed-scale setup
might be possible using multi-scale architectures or even more advanced adaptive-
scale scanning processes learned via reinforcement learning, it is uncertain whether
the information conveyed by count supervision will be sufficient to train these
more complex models.

Nevertheless, while the setup is limited, the clear-cut predictions produced by the
model without any non-maximum suppression or other post-processing operation
clearly demonstrate the power of the sparsity-inducing property of the Poisson-
binomial counting approach.

4.4 Conclusion

In this chapter, we show how implicit model constraints can be used to ensure
that accurate localization emerges as a byproduct of learning to count occurrences.
Experimental validation of the model demonstrates its competitiveness against
fully-supervised methods on challenging tasks, despite much weaker training
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requirements. In particular, both precision in the order of a few milliseconds
in the drum detection task and strong performance in the piano transcription
experiment are achieved without any localization prior. Furthermore, the proposed
approach displays the ability to naturally learn meaningful representations while
learning to count instances.

The experiments in this chapter confirm the effectiveness of the sparsity-inducing
property of the Poisson-binomial loss function. While being useful as a standalone
training objective, the loss function might thus be even more valuable when
leveraged as a sparsity regularization in conjunction with more targeted loss
functions. This specific application of Poisson-binomial counting is addressed in
the next two chapters on the tasks of robust temporal point detection (Chapter 5)
and multi-instance sub-pixel point detection (Chater 6).





Chapter 5

Robust Temporal Point
Detection with Misaligned Labels

Based on Learning Precise Temporal Point Event Detection with Misaligned
Labels, Schroeter J, Sidorov K, Marshall D, AAAI 2021

Robust Temporal Point Event Localization through Smoothing and
Counting, Schroeter J, Sidorov K, Marshall D, ICML Workshop on
Uncertainty & Robustness in Deep Learning 2020

The previous chapter presented how the Poisson-binomial loss function can be
leveraged as a standalone objective function for the weakly-supervised learning of
temporal localization. The sparsity-inducing properties of the loss (e.g., Theo-
rem 3.1) can, in fact, find much broader application when leveraged as a regularizer
in conjunction with other more targeted loss functions to enforce sparsity con-
straints in an end-to-end fashion. Thus, this chapter explores a setting where the
learning can benefit from such explicit inclusion of a sparsity constraint: namely,
the robust learning of precise temporal point event detection with misaligned
labels. Indeed, in practice, this task is often characterized by a discrepancy
between the optimal predictions which are known to be sparse and the actual
model predictions which are often widely dispersed over time. The main issue
stemming from the scattered nature of the predictions is its inevitable adverse
effect on the temporal precision of the detections. Therefore, this chapter offers a
more effective modeling of the problem at hand by encouraging models to infer
sparser predictions through count supervision.

Count supervision is especially relevant in the presence of misaligned labels since
it offers a reliable means of supervision regardless of the noise level. Indeed,
occurrence counts are higher-level descriptors when compared to event occurrence

75
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Figure 5.1: Task illustration. Model training solely relies on noisy labels that
differ from the actual ground-truth, while the final inference objective is the
precise localization of events.

timestamps; counts are implicitly contained in location information. Thus, while
offering a weaker level of supervision when used as training labels, counts are
inherently more invariant to temporal perturbations than the finer-grained location
annotations. In fact, in temporal detection applications, occurrence counts remain
correct regardless of the level of misalignment of the labels relative to the ground-
truth. This chapter thus not only shows how count-based regularization helps
achieve prediction sparsity in temporal point event detection applications (e.g.,
piano note onset detection, instantaneous event detection in videos) but also
demonstrates how adding counting as an noise-invariant means of supervision
allows for a more robust learning of temporal localization, especially when the
labels are subject to large temporal misalignments.

5.1 Introduction

The surge of deep neural networks (LeCun et al., 2015; Schmidhuber, 2015) has
accentuated the evergrowing need for large corpora of data (Banko & Brill, 2001;
Halevy et al., 2009). The main bottleneck for the efficient creation of datasets
remains the annotation process. Over the years, while new labeling paradigms
have emerged to alleviate this issue (e.g., crowdsourcing (Deng et al., 2009a) or
external information sources (Abu-El-Haija et al., 2016)), these methods have
also highlighted, and emphasized, the prevalence of label noise. Unfortunately,
deep neural networks are not immune to such perturbations, as their intrinsic
ability to memorize and learn annotation errors (Zhang et al., 2017a) can be the



5.1. Introduction 77

cause of training robustness issues and poor generalization performance. In this
context, the development of models robust to label noise is essential.

This chapter tackles the problem of precise temporal localization of point events
(i.e., determining when and which instantaneous events occur) in sequential data
(e.g., time series, video, or audio sequences) despite only having access to poorly
aligned (w.r.t. the ground-truth) annotations for training (see Figure 5.1). This
task is characterized by the discrepancy between the noisiness of the training
labels and the precision expected of the predictions during inference. Indeed,
while models are trained on inaccurate data, they are evaluated on their ability
to predict event occurrences as precisely as possible with respect to the actual
ground-truth. In such a setting, effective models have to infer event locations
more accurately than the labels they relied on for training. This requirement
is particularly challenging for most classical approaches that are designed to
learn localization by strictly mimicking the provided annotations. Indeed, as the
training labels themselves do not accurately reflect the event location, focusing
on replicating these unreliable patterns is incompatible with the overall objective
of learning the actual ground-truth. These challenges highlight the need for more
relaxed learning approaches that are less dependent on the exact location of labels
for training.

The presence of temporal noise in localization tasks is ubiquitous given the
continuous nature of the perturbation; in contrast to classification noise where
only a fraction of the samples are misclassified, no sample is perfectly aligned
and clean extracts are simply the ones with the smallest error magnitude. Thus,
temporal labeling is characterized by an inevitable trade-off between annotation
precision and time investment. For instance, while a coarse manual transcription
of a minute of complex piano music might be achieved within a moderate time
frame, a millisecond precision requirement—a common assumption for deep
learning models—significantly increases the annotation burden. In this respect,
models alleviating the need for costly annotations are key for a wide and efficient
deployment of deep learning models in temporal localization applications.

This chapter introduces a novel model-agnostic loss function that yields sparse
point predictions despite relaxing the reliance of the learning process on the exact
temporal location of the annotations. This softer learning approach inherently
makes the model more robust to temporally misaligned labels.
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5.2 Related Works

Classification with Noisy Labels

Classification in the presence of label noise—i.e., misclassified samples—has been
a very active area of research (Nettleton et al., 2010; Raykar et al., 2010; Frénay
& Verleysen, 2014) with three main solution axes: explicit noise modeling, loss
function adaptation, and training on clean subsets. The direct application of
classification-specific explicit noise modeling (Goldberger & Ben-Reuven, 2017;
Liu & Tao, 2016; Patrini et al., 2017) or loss correction (Mnih & Hinton, 2012;
Natarajan et al., 2013; Reed et al., 2014; Azadi et al., 2016) to temporal noise
robustness is however limited as classification noise patterns differ from temporal
noise structures (e.g., categorical vs. continuous). In addition, training with
a subset of clean data (Han et al., 2018; Jiang et al., 2018) or underweighting
noisy samples (Wang et al., 2018) does not generalize well to multi-class and
multi-instance temporal applications.

Temporal Localization Under Label Misalignment

The literature on temporal noise robustness is limited despite the critical relevance
of this issue. First, Yadati et al. (2018) propose solutions combining noisy and
expert labels; however, these methods require a sizable clean subset of annotations,
unlike our approach. Second, while Adams and Marlin (2017) achieve increased
robustness by augmenting simple classifiers with an explicit probabilistic model of
the noise structures, the effectiveness of the approach on more complex temporal
models (e.g., LSTM) still needs to be demonstrated. Finally, Lea et al. (2017)
perform robust temporal action segmentation by introducing an encoder-decoder
architecture. However, the coarse temporal encoding comes at the expense of
finer-grained temporal information, which is essential for the precise localization
of short events (e.g., drum hits). In this paper, rather than a new architecture, we
propose a novel and flexible loss function—agnostic to the underlying network—
which allows for the robust training of temporal localization networks even in the
presence of extensive label misalignment.
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Weakly-Supervised Learning

Some weakly-supervised models leverage weaker annotations to infer finer-grained
concepts. In such frameworks, noisy labels are implicitly bypassed by the use
of higher-level labels—which are more invariant to perturbations. For instance,
some works achieve object detection (Fergus et al., 2003; Bilen & Vedaldi, 2016)
or temporal localization (Kumar & Raj, 2016; Wang et al., 2017) using only
class-level annotations for training, while others only rely on occurrence counts
(Gao et al., 2018; Schroeter et al., 2019) (see Chapter 4). However, finer-grained
labels, even noisy ones, often contain some additional information that is essential
for optimal performance.

Classical Heuristics

Our approach is closely linked to the more standard trick of label smoothing or
target smearing (e.g., applying a σ̃2-Gaussian filter Φ̃σ2 to the labels) which has
been considered to increase robustness to temporal misalignment of annotations
(Schlüter & Böck, 2014; Hawthorne et al., 2017). However, this slight modification
of the input data converts the original point prediction problem into a distribution
prediction problem, which ultimately leads to several issues such as location
ambiguity and prediction entanglement (see full discussion in Section 5.4.2). In
contrast, our novel loss function does not suffer from any of these issues, and still
manages to achieve a more robust localization learning.

5.3 Problem Formulation

For consistency with previous works—although not necessary for the definition
and use of our loss function—time is assumed to be discrete. Apart from that,
the main assumption of this chapter is the instantaneous nature (i.e., lasting
exactly one timestep) of the events to detect. (Event duration can be modeled in
such a framework by labeling the beginning and end of each event class as two
separate channels.) In this setting—similar to the definitions in Section 4.1.1,
each predictor X(i) of the training data D :=

{(
X(i),Y(i)

)
| 0< i≤N

}
is an ob-

servable temporal sequence of length T (i) (i.e., Xi=
(
x

(i)
t

)Ti
t=1
∈ IRT (i)×λ), such as a

DNN-learned representation or any λ-dimensional time-series. The observed la-
bel Y(i) =

(
y

(i)
t

)T (i)

t=1
∈{0, 1}T (i)×d and the unobservable ground-truth event locations
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G(i) =
(
g

(i)
t

)T (i)

t=1
∈{0, 1}T (i)×d are discrete sequences indicating whether one event

of class d was observed—or occurred—at time t. (For the sake of simplicity, we
set d=1; the case with multiple event classes (i.e., d>1) is a trivial extension.)

This chapter addresses the problem of label misalignment, i.e., Y(i) 6=G(i). To that
end, we model temporal label misalignment by assuming that the timestamps of
labeled events T (i)(Y ) := {t∈N≤T (i) |y(i)

t =1} are perturbed versions of the unobserv-
able ground-truth timestamps of event occurrences T (i)(G) := {t∈N≤T (i) |g(i)

t =1}, i.e.,

{t∈N≤T (i) |y(i)
t =1}︸ ︷︷ ︸

:=T (i)(Y )∈P([1,...,T (i)])

= {tk+εk | g(i)
tk

=1, tk∈N≤T
(i)}, εk iid∼E, (5.1)

where E is a discrete noise distribution. The aim of this chapter is thus the
following:

Objective (Precise Event Detection).

Estimate the true event occurrence times T (G) of an unseen input sequence X

using only the noisy data D for training.

5.4 Classical Models

In what follows, for the sake of notation simplicity, all loss functions are presented
for a batch size of 1 (e.g., the label sequence Y(i) and its elements y(i)

t become y

and yt respectively).

5.4.1 Stepwise Cross-Entropy

In this discrete setting, the standard approach to temporal point detection (Wu
et al., 2018; Hawthorne et al., 2017) consists in densely predicting—often iteratively—
an event occurrence probability p̂t at each timestep t of the input time series X us-
ing a model fθ with parameter θ, i.e., p̂θ = fθ(X). Thus, the temporal granularity
of the sequence of probabilities p̂θ is coupled with the granularity of the input
sequence X. In this dense classification setup, the training of the model—e.g.,
RNN and LSTM (Hochreiter & Schmidhuber, 1997)—is commonly done through
backpropagation using the stepwise cross-entropy as loss function:

LCE(p̂θ,y) =−∑t yt log((φ ∗ x)t) + (1−yt) log(1−p̂θ,t). (5.2)
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A key feature of this objective function is that it views each timestep as an
independent classification task (i.e., strict local focus). Indeed, in order to minimize
the loss, the model is driven to maximize p̂θ,t at timesteps where an event was
labeled (t ∈ T Y ) and to minimize them for all other timesteps, independently of
the nature of the neighboring timesteps:

LCE(p̂θ,y)︸ ︷︷ ︸
↓loss

= −∑t 1[yt=1] log(p̂θ,t) + 1[yt=0] log(1−p̂θ,t)
= −∑t∈T (Y ) log(p̂θ,t)︸ ︷︷ ︸

↑p̂θ,t for t∈T (Y )

−∑t/∈T (Y ) log(1−p̂θ,t)︸ ︷︷ ︸
↓p̂θ,t for t/∈T (Y )

. (5.3)

While this feature allows for an efficient learning of event representations in
noise-free settings as the training can rely not only on local evidence of event
occurrences but also on local patterns indicating non-events, this rigidity is very
detrimental to the training process when annotations are subject to temporal
misalignment. In fact, even in the presence of the slightest label misalignment
(i.e., T (Y ) 6=T (G)), correct predictions that match the ground-truth rather than the
labels yield an infinite loss LCE(g,y) =∞. Besides that, the learning of meaningful
representations in the presence of noise is hindered by the strict independence of
timesteps induced by LCE. Indeed, as the loss function does not allow to leverage
labels from neighboring timesteps to learn local representations, the model has to
rely on ambivalent local patterns that are sometimes concurrently labeled locally
as events and non-events in the dataset. Such high levels of uncertainty negatively
impact the quality of the learned representation.

In order to demonstrate the temporal detection capability of the loss function
in isolation from the representation learning, we propose the following simple
example:

Example (Localization Learning).

Let the predictors x(i) be of the form x
(i)
t =1[t=t(i)] and the unique ground-truth

event occurrence T (i)(G)={t(i)}; by extension, using Equation 5.1 the noisy label
sequence is equal to y(i)

t =1[t=t(i)+ε(i)], ε
(i) iid∼E. This scenario describes a situation

where the event occurrence is clearly discernible in the data—no representation
learning is necessary, and where the identity function is the optimal model. Given
the nature of the data, the problem is similar to learning a 1D convolution
filter φ, i.e., p̂

(i)
θ =fθ(x

(i)) = φ ∗ x(i). In this setting, the optimal prediction p∗ (i)
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Figure 5.2: How a model being trained with the stepwise cross-entropy is looking
for evidence. The stepwise cross-entropy views each timestep as an independent
classification task. While this strict focus on local patterns can be effective in
noise-free settings, this rigidity of the learning is highly detrimental when the
evidence in the data is not aligned with the training annotations.

that minimizes the loss
∑

i LCE(φ ∗ x(i),y(i)) has the form:

p
∗ (i)

t(i)+τ
≈P (E = τ). (5.4)

Proof. As shown in Appendix B.1,

φ∗=arg minφ
∑

iLCE(φ ∗ x(i),y(i))⇔φ∗(τ)≈P (E=τ). (5.5)

Then, Equation (5.4) follows from the definition of the convolution.

Thus, in this scenario, while the predictions p̂
(i)
θ converge towards the ground-

truth g(i) in the noise-free setting (i.e., P (E=τ)=1[τ=0]), models are trained to
infer dispersed predictions when labels are subject to temporal misalignment.
This result further indicates that the dispersion of the prediction mass is given by
the noise distribution E.
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In conclusion, in noisy settings, models trained with the stepwise cross-entropy
are not only expected to struggle to learn meaningful representations, but are
also expected, given perfect representations, to yield dispersed predictions that
thus are temporally ambiguous.

5.4.2 Label Smoothing

Label smoothing (i.e., applying a Gaussian filter to the point label) is a common
and state-of-the-art methodology in 2D image point detection applications where
spatial uncertainty must be dealt with (Tompson et al., 2014, 2015; Merget
et al., 2018). This methodology is also considered to improve robustness to
label misalignment in temporal applications, e.g., (Schlüter & Böck, 2014). More
precisely, when applied to the stepwise cross-entropy, this approach yields the
following relaxed loss function:

LLS|CE(p̂θ,y |Φ) = LCE(p̂θ,Φ ∗ y)

= −∑t

(∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸
(Φ∗y)t

log(p̂θ,t)

+(1−
∑T

τ=0 yτΦ(t−τ)︸ ︷︷ ︸
(Φ∗y)t

) log(1−p̂θ,t)
)
,

(5.6)

where Φ is a 1D convolutional filter, e.g., a Gaussian filter:

Φσ2(x) = (2πσ2)−1/2e−x
2/2σ2

. (5.7)

While a potentially unbounded penalization of false predictions (i.e., predictions
that are wrong w.r.t the labels can produce infinite loss: log(0)=−∞) might
be ideal when training with clean data, such extreme behavior can be highly
detrimental when labels are subject to temporal misalignment. Indeed, in the
presence of noise, highly penalizing predictions that do not match the—potentially
unreliable—annotations can be counterproductive. This is reminiscent of the
observation made earlier about the stepwise cross-entropy where the slightest shift
in the labels can result in the correct predictions (i.e., predictions that actually
match the underlying ground-truth) yielding an infinite loss. Thus, a bounded
alternative based on the squared error might be preferred when dealing with high
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levels of noise:

LLS|SE(p̂θ,y |Φ) =
∑

t

(
p̂θ,t−

∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸

(Φ∗y)t

)2
. (5.8)

Once again, let us consider the example introduced in the previous section:

Example (Localization Learning, continued).

Let φ, x(i), p̂
(i)
θ , y(i) and g(i) be defined as in the example of Section 5.4.1.

Recall that this setup, with x(i)
t =1[t=t(i)] and y

(i)
t =1[t=t(i)+ε(i)], ε

(i) iid∼E, describes a
scenario where the unique event occurrence is clearly discernible and where the
optimal model fθ(x(i)) = φ ∗ x(i) is the identity function itself. Then, the optimal
prediction p̂∗ (i) := φ̂ ∗ x(i) that minimizes the loss

∑
i LLS|CE(φ ∗ x(i),y(i) |Φ) has

the form:
p
∗ (i)

t(i)+τ
≈(E ∗ Φ)τ =

∑
k P (E = k)Φ(τ − k) (5.9)

Proof. As shown in Appendix B.2,

φ∗=arg minφ
∑

i LLS|CE(φ ∗ x(i),y(i) |Φ)

⇐⇒ φ∗(τ) = (E ∗ Φ)τ =
∑

k P (E=k)Φ(τ−k).
(5.10)

Then, Equation (5.9) follows from the definition of the convolution.

A similar result can be obtained for LLS|SE. Thus, in comparison to LCE, models
optimized with smoothed labels are trained to infer even more dispersed predictions.
For instance, even in a noise-free setting, the optimal predictions with respect to
the loss function are dispersed over time according to the smoothing filter Φ.

Thus, despite its intuitive nature, the traditional solution of smoothing the labels
presents several inherent drawbacks (see Figure 5.3) when applied to temporal
point localization:

(Issue 1) As models are designed to output dispersed predictions that are
spread out over several timesteps, additional tailored heuristics (e.g., peak picking
(Böck et al., 2013) or complex thresholding) are required to obtain precise point
predictions. Consequently, the learning of point localization is not done in an
end-to-end fashion.
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(Issue 2) Even advanced peak picking struggles to disentangle close events.
For example, a single maximum might emerge in the middle of two events (see
Figure 5.3), thus significantly harming the precision of the final predictions.

(Issue 3) Even in a noise-free setting, the optimal prediction at any given
time does not only depend on previous event occurrences, but also on all closely
upcoming events:

p∗t =
∑T

τ=0 yτΦ(t−τ)

=
∑
τ≤t−1 yτΦ(t−τ)︸ ︷︷ ︸

past events

+ ytΦ(0) +
∑
τ≥t+1 yτΦ(t−τ)︸ ︷︷ ︸

future events

. (5.11)

This implies that correctly detecting an event is not enough; the context—before
and after—also has to be estimated accurately. This cross-influence from other
timesteps is especially problematic for causal models (i.e., models that make
predictions at time t only with data up to time t), for one-sided recurrent networks,
and for fully convolutional architectures with limited receptive fields. Indeed,
these models have little or even no ability to integrate information from future
timesteps. Thus, for example, requiring them to estimate the left tail of the label
distribution might force them to learn irrelevant features preceding the actual
event occurrence, leading to poor generalization.

The presence of strong label misalignment further worsens all these issues as
increased noise commonly warrants increased smoothing, dispersing the label
(and consequently the prediction) mass even more (e.g., Equation (5.9)). Overall,
experimental evidence in Section 5.6 shows that just one of these issues can prove
to be very detrimental to the noise robustness of this classical approach.

5.5 Our SoftLoc Loss Function

5.5.1 Soft Localization Learning Loss

While the general principle of relaxing the localization learning is intuitive and
potentially powerful if carefully implemented, smoothing only the labels is prob-
lematic, especially in causal settings. Many of the drawbacks arising from the
asymmetric nature of the one-sided smoothing can however be alleviated by
filtering not only the labels but also the predictions. The comparison of these two
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Figure 5.3: Drawbacks of label smoothing and solutions provided by our approach.
Issue 1: ambiguous predictions of event locations require the use of additional
heuristics Issue 2: closely grouped events cannot be easily disentangled Issue 3:
temporal cross-influence from other timesteps requires an awareness of past and
future event occurrences to make optimal predictions (e.g., left tail estimation for
causal models).
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smoothed processes yields a relaxed loss function for the soft learning of temporal
point detection:

LSLL(p̂θ,y |Φ, E) = LLS|SE(E∗Φ∗p̂θ,y |Φ)

=
∑

t

(∑T
τ,τ̃=0 p̂θ,τΦ(τ̃−τ)E(t−τ̃)︸ ︷︷ ︸

(E∗Φ∗p̂θ)t

−∑T
τ=0 yτΦ(t−τ)︸ ︷︷ ︸

(Φ∗y)t

)2

=
∑

t

(∑T
τ=0(

∑T
τ̃=0 p̂θ,τ̃ E(τ−τ̃)︸ ︷︷ ︸

(E∗p̂θ)τ

−yτ )Φ(t−τ)
)2
,

(5.12)

where Φ and E are smoothing filters. The learning is characterized as soft since
slight temporal shifts do not cause any abrupt increase in loss—a property that
contrasts with LCE. Thus, the model’s reliance on exact label locations is relaxed.
We once again prefer the (bounded) squared error over the (potentially unbounded)
log-based measures, especially in the presence of high misalignment levels.

Example (Localization Learning, continued).

Let φ, x(i), p̂(i)
θ , y(i) and g(i) be defined as in the example of Section 5.4.1, then

the optimal prediction p̂∗ (i) that minimizes the loss
∑

i LSLL(φ ∗ x(i),y(i) |Φ, E)

has the form:

(E∗p∗ (i))τ ≈(E∗g(i))τ , if 1∗E=1 and 1∗Φ=1 (5.13)

Proof. See Appendix B.3.

Regardless of the chosen filter E , the optimal prediction is independent of the
chosen smoothing filter Φ. Thus, in contrast to label smoothing, our approach
can rely on heavy smoothing without causing a certain increase in dispersion of
the predictions.

This example further reveals that if E = E, then the predictions converge towards
the ground-truth event locations, i.e., p∗ (i)

t ≈ g(i)
t . However, while an estimate of

the error distribution can be obtained by altering loss minimization and noise
estimation during the training (e.g., (Patrini et al., 2017)), this theoretical result
requires an exact account of the noise distribution and any deviation from it
might cause prediction dispersion. Thus, in practice, while alleviating the issues
observed for the label smoothing approach, the soft localization learning loss LSLL
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does not fully solve them, and thus does not on its own guarantee clear-cut (i.e.,
without dispersion) location estimates.

5.5.2 Counting-based Sparsity Constraint

This section addresses how the sparsity-inducing ability of the Poisson-binomial
loss function can be leveraged to ensure that predictions do not present any
temporal ambiguity nor entanglement issues since these are not actively prevented
by the soft localization learning loss LSLL alone. An intuitive way of alleviating
these potentially remaining issues is to force the model to output only one single
high-probability detection per event occurrence.

We propose to achieve this prediction sparsity through the addition of explicit
constraints to the optimization problem:

minθ LSLL(p̂θ,y |Φ, E)

s.t. (‖p̂θ‖0 = c) ∧ (p̂θ∈{0, 1}T ).
(5.14)

In a nutshell, the first constraint ensures that exactly c timesteps have non-zero
probability, while the second one imposes that their value is equal to 1. Thus, in
practice, we would set c to the number of labeled events. (Note that the number of
event occurrences is invariant to the exact event locations, and thus is unaffected
by label misalignment.)

An unconstrained optimization problem can be derived by integrating these
constraints as penalty functions to the objective function, e.g.,

minθ LSLL(p̂θ,y |Φ, E)+λ (‖p̂θ‖0−c)2︸ ︷︷ ︸
Non-Diff.

+
∑
t λtp̂θ,t(1−p̂θ,t), (5.15)

where the weights λ, λt are gradually increased during the training to progressively
enforce the constraints. However, as the `0-norm in the second term is non-
differentiable, a differentiable surrogate has to be introduced.

Counting Constraint

To that end, we propose using the Poisson-binomial counting loss, introduced
in this work, as a differentiable surrogate for the `0-norm. Indeed, by modeling
the number of predicted events as a sum of independent Bernoulli distributions



5.5. Our SoftLoc Loss Function 89

with probability p̂θ and the labeled count as an discrete Dirac distribution 1c,
the counting loss LPB(p̂θ, c) (Equation 2.9) can be leveraged as a differentiable
replacement for the `0-norm-based constraint:

Theorem 5.1 (Surrogate Regularization).
minθ LSLL(p̂θ,y |Φ, E)

s.t. ‖p̂θ‖0 = c

p̂θ∈{0, 1}T
⇐⇒

minθ LSLL(p̂θ,y |Φ, E)

s.t. LPB(p̂θ, c) = 0.
(5.16)

Proof. The equivalence of the constraints follows from Theorem 3.1, while the
differentiability of the constraint is achieved naturally, since the Poisson-binomial
loss function is defined as the logarithm of a product of differentiable and positive
functions (see Equation 2.4 and Equation 2.9).

Finally, by updating Equation (5.15), we obtain a differentiable penalized objective
function:

minθ LSLL(p̂θ,y |Φ, E) + λ · LPB(p̂θ, c). (5.17)

Regularized Loss Function However, as the weight λ gradually increases
during training, so does the loss. In order to offset this effect—which can be
detrimental to the training, we propose to optimize the following scaled loss
function:

LSoftLoc(f(X, θ)︸ ︷︷ ︸
p̂θ

,y) := (1−ατ )LSLL(p̂θ,y |ΦSM2 , id)

+ ατLPB(p̂θ,
∑
yi),

(5.18)

where ΦSM2
(x) := (2πSM2 )−1/2e

−x2
/

2SM2 . In this equation, the weight ατ regulates
the predominance of the prediction sparsity regularization against the soft location
learning (for training iteration τ). (Note that this constraint could not be added
to LCE, LLS|SE nor LLS|CE as the regularization and these loss functions have
conflicting objectives.)

Example (Localization Learning, continued).

Let φ, x(i), p̂(i)
θ , y(i) and g(i) be defined as in the example of Section 5.4.1, then the

optimal prediction p̂∗ (i) that minimizes the loss
∑

i LSoftLoc(φ ∗ x(i),y(i)) converges
towards the ground-truth sequence g(i), if P (E=k)=P (E=−k).
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Proof. See Appendix B.4

End-to-end Learning of Localization

Overall, adding this prediction sparsity constraint as a regularizer to our soft
localization learning loss LSLL allows the model to directly output unique precise
impulse-like localizations (i.e., a single high-likelihood detection per event), without
weakening its noise robustness properties. Thus, in contrast to more classical
approaches, the proposed method offers an end-to-end solution to the problem
of temporal localization in the presence of misaligned labels as it eliminates the
need for hand-crafted components (e.g., peak picking) or post-processing (see
Figure 5.4). Indeed, in such a setting, the model is given point labels and directly
infers point predictions in an end-to-end fashion without having to explicitly resort
to heatmaps nor distributions; it is only the loss function that formulates these
point labels and point predictions as smoothed processes. Therefore, since the
end-to-end learning paradigm is one of the key factors of the predominance of the
deep learning models over classical ones (Collobert et al., 2011; Krizhevsky et al.,
2012), we expect our model to better serve the task at hand.

In conclusion, our novel loss function, which combines soft localization learning
with sparsity regularization, solves all the issues of label smoothing-based models
presented in Section 5.4.2 (see Figure 5.3) while retaining their relaxed localization
learning ability. Thus, our approach is expected to outperform existing methods—
a claim that is confirmed by the experiments in the next section.

Sparsity & Uncertainty

Quantifying model and prediction uncertainties is often considered better practice
than inferring a single scalar estimate or clear-cut prediction. However, while
classical smoothing-based approaches (Section 5.4.2) infer more scattered loca-
tion estimates, the ambiguity of their predictions does not correctly reflect the
underlying uncertainty, but is rather a forced consequence of the design of the
loss function (e.g., Equation (5.9)). In fact, all benchmark models use some form
of post-processing (e.g., NMS) to reduce this approach-induced uncertainty, and
thus our sparsity-inducing approach merely help reduce that uninformative ambi-
guity in an end-to-end fashion. However, there are no limitations on combining
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(a) Classical approach

(b) Our end-to-end approach

Figure 5.4: Modeling differences between our SoftLoc model and the classical
smoothing-based approaches. By smoothing both the labels and predictions, our
model directly infers point predictions rather than distributions. Among other
benefits, this modification allows for an end-to-end learning of temporal event
localization.

our model with uncertainty quantification techniques, e.g., MC-dropout (Gal &
Ghahramani, 2016).

5.5.3 Dealing with Uncertainties

The introduced softness SM is a flexible parameter that can be leveraged to deal
with different kinds of uncertainties. First, in contrast to the traditional approach
of aggregating the annotations of multiple individuals (thus trading off dataset
richness for noise reduction), our model can directly be trained on all individual
label sequences even though they might be conflicting, since our approach can
cope with noisy annotations. Second, an annotator-specific softness Sa2 can also
be implemented to model their respective reliability. Finally, an extract-specific
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softness Si can be incorporated to capture the noise or annotation complexity of
certain more challenging sequences.

This softness parameter only acts as a coarse indicator of temporal uncertainty
and thus does not need to strictly match the underlying noise distribution. Indeed,
experiments conducted in the section below show that the performance is robust
to large variations in this hyperparameter.

5.6 Experiments

In order to demonstrate the effectiveness and flexibility of our approach, a broad
range of challenging experiments are conducted (video action detection, times
series detection, and music event detection). The code and the experiment details
are freely available1.

5.6.1 Golf Swing Sequencing in Video

In this section, we replicate the video event detection experiment from (McNally
et al., 2019) using either the original cross-entropy (LCE), the label smoothing
benchmarks (LLS|CE and LLS|SE), or our proposed loss (LSoftLoc) for training (not
changing anything else). The task consists in the precise detection (within a one
frame tolerance) of eight different classes of golf swing events in video extracts
(e.g., address and impact). To assess robustness to noisy annotations, rounded
normally distributed misalignments (i.e., εm∼bN (0, σ2)e) are artificially applied
to the event timestamps of the training samples, while the test labels are kept
intact for unbiased inference.

Experiment Characteristics

Among other aims, this experiment helps measure the impact of prediction
ambiguity (i.e., Issue 1 in Section 5.4.2) on the performance of the LLS|CE and the
LLS|SE approaches. Indeed, as video extracts in the dataset contain exactly one
occurrence of each event type, most of the issues highlighted in Section 5.4.2 do
not occur (e.g., no prediction entanglement, no cross-influence from future events,

1https://github.com/SchroeterJulien/AAAI-2021-Learning-Precise-Temporal-Point-Event-
Detection-with-Misaligned-Labels

https://github.com/SchroeterJulien/AAAI-2021-Learning-Precise-Temporal-Point-Event-Detection-with-Misaligned-Labels
https://github.com/SchroeterJulien/AAAI-2021-Learning-Precise-Temporal-Point-Event-Detection-with-Misaligned-Labels
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Figure 5.5: Out-of-Sample Golf Swing Action Predictions. Ours: sharp predic-
tions, LS (label smoothing): ambiguous predictions, CE: multiple peaks. (Test
sequence: 0, split: 1, noise level: σ = 3 frames.)

and no complex peak-picking required). In addition, the model architecture in
this experiment includes a bidirectional RNN to model temporal dependencies,
enabling the estimation of the two tails of the event distribution (i.e., no Issue 3).
Thus, in this task, the only defining component that distinguishes the label
smoothing benchmarks (LLS|CE, LLS|SE) from our loss function is the potential
ambiguity of prediction locations.

Golf Swing Sequencing Results

Table 5.1a confirms the intuitive understanding that the cross-entropy (LCE) is not
well suited to effectively deal with label misalignment. Indeed, we observe here that
attempting to strictly mimic unreliable annotations leads to poor generalization
performance. The results further reveal that even just one of the issues presented
in Section 5.4.2 (here, prediction ambiguity) can negatively impact the prediction
accuracy, as shown by the significant performance gap between our approach
(LSoftLoc) and the label smoothing benchmarks (LLS|CE, LLS|SE) in noisy settings.
Indeed, while our approach infers sharp predictions, the predictions yielded by the
classical label-smoothing benchmarks (LLS|SE and LLS|CE) are highly ambiguous as
illustrated in Figure 5.5. In strict settings with low error tolerance, the dispersion
of the predictions of label smoothing-based models, theoretically highlighted in
Section 5.4.2 and observed in this experiment, leads to suboptimal performance.
(Note that even more clear-cut point predictions could be achieved for LSoftLoc by
training the model further than the 10k iterations set by McNally et al. (2019),
which would allow for full convergence of the counting loss function.)
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Table 5.1: Golf Swing Action Detection. Performance comparison of the
same model when trained with various training losses (LCE, LLS|CE, LLS|SE,
and LSoftLoc) on the golf swing sequencing task (McNally et al., 2019) with re-
spect to various label-misalignment levels bN (0, σ2)e (σ in number of frames).
The cross-validated (4-folds) mean accuracy is reported.

(a) Bidirectional RNN

LCE

LLS|CE

LLS|SE

LSoftLoc

σ = 0 1 2 3 4

68.1 60.4 51.6 43.1 36.9
66.7 64.7 59.1 54.8 49.1
69.1 66.2 60.6 54.7 50.7

67.2 68.0 65.6 58.6 54.2

(b) Unidirectional RNN (i.e., causal model)

LCE

LLS|CE

LLS|SE

LSoftLoc

σ = 0 1 2 3 4

62.8 57.2 47.3 40.9 35.3
57.0 54.2 50.6 46.4 42.5
61.3 59.5 55.2 49.9 46.5

63.0 62.2 59.3 54.9 50.7

The same conclusion can be drawn from the additional experiment conducted using
a (causal) unidirectional RNN, instead of the original bidirectional architecture
(see Table 5.1b for results). Our approach achieves the best overall performance
on all noise levels, including the noise-free case σ=0. These results demonstrate
that the theoretical advantages of our approach (see Section 5.5) can translate to
a significant increase in performance, especially for causal applications.

In Chapter 4, the counting loss LPB was shown to be able to successfully train
alone precise temporal models in a weakly-supervised manner. However, this is
not the case for this experiment. Aside from the complexity of the task, the main
issue resides in the nature of the dataset. Indeed, the number of event occurrences
for all classes is exactly equal to 1 in all sequences. The model thus does not
even have to learn to count to estimate the correct number of event occurrences
since this number is a constant in the data. For example, in this setup, trivially
triggering every time at the first timestep only, would be an optimal solution
with respect to the Poisson-binomial counting loss. Consequently, training the
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golf event sequencing model with the counting loss alone is bound to fail, thus
highlighting the importance of LSLL for learning precise localization.

5.6.2 Wearable Sensors Time Series Detection

The timely detection of events in healthcare time series is a crucial challenge
to improve medical decision making. The task tackled in this section consists
in the precise temporal detection of smoking episodes using wearable sensors
features from the puffMarker dataset (Saleheen et al., 2015). The noise robustness
analysis replicates the experiment conducted in (Adams & Marlin, 2017), which
involves normally distributed label misalignment (i.e., εm ∼ N (0, σ2)) and no error
tolerance (i.e., detections have to be perfectly aligned with the ground-truth to
be considered as correct).

Model and Benchmarks

As the focus is set on robustness rather than raw performance, the neural ar-
chitecture is kept extremely simple: a 14-node fully connected layer followed by
a 14-unit (unidirectional) LSTM and a final fully connected layer with softmax
activation. The stepwise cross-entropy (LCE), the label smoothing benchmarks
(LLS|CE and LLS|SE), and our (LSoftLoc) loss function (with SM=3 frames) are used
for training. The statistical LR-M model proposed by Adams and Marlin (2017),
which was developed to achieve strong robustness to temporal misalignment of
labels on this particular dataset, is also considered as a benchmark.

Experiment Characteristics

Each timestep in this dataset represents a full respiration cycle. Thus, multiple
smoking episodes can occur consecutively (i.e., one after another without inter-
ruption), which contrasts with the sparse distribution (over time) of golf events
in the previous experiment. Such dense sequences of events in conjunction with
a causal architecture and a very strict tolerance help assess how Issue 3 (i.e.,
cross-influence between timesteps) might penalize the performance of the LLS|SE

benchmark, unlike our method.
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Smoking Puff Detection Results

The results, produced using ten 6-fold (leave-one-patient-out) cross-validations,
are summarized in Table 5.2. Not only does training with the proposed LSoftLoc

loss function yields a strong improvement in robustness when compared to the
standard cross-entropy (CE), but our simple recurrent model also significantly
outperforms the robust LR-M model on all metrics.

In addition to normally distributed label misalignment, more challenging noise
patterns are also investigated: binary constant length shifting of labels (±δ steps
with equal probability) denoted B(−δ, δ) and skewed-normal noise distribution
SN (0, σ2, α=−2). Aside from exhibiting strong overall performance on all noise
levels, our approach displays scores with low standard deviations which underlines
the consistency and robustness of the learning process. These observations hold
for all noise distributions confirming that the Gaussian filtering does not have
to match the actual noise distribution of the data to be effective. Indeed, the
smoothing distribution only acts as a means of relaxing the dependence of the
learning on the exact location of the labels, and not as a model for the underlying
noise (see Section 5.5).

As expected, the label smoothing benchmarks (LLS|CE, LLS|SE) yield poor overall
results on this task. In fact, the causal architecture makes the learning with
these loss functions especially difficult, as the model is unable to properly learn
the target smoothed labels given that it does not have the ability to leverage
crucial information from future timesteps (see Equation 5.11 and Issue 3). Even
in noise-free settings, the gap between optimal predictions and optimal attainable
predictions is further widened by the fact that the multiple events can occur
consecutively (see Figure 5.6). In contrast, the optimal predictions for the LSoftLoc

are the labels themselves, regardless of the density of event occurrences.

5.6.3 Piano Onset Experiment

We make use of the piano onset detection dataset introduced in Section 4.3.2
to further assess the effectiveness of our proposed approach. Recall that piano
transcription and, more specifically, piano onset detection is a difficult problem,
as it requires precise and simultaneous detection of hits from 88 different poly-
phonic channels. Similarly to Section 4.3.2, we reproduce the experiment from
Hawthorne et al. (2017) using the MAPS database (Emiya et al., 2010) and we
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Table 5.2: Smoking Puff Detection. Comparison of LR-M (Adams & Marlin, 2017)
and the deep model trained with LCE, LLS|CE, LLS|SE, and LSoftLoc with respect
to misalignment distributions bN (0, σ2)e, B(−δ, δ) and bSN (0, σ2, α = −2)e.
Reported metrics are mean and standard deviation of ten 6-fold cross-validated
F1-scores.

N

B

SN

LR-M
LCE

LLS|CE

LLS|SE
LSoftLoc

LR-M
LCE

LLS|CE

LLS|SE
LSoftLoc

LR-M
LCE

LLS|CE

LLS|SE
LSoftLoc

δ, σ = 0 1 2 3 4

93.0 (3.2) 80.6 (8.6) 65.9 (17.4) 64.0 (15.6) 55.0 (19.7)
92.6 (2.9) 55.3 (16.2) 36.0 (15.6) 28.9 (17.0) 25.8 (16.2)
63.9 (7.9) 58.7 (7.4) 50.6 (9.1) 49.5 (9.0) 43.3 (9.2)
63.5 (9.5) 59.2 (6.3) 54.6 (5.9) 49.4 (7.8) 46.3 (8.5)
93.1 (2.5) 90.6 (3.4) 87.8 (4.1) 83.6 (5.2) 79.0 (6.9)

— 65.5 (14.5) 54.9 (20.4) 44.1 (19.7) 51.8 (19.8)
— 41.7 (15.3) 28.3 (14.5) 26.6 (15.3) 22.8 (15.1)
— 60.7 (6.7) 53.0 (8.8) 43.7 (10.1) 34.8 (13.0)
— 45.2 (8.3) 54.7 (9.2) 45.1 (11.6) 35.4 (11.8)
— 90.8 (3.3) 87.0 (4.7) 81.7 (7.2) 72.4 (10.1)

— 79.7 (10.4) 68.3 (15.6) 61.4 (20.7) 54.7 (18.2)
— 57.6 (16.6) 27.8 (13.7) 20.0 (13.9) 16.1 (14.4)
— 53.8 (9.8) 49.6 (8.5) 43.9 (10.7) 41.1 (8.6)
— 57.0 (8.2) 52.1 (8.4) 48.3 (7.9) 44.4 (9.6)
— 90.4 (3.9) 88.2 (5.0) 84.2 (6.1) 79.1 (9.0)

only consider onsets for the comparison. Once again, to evaluate the robustness
of our model, the training labels are artificially perturbed according to a normal
distribution (εm ∼ N (0, σ2)).

Experiment Characteristics

In contrast to the wearable sensor experiment in Section 5.6.2, events are more
sparsely distributed and the architecture includes temporal convolutions (i.e.,
it is not a fully causal model). Consequently, the label smoothing benchmarks
are expected to be less impacted by Issue 3. However, as a piano note can be
played multiple times within a very short time span, prediction entanglement (Is-
sue 2) might arise when training with such one-sided-smoothing-based approaches,
e.g., LLS|SE.
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Figure 5.6: Out-of-sample smoking predictions for the label-smoothing approach.
The model struggles to estimate the left tail of the event distribution, especially
when multiple events occur consecutively. (Patient: 16, seq.: 2, σ = 2).

Benchmarks

For the comparison, three additional classical benchmarks, based on a model
proposed by Hawthorne et al. (2017) that shows state-of-the-art performance
on clean data, are considered: first, the original model itself which is highly
representative of models aiming for optimal performance with little regard for
annotation noise (original); second, a version with extended onset length (i.e.,
target smearing) (extended); a version trained with the soft bootstrapping
loss proposed by Reed et al. (2014) instead of the cross-entropy for increased
robustness.

Model Architecture, Training, and Evaluation

The network in this experiment is highly reminiscent of the architecture proposed
in Section 4.3.2: six convolutional layers (representation learning) followed by a
128-unit LSTM (temporal dependencies learning) and two fully-connected layers
(prediction mapping). Once again, the network is trained using mel-spectro-
grams (Stevens et al., 1937) and their first derivatives stacked together as model
input, while data augmentation in the form of sample rate variations is applied for
increased robustness and performance. The models are evaluated on the noise-free
test set using the mir_eval library (Raffel et al., 2014) with a 50ms tolerance as
in (Hawthorne et al., 2017). (SM = 100ms, ατ = max(min( τ−105

105
, .9), .2).)
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Table 5.3: Piano Onset Detection. Performance comparison of models trained
with LLS|SE, LSLL, and LSoftLoc (SM =100ms) as well as the diverse classical
benchmarks (Hawthorne et al., 2017) with respect to label misalignment distribu-
tion εm ∼ N (0, σ2). The mean F1-score is reported.

Hawthorne (original) (2017)
Hawthorne (extended)
Hawthorne (bootstrap)
LLS|SE

LSLL

LSoftLoc

σ = 0ms 50ms 100ms 150ms 200ms

82.1 38.5 2.0 0.5 0.2
77.7 68.0 30.7 9.2 3.9
79.1 74.2 32.5 15.4 6.9
73.1 70.5 59.2 41.3 28.0

76.1 76.0 75.1 66.9 46.9
76.0 76.3 75.9 74.0 73.7

Piano Onset Detection Results

As summarized in Table 5.3, our proposed approach LSoftLoc displays strong
robustness against label misalignment: in contrast to all benchmarks, the perfor-
mance appears almost invariant to the noise level. For instance, at σ = 150ms,
only 26% of training labels lie within the 50ms tolerance (see Figure 5.7 for illus-
tration); in such a context, the score achieved by our model LSoftLoc (i.e., ∼ 75%)
is unattainable for classical approaches, which do not take label uncertainty into
account and attempt to strictly fit the noisy annotations. While standard tricks,
such as label smoothing (LLS|SE) or label smearing (extended), slightly improve
noise robustness, their effectiveness is limited. The results also reveal that, as the
noise level increases, the addition of the prediction sparsity regularization LPB to
LSLL is crucial to achieve strong robustness. Finally, a fixed parameter set is used
throughout this experiment, which explains the small performance gap between
our approach and (Hawthorne et al., 2017) for the noise-free case. This could be
partially remedied by adapting the loss settings (e.g., ατ = 1 and SM2 → 0ms).

To further illustrate the complexity of the localization task when annotations
are subject to misalignment, we compare the training labels with the actual
ground-truth event locations. Figure 5.7.b displays an example of the quality
of the training labels. Obviously, in the noise-free setting (i.e., σ = 0ms), the
localization is spotless as the training labels and the ground-truths are identical.
However, as the noise level increases, the proportion of labels that stay within the
50ms tolerance window decreases significantly. More precisely, the performance
(i.e., F1-score) corresponding to using the labels themselves as predictions is
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68.2%, 39.8% and 23.7% for σ equal to 50ms, 100ms and 200ms respectively. This
contrasts with the performance of our approach, which appears almost invariant
to the noise level (see Figure 5.7.a).

Ablation Study

To assess the usefulness of the different components of LSoftLoc, we repeat the
above experiments keeping only individual parts of the loss function. Table 5.4
reveals that LSLL is the main driver of performance in noise-free settings, while LPB

ensures stability under increased label misalignment. (A simple threshold-based
peak-picking algorithm was implemented to infer localization from the dispersed
mass produced by LSLL.) Overall, while each loss individually yields reasonable
predictions, only the combined LSoftLoc yields both competitive scores in noise-free
settings and strong robustness to temporal misalignment. It is however important
to note that the good performance of the counting loss on piano onset detection is
a direct consequence of the high discernibility and uniformity of piano onsets. The
loss function is unable to effectively learn golf swing sequencing (Section 5.6.1) or
time series detection (Section 5.6.2) on its own without any additional localization
supervision.

Table 5.4: Ablation Study. Piano onset detection performance of our model
trained with loss functions LSoftLoc (SM =100ms), LSLL and LPB respectively in
various noise level settings. The mean F1-score is reported.

LSLL (ατ = 0)
LPB (ατ = 1)

LSoftLoc

σ = 0ms 50ms 100ms 150ms 200ms

76.06 76.00 75.10 66.88 46.91
71.59 73.04 68.69 70.33 67.26

76.88 76.34 75.86 74.87 73.68

The results obtained when training with LPB alone are remarkable when compared
to the previous experiments, where the loss failed to successfully train the model
to localize events in a weakly-supervised manner. This high performance of the
weakly-supervised approach can be attributed to several factors. First, piano onset
detection is characterized by clear-cut and often easily detectable events since
note onsets are bursts of energy that are quite salient on the spectrograms. In
addition, the dataset presents a rich variety of different count values—contrasting
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σ=0msσ=0msσ=0ms σ=0msσ=0msσ=0ms

σ=100msσ=100msσ=100ms σ=100msσ=100msσ=100ms

σ=200msσ=200msσ=200ms σ=200msσ=200msσ=200ms

(a) Out-of-sample predictions of our
LSoftLoc model trained on data subject
to various noise levels. (Schubert—Piano
Sonata in A minor, D 784, Opus 143,
3. Mov)

(b) In-sample performance of the noisy
training labels themselves (as predictions)
when compared to the clean ground-truth.
(Liszt—Hungarian Rhapsody No. 10)

Figure 5.7: Robustness of Predictions to Noisy Labels. Difference between (a) the
consistency of the predictions and (b) the quality of provided labels for training
across various noise levels σ, ranging from noise-free (σ = 0ms) to extremely
noisy (σ = 200ms).
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with the golf event sequencing dataset in Section 5.6.1 where the count was a
constant. The model is thus bound to learn to recognize non-trivial patterns in
the data in order to be able to count correctly. These factors make piano onset
detection especially suitable for weakly-supervised counting-based learning.

5.6.4 Drum Detection Experiment

The softness SM is a defining model hyperparameter. In this section, 210 runs of
the same drum detection experiment are conducted with varying noise and softness
levels in order to highlight the correlation between this key hyperparameter, label
noise, and the final localization performance.

To that end, we modify one of the drum detection experiments proposed by
Wu et al. (2018), see Section 4.3.1. More specifically, the experiment is conducted
on the D-DTD Eval Random drum detection task based on the IDMT-SMT-
Drums dataset (Dittmar & Gärtner, 2014). Recall that the specific goal of
this task is the correct temporal detection of three different classes of drum
hits—hi-hats, kick drums, and snare drums—within a 50ms tolerance window.
The network, the training, and the evaluation are similar to that of the weakly-
supervised drum detection experiment conducted in Section 4.3.1. Once again, to
perform the robustness evaluation, the training labels are artificially perturbed,
while the test annotations are kept intact. For each run, the label noise level
σ (i.e., εm ∼ N (0, σ2)) and the softness SM are uniformly sampled at random
from [0ms, 100ms] and [0ms, 150ms] respectively. Please refer to the provided
implementation for the remaining model and training specifications (e.g., learning
rate: 10−4, iterations: 1.5× 105).

Drum Detection Results

The results of the 210 runs are displayed in Figure 5.8. A Gaussian Nadaraya-
Watson kernel regression (Nadaraya, 1964; Watson, 1964) is used to interpolate
the F1-score, offering a detailed view of the model’s response to varying label
noise levels. This figure not only confirms the model’s high robustness to label
misalignments, but also reveals that these results are very robust to changes in the
softness level. Indeed, a wide range of softnesses yield optimal performance (i.e.,
as long as SM ≥ σ). Robustness considerations aside, our LSoftLoc model displays
an outstanding overall performance with F1-scores over 95% across all noise
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Figure 5.8: Noise Robustness and Hyperparameter Sensitivity in Drum Detection.
Drum detection performance with respect to model softness SM (x-axis) and label
noise σ (y-axis). F1-scores are Gaussian Nadaraya-Watson estimates based on 210

runs (white dots).

levels; the model—even when trained on extremely noisy labels (e.g., σ = 100ms)—
outperforms several standard benchmarks (Wu et al., 2018) which were trained
on noise-free training samples (σ = 0ms).

Noise-free Comparison

In clean settings (i.e., σ = 0ms), the benchmark models have a clear advantage as
they correctly assume noise-free labels. Despite this, our LSoftLoc model achieves
state-of-the-art performance on three different metrics (KD, HH, overall precision)
demonstrating that robustness does not come at the expense of raw localization
performance (see results in Table 5.5).

5.7 Conclusion

In this chapter, we introduce a novel loss function that allows for the training
of precise temporal localization models even in the presence of poorly aligned
annotations. In contrast to the traditional cross-entropy, our loss function does
not attempt to strictly mimic the given annotations, but rather relaxes the
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Table 5.5: Noise-free Drum Detection. Comparison of our LSoftLoc model with
SM =100ms and state-of-the-art models evaluated in (Wu et al., 2018) on the clean
D-DTD Eval Random task (σ = 0ms). The mean F1-score is reported.

Method

RNN
tanhB
ReLUts
lstmpB
GRUts

LSoftLoc

KD SD HH Pre Rec F1

97.2 92.9 97.3 95.7 96.9 95.8
95.4 93.1 97.3 93.9 97.1 95.3
86.6 93.9 97.7 92.7 95.0 92.7
98.4 96.7 97.4 97.7 97.6 97.5
91.4 93.2 96.2 91.8 97.2 93.6

98.6 95.7 97.8 98.3 97.2 97.4

reliance of the learning on the exact event locations. While a softer learning
of event localization is already made possible through classical heuristics (e.g.,
label smoothing), we show that these approaches inherently suffer from multiple
drawbacks (e.g., entanglement and ambiguity of predictions). We solve these
issues by directly inferring point predictions which are learned through comparison
of the smoothed labels and smoothed predictions and by leveraging counting as
an additional means of supervision.

We demonstrate the effectiveness of our simple approach in a number of challeng-
ing tasks (i.e., video action detection, time series event detection, music onset
detection), in which our LSoftLoc loss function exhibits state-of-the-art robustness
without compromising performance on clean training data. Experiments further
reveal that these results not only are robust to large variations in the main hyper-
parameter of the loss function (i.e., softness SM), but also hold for a wide range
of temporal noise distributions. As the proposed loss function is agnostic to the
underlying network, it can be used as a loss replacement for the classical stepwise
cross-entropy in almost any architecture to increase robustness to temporal noise,
thus allowing for a wide array of applications.

Above all, this chapter shows how the sparsity-inducing properties of the Poisson-
binomial counting loss—highlighted in Section 3—can be leveraged to enforce
sparsity constraints in an end-to-end fashion. The integration of prediction sparsity
directly in the training process thus alleviates the need for sub-optimal maximum-
picking heuristics and, by extension, allows for a fully end-to-end robust learning
of point event detection.
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The use of non-differential operations to obtain sparse predictions is ubiquitous
in computer vision applications. Thus, in order to assess further the versatility of
the proposed count-based sparsity regularization, the next chapter applies this
principle to the difficult task of learning multi-instance sub-pixel point localization
in images.





Chapter 6

Learning Multi-Instance
Sub-pixel Point Localization

Based on Learning Multi-Instance Sub-pixel Point Localization, Schroeter J,
Tuytelaars T, Sidorov K, Marshall D, ACCV 2020

The previous chapter demonstrated how the Poisson-binomial counting loss func-
tion can be applied to enforce sparsity constraints in an end-to-end manner. This
direct integration of prediction sparsity in the learning process was shown to
constrain models to directly infer a sparse set of predictions, thereby alleviating
the need for any post-processing operations.

In this chapter, the sparsity-inducing ability of Poisson-binomial counting is
applied to the domain of computer vision and, more specifically, to the problem
of multi-instance sub-pixel point localization (i.e., estimating the coordinates
of multiple point objects with precision beyond pixel accuracy) In fact, post-
processing operations such as non-maximum suppression (NMS) are a ubiquitous
solution to obtain final sparse predictions in many computer vision applications.
However, the common inability to integrate these non-differential heuristics directly
into the training process (with the notable exception of Henderson & Ferrari (2016)
and Hosang et al. (2017), see discussion in Section 7.3) can be highly detrimental
to the learning of complex high-precision tasks such as sub-pixel localization.
In contrast, this chapter highlights once again how instance counting—as a
regularization to a novel loss function designed to learn sub-pixel localization—can
by itself ensure that models directly infer multiple clear-cut and unambiguous point
estimates. This end-to-end learning of sparse sub-pixel localization alleviates the
need for any post-processing, and thus inherently increases the spatial precision of
the learned predictions—sometimes far beyond pixel precision—as demonstrated
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by the experiments on single-molecule localization microscopy, checkerboard
corner detection, and even sub-frame event detection in sports videos conducted
in Section 6.4.

Sparsity considerations aside, this chapter also shows how regularizing the training
with the Poisson-binomial counting loss function can lead to improved convergence
speed.

6.1 Introduction

Sub-pixel point localization (e.g., sub-pixel detection of molecule locations in
diffraction-limited microscopy images) is a challenging task that is characterized
by the discrepancy between the precision required of the point predictions and the
granularity of the input image. In this context, the standard paradigm (Tompson
et al., 2015; Newell et al., 2016; Wei et al., 2016; Xiao et al., 2018; Merget et al.,
2018) of operating directly on the discrete space defined by the pixel locations (e.g.,
discrete heatmap-matching), and thus of coupling the precision of the detections
to the input resolution, is trivially not sufficient to infer point detections beyond
pixel precision.

Several methods have thus emerged to extend the classical discrete setup to allow
for sub-pixel capabilities (Papandreou et al., 2017; Neumann & Vedaldi, 2018;
Nibali et al., 2018; Sun et al., 2018; Fieraru et al., 2018; Graving et al., 2019;
Luvizon et al., 2019; Tai et al., 2019; Zhang et al., 2020). The majority of these
approaches, however, work on the assumption that there is exactly one instance
per object class. By restricting the setup to single instance localization, the
point location can be inferred, for example, through continuous spatial density
estimation (Neumann & Vedaldi, 2018), weighted integration (Nibali et al., 2018;
Sun et al., 2018; Luvizon et al., 2019), or displacement field estimation (Pa-
pandreou et al., 2017). These methods find direct application in human pose
estimation (Tompson et al., 2015; Newell et al., 2016; Wei et al., 2016; Xiao
et al., 2018) and facial landmark detection (Merget et al., 2018; Yang et al., 2017),
where the single instance assumption is fulfilled through image cropping and
assigning each landmark to a different prediction class. However, the uniqueness
assumption they rely on is often too constraining in other scenarios, especially in
multi-instance sub-pixel localization.
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Prediction

(a)

(b)(c)

Figure 6.1: Model overview. (a) The model infers numerous point predictions
through dense offset regression. (b) The point estimates are compared to the
label locations through continuous heatmap-matching. (c) The predicted count
is compared against the number of labeled objects (count-regularization). As
the heatmaps are never explicitly determined, the loss is computed with infinite
spatial resolution.

In practice, multi-instance sub-pixel point localization is relevant to various fields.
For instance, in single-molecule localization microscopy (Sage et al., 2015; Nehme
et al., 2018), a precise and useful account of molecule locations requires sub-
pixel localization capabilities, as the resolution of the input image is limited
by inherent sensor properties (e.g., diffraction-limited systems (Born & Wolf,
1997)). Additionally, as hundreds of molecules can emit light at the same time,
successful models have to be able to detect multiple instances in dense settings
(i.e., potentially more than one instance per pixel). In camera calibration, an
accurate estimation of the camera parameters requires an extremely precise
checkerboard corner detector (Placht et al., 2014; Hu et al., 2019). Thus, the
ability to infer multi-instance sub-pixel corner locations is especially relevant to
the effective calibration of low-resolution cameras. In these two examples, the
instance uniqueness assumption does not hold, and thus the problem calls for
the development of models that are able to detect and disentangle, with great
precision, the locations of multiple objects (of the same class), which might even
lie within the same pixel.
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In this chapter, we introduce a novel model that learns—in an end-to-end fashion—
to directly output one single clear-cut and spatially precise point estimate in R2

per point label. More precisely, the model infers point localizations through
dense offset regression (comparable to (Neumann & Vedaldi, 2018; Papandreou
et al., 2017)) and is trained using a novel loss function based on a continuous
generalization of heatmap-matching, which helps bypass any issue induced by
space discretization (see Section 6.3.2). Similar to Section 5.5.2, we further ensure
that the model learns to output a unique high probability point estimate per
point label through counting-based sparsity regularization (see Section 6.3.3).
(See Figure 6.1 for an overview of the model.) Overall, by obviating the need for
post-processing operations such as non-maximum suppression (Papandreou et al.,
2017) or maxima refinement (Graving et al., 2019) which are set to deteriorate
the accuracy of the predictions (see Section 6.3.3) and by inferring spatially
unambiguous point predictions, our approach offers an effective solution to the
challenging problem of multi-instance sub-pixel localization.

6.2 Related Works

Methods for sub-pixel point detection can be classified into three categories:
upsampling-based, refinement-based, and regression-based approaches.

Upsampling-based Approaches

The standard paradigm of first transforming the point detection problem into a
heatmap prediction problem (e.g., (Tompson et al., 2015; Merget et al., 2018))
before estimating point locations from the maxima of the discrete prediction
heatmap (Li et al., 2020; Tompson et al., 2014) is not well-suited for sub-pixel
applications. Indeed, the precision of these models is inherently limited to pixel
accuracy. Several works achieve sub-pixel accuracy in this setting by simply infer-
ring finer-grained discrete heatmaps through explicit upsampling. This artificial
increase in resolution can be implemented in several ways ranging from a naïve
upsampling of the input image (Nehme et al., 2018) to a sophisticated upsampling
of the prediction map itself with a trained refinement network (Hu et al., 2019).
While this process enables sub-pixel predictions with respect to the original image
resolution, it suffers from two drawbacks: first, the estimates are still constrained
to pixel locations in the upsampled space, and thus the precision of the predictions
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Table 6.1: Characteristics of related works in multi-instance and sub-pixel point
localization. No prior work allows for an end-to-end learning of point localization
in dense multi-instance settings without the use of spatial upsampling. SP: sub-
pixel capabilities, MI: multi-instance ability, DS: suitable for dense settings, NP:
no post-processing required, and NU: no explicit upsampling needed.

SP MI DS NP NU

Discrete Heatmap-matching 3 3

+ Refinement (Graving et al., 2019; Zhang et al., 2020; Yang et al., 2017) 3 3 (3) 3

ChArUcoNet (Hu et al., 2019) 3 3 3

Deep-Storm (Nehme et al., 2018) 3 3 (3) 3

Tiny People Pose (Neumann & Vedaldi, 2018) 3 3 3

Fractional Heatmap Reg. (Tai et al., 2019) 3 3 3

Global Regression (Toshev & Szegedy, 2014; Carreira et al., 2016) 3 (3) 3 3

Offset Regression (Fieraru et al., 2018; Zhou et al., 2019) 3 3 (3) 3

G-RMI (Papandreou et al., 2017) 3 3 3

Integral Pose Reg. (Nibali et al., 2018; Sun et al., 2018; Luvizon et al., 2019) 3 3 3

Ours 3 3 3 3 3

is directly bounded by the amount of upsampling performed; secondly, the ex-
plicit upsampling of the visual representations significantly increases the memory
requirement. In addition, as these approaches lack the ability to precisely detect
multiple instances per pixel, they need to resort to large upsampling factors to
deal with dense multi-instance applications such as single-molecule localization
microscopy—exacerbating the issue of computational complexity.

Refinement-based Approaches

Instead of resorting to upsampling to obtain finer-grained discrete grids, other
works propose first inferring heatmaps on coarser resolutions, before refining the
estimates of the maxima locations to obtain predictions in R2 (Graving et al.,
2019; Zhang et al., 2020; Yang et al., 2017; Donné et al., 2016). For instance,
Graving et al. (2019) use Fourier-based convolutions to align a 2D continuous
Gaussian filter with the discrete predicted heatmap, while Zhang et al. (2020)
estimate the maxima (in R2) through log-likelihood optimization. However, while
they can be deployed on top of any state-of-the-art discrete models, refinement-
based methods introduce a clear disparity between the optimization objective
(heatmap estimation) and the overall goal of the pipeline (sub-pixel localization).
Consequently, as the refinement operation is not part of the optimization loop (i.e.,



112 6.2. Related Works

the backpropagation does not take these operations into account), the learning
of sub-pixel localization is not achieved in an end-to-end fashion which leads to
suboptimal results.

Regression-based Approaches

In contrast to heatmap-matching, regression models can infer continuous loca-
tions without resorting to intermediate discretized representations. The most
trivial approach consists in directly regressing the coordinates of the points of
interest (Toshev & Szegedy, 2014; Carreira et al., 2016). However, this simple
method suffers from several drawbacks (e.g., no translational invariance to the
detriment of generalization capabilities and the number of points to detect has to
be rigidly set in the model architecture). In contrast, offset regression models (Liu
et al., 2016; Redmon et al., 2016) first subdivide the input space into a grid of
smaller sub-regions, before inferring relative object coordinates and class prob-
abilities within each region via regression. While originally proposed for object
detection, this approach has also seen applications in point detection (Fieraru
et al., 2018; Zhou et al., 2019; Vahdat, 2017), with the specificity that classifica-
tion probabilities are commonly assigned through heatmap-matching. However,
despite their ability to infer predictions in the continuous space and to leverage
local features more efficiently than their global counterparts, these models often
rely on loss functions that are highly discontinuous at the edges of the grid cells
((Vahdat, 2017) is a noticeable exception). Thus, in order to alleviate the discon-
tinuity issues, large grid cells often have to be considered which is reminiscent
of global coordinates regression models and their inherent drawbacks. More
importantly, these methods often have to rely heavily on NMS to obtain sparse
predictions, thus breaking the end-to-end learning of point localization. Both of
these features are detrimental to the overall precision of the point estimates, and
by extension, to the sub-pixel localization capabilities of these models, especially
in multi-instance settings.

In this chapter, we make use of both the continuous prediction ability of offset
regression and the finer-grained spatial learning capabilities of heatmap-matching-
based learning to achieve precise multi-instance sub-pixel point localization.
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6.3 Our End-to-end Sub-pixel Point Detection Model

We propose to tackle multi-instance sub-resolution point localization through
dense offset prediction, continuous heatmap-matching-based learning, and instance
counting regularization. An overview of the model is given in Figure 6.1.

6.3.1 Dense offset prediction

As in standard offset regression (Liu et al., 2016; Redmon et al., 2016), we pro-
pose to train a model to infer, for each pixel of the final representation, n tuples
(∆̂x, ∆̂y, p̂) with coordinate offsets ∆̂x, ∆̂y∈ [−1

2 ,
1
2 ] and class probabilities p ∈ [0, 1]d,

where d is the number of classes. In contrast to standard approaches, the loss
introduced in this chapter (see Equation 6.3) does not present any discontinuity
at the sub-regions borders, and thus does not explicitly require the resolution of
the input image to be downsampled before the loss computation. As a result, a
one-to-one correspondence between the pixels in the final representation and the
pixels in the input image can be exploited, which makes it possible to infer a set
of n tuples (∆̂x, ∆̂y, p̂) for each pixel in the input image—even smaller granularity
can be considered. More specifically, the model f̂θ maps any given input image X

of size (w×h) to a dense ensemble of N :=n·w·h points (x̂, ŷ, p̂), where the point
coordinates x̂ and ŷ are equal to the sum of the continuous offsets predictions
∆̂x, ∆̂y and the respective pixel center locations (x̄, ȳ), namely

f̂θ(X)=
{

(x̂, ŷ, p̂)(i) | i≤N
}

=
{(
x̄(j,k)+∆̂x

(j,k,l), ȳ(j,k)+∆̂y
(j,k,l), p̂(j,k,l)

)
|j≤w, k≤h, l≤n

}
=: Pθ.

(6.1)

Overall, this mapping offers a full and fine-grained coverage of the original image
space, and thus makes the precise prediction of multiple point locations in R2

possible, thereby unlocking multi-instance sub-pixel capabilities. Indeed, the
object locations (x̂, ŷ) can lie anywhere in R2, in contrast to standard point
detection models (Tompson et al., 2015; Newell et al., 2016; Yang et al., 2017;
Bulat & Tzimiropoulos, 2016; Pfister et al., 2015) where point locations are limited
to the discrete grid defined by the input pixels. Similarly, the true point labels
are not discretized, i.e., L := {(x, y)j∈R2 | j≤M}, with M the number of labels
in an image. Since such dense oversampling of point predictions is not suitable
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for classical offset regression loss functions (Redmon & Farhadi, 2018), a novel
flexible loss function has to be introduced.

Remark

The points (x̂, ŷ, p̂)∈Pθ outputted by the model correspond to the final point
localization estimates (see Section 6.3.3 for details on how the model converges
almost all instance probabilities to zero, thus turning the dense set of predictions
into a sparse one) and not to intermediate representations that span a density—or
a heatmap—as in (Tompson et al., 2015; Neumann & Vedaldi, 2018; Yang et al.,
2017; Bulat & Tzimiropoulos, 2016; Pfister et al., 2015) or that require extensive
post-processing as in (Papandreou et al., 2017).

6.3.2 Continuous Heatmap-Matching

In order to estimate the model parameters θ through backpropagation, the model
predictions Pθ and the ground-truth labels L have to be compared using a
sensible and differentiable measure. To that end, we propose a novel continuous
generalization of the standard discrete heatmap-matching paradigm (Tompson
et al., 2015; Yang et al., 2017; Bulat & Tzimiropoulos, 2016) that effectively solves
the problems inherent to classical offset regression loss functions while retaining
their continuous localization learning ability. First, the point predictions Pθ and
point labels L are mapped to continuous heatmaps using a Gaussian kernel K
with smoothing parameter λ (similar to Gaussian mixture). Thus, the value of the
continuous prediction heatmap (induced by Pθ) at any given point (x0, y0)∈R2 is
equal—up to a normalization factor—to

Ĥ(x0, y0 |Pθ) =

N∑
i

p̂iK(x̂i, ŷi, xo, yo) =
∑
i

p̂i exp

(
−(x̂i−x0)2

λ2
− (ŷi−y0)2

λ2

)
,

(6.2)

where, to simplify notation, only a single object class is considered (i.e., d=1) as
the generalization for d>1 is trivial.

Classical models explicitly compute and compare (e.g., through an `2-loss) the
discrete label heatmap obtained through the smoothing of the point labels and
the discrete prediction heatmap inferred by the model. As a result, the heatmap
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comparison becomes gradually more approximate as lower-resolution inputs are
considered, which inevitably has a detrimental effect on the sub-pixel learning
capability. In contrast, we propose to directly compute analytically the difference
between the continuous label and prediction heatmaps induced by the point labels
and predictions. More precisely, we propose the integrated local squared distance
between the two planes as loss function for the learning of point localization:

LHM(Pθ,L) =

∫∫
R2

[
H(x0, y0 |L)− Ĥ(x0, y0 |Pθ)

]2
dx0dy0

=

∫∫
R2

[∑
j

exp

(
−(xj − x0)2

λ2
− (yj − y0)2

λ2

)
−
∑
i

p̂i exp

(
−(x̂i − x0)2

λ2
− (ŷi − y0)2

λ2

)]2

dx0dy0.

(6.3)

Performing integration over the entire R2 space, rather than over the image domain
only, helps avoid special treatment of points at image boundaries.

Overall, since the heatmaps are never explicitly computed, their comparison is
performed with infinite spatial resolution, thus alleviating the issues arising from
space discretization. Moreover, as the computation of the heatmap comparison is
exact regardless of the resolution of the input image, the smoothing bandwidth λ
can be selected as tight as needed without any loss of information. This allows
for a more precise learning of localization, and thus increased sub-pixel detection
capabilities.

Closed-form Loss Computation

A closed-form solution of the loss function (Equation 6.3) can be derived (see Ap-
pendix C.1) by successively using the distributivity property, Fubini’s theorem,
and the limits of the Gaussian error function:

LHM(P,L) =
∑
i

∑
j

πλ2

2
exp

(
−(xi − xj)2 + (yi − yj)2

2λ2

)
+
∑
i

∑
j

p̂ip̂j
πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)
− 2

∑
i

∑
j

p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)
.

(6.4)
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This equation enables the straightforward computation of the partial derivatives
of the loss function with respect to the class probability predictions and the
location estimates used for backpropagation, see Appendix C.1 for formulas and
derivations.

Remark

While the use of dense offset regression in conjunction with Gaussian mixtures is
reminiscent of (Papandreou et al., 2017; Neumann & Vedaldi, 2018), our model
significantly differs in the nature of the predictions it infers. Indeed, previous
works have as underlying objective the explicit estimation of prediction heatmaps.
For instance, the dense point predictions in (Neumann & Vedaldi, 2018) are used
to estimate a continuous density, which in turn is used to infer the final point
locations. Thus, similarly to the classical heatmap-matching approaches, the
density—or heatmap—is the target of the learning and not the localization itself.
In contrast, the points outputted by our model directly correspond to the final
point predictions; the heatmaps are not a goal in themselves but are rather used
as building blocks of our loss function to assess the quality of the predictions.
Consequently, in our framework, the final point predictions are an integral part of
the optimization loop which allows for the end-to-end learning of multi-instance
sub-pixel point localization.

6.3.3 Detection Sparsity through Counting Regularization

Detection sparsity (i.e., obtaining one clear-cut non-ambiguous point estimate per
label) is a critical issue in dense multi-instance sub-pixel localization applications.
Indeed, relying on post-processing operations such as NMS to map a set of ambigu-
ous estimates to clear-cut predictions is not suitable in this setting: for instance,
in dense setups, two predictions made within the same pixel may correspond to
two distinct ground-truth point locations, and thus should not necessarily be
merged into a single prediction. Additionally, systematically combining several
low-probability predictions into a single high-probability point estimate is far
from optimal as it inevitably has a negative impact on the spatial precision of the
predictions and, by extension, the model sub-pixel capability.
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Figure 6.2: Prediction sparsity through counting regularization. Gradients of
the loss function with respect to instance probabilities p1, p2 for the situations
described in the example of Section 6.3.3.

Counting Regularization

The continuous heatmap-matching loss function LHM does not guarantee detection
sparsity on its own; indeed, splitting a point prediction (x̂, ŷ, p̂) into two point
predictions with half probability each (x̂, ŷ, p̂/2) has no effect on the loss. To
remedy this issue without resorting to ineffective post-processing operations, we
propose—as done in Section 5.5.2—adding the sparsity-inducing Poisson-binomial
loss function (Equation 2.9) as a regularizer to the training objective; in this
way, clear-cut and precise predictions can be learned and inferred in an end-to-
end fashion:

LCount(θ) = DKL(1c‖
∑

iB(p̂i))

= − log
(

Pr
(
Ĉθ = c | X

))
= − log

(∑
A∈F

∏
i∈A

p̂i
∏
j∈Ac

(1− p̂j)
)
,

(6.5)

where, once again F is the set of all subsets of {1, . . . , |p̂|} of size c= |L|. Thus,
while the heatmap-matching loss LHM does not ensure prediction sparsity (e.g.,
it does not penalize the splitting of predictions into several lower-likelihood ones),
this regularizer does (see Chapter 3).
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6.3.4 Benefits of Counting Regularization

In this section, we present a few examples that illustrate more precisely the
usefulness of the proposed counting regularization on the learning process.

Prediction Sparsity

As an illustration of the sparsity-inducing effect of the regularization, let us
consider a unique object at location (x, y) and two point predictions, at the same
coordinates: (x, y, p̂1) and (x, y, p̂2). This setup describes a situation where the
predictions are perfectly aligned spatially with the ground-truth, but where the
instance probability still needs to be fine-tuned.

Without Regularization In this scenario, the heatmap-matching loss function
is proportional to

LHM(Pθ,L) ∝ 1 + 2p̂1p̂2 + p̂2
1 + p̂2

2 − 2p̂1 − 2p̂2

= (p̂1 + p̂2 − 1)2.
(6.6)

and is thus minimized when if and only if

p̂1 + p̂2 = 1. (6.7)

This result is trivial when considering that the loss is defined as the integrated
squared difference between sums of Gaussians. However, it confirms that all
combinations of p̂1 and p̂2 that satisfy this condition are stable solutions to the
unregularized optimization problem.

With Regularization In contrast, when incorporating the counting regular-
ization, the loss function is proportional to

L ∝ (p̂1 + p̂2 − 1)2 − β log (p̂1(1− p̂2) + p̂2(1− p̂1))︸ ︷︷ ︸
LMC

. (6.8)

Figure 6.2 shows the value of the gradients of the loss function (with and without
regularization) with respect to probability estimates p̂1 and p̂2. These results
are strongly reminiscent of the ones presented for the simple example derived
in Section 3.1.2. Indeed, Figure 6.2 confirms that, without regularization, the
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optimization problem can have as a stable solution any combination of p̂1 and
p̂2 which satisfies p̂1+p̂2 =1. In contrast, these results demonstrate, once again,
that the Poisson-binomial counting encourages the convergence of the predictions
towards sparsity; indeed, only (p̂1, p̂2) = (1, 0) or (p̂1, p̂2) = (0, 1) are stable
solutions to the regularized optimization problem.

Faster Location Convergence

Let us now consider a unique object in 1-dimension at location (x) and two point
predictions (x̂1 =x−∆, p̂) and (x̂2 =x+∆, p̂). This setup describes a situation
where two predictions are equidistant from the ground-truth.

Without Regularization In this scenario, the optimal probability estimate
p̂—when considering only the heatmap-matching loss function as a training
objective—is

∂

∂p̂
LHM(Pθ,L) = πλ2p̂opt exp

(
−4∆2

2λ2

)
+ πλ2p̂opt − πλ2 exp

(
−∆2

2λ2

)
= 0

⇔ p̂opt

(
exp

(
−4∆2

2λ2

)
+ 1

)
= exp

(
−∆2

2λ2

)
⇔ p̂opt = exp

(
−∆2

2λ2

)
/

(
exp

(
−4∆2

2λ2

)
+ 1

)
.

(6.9)

With Regularization Similarly, the optimal probability estimate p̂—when
integrating the counting regularization to the training objective—is given by the
following equation:

∂

∂p̂
{LHM(Pθ,L) + βLMC(Pθ,L)}

= πλ2p̂opt exp

(
−4∆2

2λ2

)
+ πλ2p̂opt − πλ2 exp

(
−∆2

2λ2

)
− β 1− 2p̂opt

(p̂opt − 1)p̂opt︸ ︷︷ ︸
∂
∂p̂

LMC

= 0

⇔ p̂opt exp

(
−4∆2

2λ2

)
+ p̂opt − exp

(
−∆2

2λ2

)
− β̃ 1− 2p̂opt

(p̂opt − 1)p̂opt
= 0

p̂opt 6=0,1⇔ p̂opt(p̂opt − 1)

[
p̂opt exp

(
−4∆2

2λ2

)
+ p̂opt − exp

(
−∆2

2λ2

)]
− β̃(1− 2p̂opt) = 0,

(6.10)
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which can easily be solved using a standard root-finding algorithm (e.g., Brent’s
method (Brent, 1973)).

In addition, the location gradient—the partial derivative of the loss with respect
to the location x, assuming p̂ = p̂opt, is

∂

∂x̂2
LHM(Pθ,L) = p̂optπ exp

(
−∆2

2λ2

)
(∆)− p̂2

optπ exp

(
−4∆2

2λ2

)
(2∆) . (6.11)

The location gradient for the regularized optimization problem is identical since the
value of the counting regularization is independent of the instance locations. Thus,
the location gradient, assuming that p̂ is set optimally, can be obtained for both
training situations (with and without regularization) by plugging Equation 6.9 or
the root derived from Equation 6.10 into Equation 6.11.
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Figure 6.3: Location gradient

Figure 6.3 displays the result as a function of ∆ for λ = 1. Above all, this
figure shows that the location gradient becomes slightly larger with increased
regularization. This effect suggests that, in this scenario, the regularization acts
as a means for faster convergence. Indeed, the counting regularization encourages
the learning process to converge the location prediction faster towards the ground-
truth object location. While this effect is hard to quantify in higher dimensions
(i.e., more than two point predictions), the counting regularization is still expected
to improve location convergence in more complex settings.
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(a) Without regularization

(b) With Regularization

Figure 6.4: Impact of counting-based regularization on the convergence of the
continuous heatmap-matching loss function. Final point locations and proba-
bilities (color intensity) after 50K gradient descent iterations for the one-pixel
example. (Best seen in video)

Improved Convergence

In order to assess the impact of the counting regularization on convergence in
higher dimensions, we propose a simple simulation-based experiment. More
precisely, in a single pixel, we place and sample uniformly at random three ground-
truth point locations as well as fifty initial point predictions, where the probability
assigned to each prediction is also sampled uniformly at random. The location
and the probability of the initial predictions are then iteratively updated through
gradient descent using, as cost function, either the heatmap-matching loss function
alone or the regularized version.
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The resulting convergence videos can be downloaded or directly viewed on the
project page1 (see Figure 6.4 for an illustration of the convergence after 50K
iterations). Overall, these videos clearly demonstrate the effect of the counting
regularization on the convergence of the point predictions. Indeed, with reg-
ularization, not only do the predictions converge faster spatially towards the
ground-truth locations, but most importantly their probabilities converge signifi-
cantly faster towards sparsity. In fact, in this example, the predictions resulting
from a regularized optimization fully converge in less than 30K iterations, while
their unregularized counterparts are still scattered around the ground-truth loca-
tion even after 100K iterations. As the regularized optimization produces only
three point predictions with non-zero probability, the inference can be done by
simply outputting the location corresponding to these instances, without the need
for any post-processing. Overall, the faster convergence of both the location and
the probability estimates are expected to have a positive effect on the learning of
sub-pixel point localization in more complex settings.

6.4 Experiments

Code for all experiments is publicly available1.

6.4.1 Single-molecule Localization Microscopy

In this section, we replicate the experiment on molecule localization microscopy
proposed by Nehme et al. (2018). The task consists in determining the localization
of multiple blinking molecules on diffraction-limited images of fluorescent simulated
microtubules. The overall setting is particularly challenging as multiple instances
can fall within the same pixel of the input image, thus requiring precise multi-
instance sub-pixel localization capabilities.

Model and Benchmarks

The model in (Nehme et al., 2018) achieves sub-pixel localization by explicitly
increasing the resolution of each dimension of the input image by a factor 8 (i.e.,
effectively increasing the number of pixels by 8× 8 = 64) before inferring a single

1https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization

https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization
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Figure 6.5: Model predictions for multi-instance sub-pixel molecule localization.
No non-maximum suppression was performed on our predictions, our model learns
to directly infer sparse point predictions as a result of the counting regularization.
The color intensity of the predictions is proportional to the probability estimate.

localization probability for each pixel of the upsampled input (referred to as Deep-

Storm). By keeping the architecture as suggested in (Nehme et al., 2018) and
replacing the loss with a classical discrete heatmap-matching approach, we obtain
a benchmark reminiscent of upsampling-based heatmap-matching (referred to
as Upsampling). As the input image is subject to high levels of upsampling, the
model architecture relies on a series of downsampling layers followed by a series
of upsampling layers to obtain a wide enough receptive field. In contrast, since
our approach decouples the resolution of the input image from the resolution of
the predictions and thereby obviates the need for upsampling, these layers are
not needed to learn meaningful representations; our method can directly operate
on the original images instead and infer n=2 points (i.e., n tuples of offsets and
probabilities) for each pixel. (In our model, a point with probability greater than
0.3 is considered a detection.)

Evaluation and Results

All models are trained with the data provided by Nehme et al. (2018) and tested
on the fluorescent simulated microtubules from Sage et al. (2015). The Jaccard
index—a standard metric of set similarity—is computed with the tool provided
by Sage et al. (2015) using various tolerances τ . Table 6.2 reveals that our
approach not only displays the best overall performance on this experiment, but
also achieves fast inference as it can perform precise multi-instance sub-pixel
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Table 6.2: Single-molecule localization microscopy results. Comparison of various
methods on the sub-pixel single-molecule localization experiment (Nehme et al.,
2018). The Jaccard index [and F1 score] is computed with the software provided
by Sage et al. (2015).

.

Method

Deep-Storm
Upsampling
Refinement

Ours

Jaccard Index [F1]

τ = 25nm τ = 50nm

0.153 [0.266] 0.416 [0.588]
0.171 [0.292] 0.448 [0.618]
0.195 [0.326] 0.448 [0.619]

0.221 [0.361] 0.482 [0.650]

Inference Speed

time/image

17.44 ms
17.44 ms
0.76 ms

0.76 ms

localization using the original input resolution without the need for any explicit
upsampling. This outcome can partially be attributed to our approach’s ability
to infer sparse clear-cut point estimates without requiring any additional post-
processing, see Figure 6.5. The overall rendering of a test image of microtubules
provided by Sage et al. (Sage et al., 2015) is presented in Figure 6.6, see (Nehme
et al., 2018) for details.

Stacked Input

Stacked Predictions(a) Stacked input of diffraction-
limited images.

Stacked Input

Stacked Predictions(b) Stacked molecule locations in-
ferred by our model.

Figure 6.6: Rendering of test microtubules using our model.

Ablation Study

We replicate the same experiment with various forms of regularization to assess
the impact of count supervision on the performance of our model. Table 6.3 shows
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Table 6.3: Regularization ablation study on the single molecule localization
microscopy experiment.

.

Regularization

None
l1 (as in (Nehme et al., 2018))

Counting (LCount)

Jaccard

τ=25nm 50nm

0.211 0.456
0.208 0.454

0.221 0.482

that the theoretical benefits of count-based regularization directly translate to
improved sub-pixel molecule localization capabilities in practice.

Training with the counting-based regularization leads to faster convergence (see
Section 6.3.4). Thus, in order to assess whether the performance gap between
the different regularization methods is due to the selected number of training
steps (i.e., 50k)—and thus can simply be explained by a slower convergence—we
evaluate the performance of the model without regularization when training for a
longer time.

Overall, training longer does not increase the sub-pixel detection capabilities of
the non-regularized model. Indeed the performance is 0.203/0.439, 0.207/0.439,
and 0.202/0.435 (τ = 25nm/τ = 50nm) after training for 100k, 250k, and 500k
iterations respectively. While this observation is the result of a single run, the
number of training iterations does certainly not explain the performance gap on
its own. This experiment therefore suggests that counting-based regularization
presents more benefits than just convergence speed.

Sensitivity to Smoothing Parameter λ

In order to assess the sensitivity of the results to changes in the model softness
parameter λ, we replicate the single-molecule localization microscopy experiments
with a wide array of potential λ values. The results—reported in Table 6.4—
highlight the remarkable robustness of the model to changes in this key hyperpa-
rameter. Indeed, the model achieves highly consistent results with near-constant
performance metrics for λ between 0.2 and 0.8. Thus, the model’s success is
almost independent of the value of this hyperparameter.
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Table 6.4: Single-molecule localization microscopy λ-sensitivity analysis based
on the experiment proposed in (Nehme et al., 2018). The Jaccard index [and F1

score] is computed with the software from (Sage et al., 2015). The setting λ = 0.2

is the one reported—without any hyperparameter optimization—as Ours in this
section (see ↓↓↓).

Tol.

.

τ = 25nm
τ = 50nm

Jaccard Index

λ=0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.2 2.0

0.219 0.234 0.233 0.229 0.226 0.234 0.234 0.219 0.208
0.464 0.517 0.519 0.519 0.524 0.531 0.526 0.453 0.410

↓↓↓

This range of suitable smoothing parameters is intuitive. On the one hand, this
key hyperparameter has to be set high enough in order to allow for an effective
gradient-based optimization of the loss. Indeed, in the most extreme case where
λ→0, the loss function is non-differentiable with zero gradients almost everywhere.
While any value greater than zero yields theoretically a differentiable loss, selecting
a λ that is too small leads to extreme gradients near the point labels and near-zero
gradients everywhere else—which is suboptimal for training. In this context, a
smoothing parameter smaller than 0.2 times the size of pixel might lead to such
optimization issues. On the other hand, λ has to be set small enough in order for
the loss function to convey enough information about the exact location of the
labels. Indeed, in the most extreme case where λ→∞, all the information about
the location of the labels gets lost. Thus, in a context that requires extremely
precise sub-pixel location estimates (i.e., error tolerance set to 0.25 times the size
of a pixel), a smoothing parameter λ smaller than 1 ensures a fine-grained enough
location supervision.

6.4.2 Checkerboard Corner Detection

The precise detection of corners in checkerboards is a key component of camera
calibration. This challenging task requires the predictions to lie within a fraction
of a pixel of the ground-truth in order to be of practical use. In this section, we
compare the sub-pixel localization capabilities of our method and other learning-
based approaches with state-of-the-art classical local feature-based methods that
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(480× 380) (240× 190)

(120× 95) All Relative Localization

(240× 190) predictions
(120× 95) predictions
(480× 380) centered predictions

Original Pixel Size

Figure 6.7: Corner detection across different resolutions. The low-resolution
location estimates stay well within half a pixel of the original predictions, which
corresponds to 1/8 of a pixel in the lowest resolution.

are specifically tailored to the sub-pixel detection of such corners (Placht et al.,
2014; Duda & Frese, 2018; Sinzinger, 2008).

Training Data

To train the various learning-based models, we generate a synthetic dataset com-
posed of 20k checkerboard images. This not only allows us to automatically
simulate numerous transformations (lens distortions, lighting variations, perspec-
tive transformations, noise) in a controllable manner, but most importantly gives
us an exact account of the ground-truth corner locations, as opposed to human-
annotated datasets that are inherently prone to inaccuracies. More details about
the dataset generation process are included in Appendix C.2.2.

Model Architecture

In line with previous checkerboard corner detection methods (Donné et al., 2016;
Chen et al., 2018), a “shallow” architecture comprised of only three convolutional
layers—with 32, 32 and 64 filters respectively—is considered for all learning-based
models, including ours. For faster training, two downsampling convolutional layers,
with stride 2, are added to our model, after both the first and second convolutional
layers. This modification merely enables our model to assign probabilities and
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Table 6.5: Full results of localization performance in low-resolution settings
on the GoPro dataset (Placht et al., 2014). Consistency: mean-absolute displace-
ment (and 90th quantile) between predictions on high and low-resolution images
downsampled by a factor δ. Reprojection Error: corresponding errors in corner
reprojection [and number of fully detected boards]. In units of original pixel size.
.

Methods

C
la

ss
ic OCamCalib (Scaramuzza et al., 2006)

Rochade (Placht et al., 2014)
OpenCV (Bradski, 2000)
MATLAB (Geiger et al., 2012)

L
ea

rn
. DL-Heatmap (sim. (Donné et al., 2016))

+ Refinement (sim. (Graving et al., 2019))

OURS

Consistency

δ = 2 4 6

0.660 (1.12) 1.389 (2.50) 1.989 (3.61)
0.380 (0.67) 0.467 (0.81) 1.125 (2.07)
0.111 (0.20) 0.179 (0.31) 0.336 (0.50)
0.129 (0.20) 0.198 (0.32) 0.314 (0.50)

0.900 (1.41) 1.629 (2.24) 2.395 (3.61)
0.153 (0.28) 0.279 (0.50) 0.428 (0.76)

0.133 (0.24) 0.244 (0.43) 0.378 (0.66)

.

Methods

C
la

ss
ic OCamCalib (Scaramuzza et al., 2006)

Rochade (Placht et al., 2014)
OpenCV (Bradski, 2000)
MATLAB (Geiger et al., 2012)

L
ea

rn
. DL-Heatmap (sim. (Donné et al., 2016))

+ Refinement (sim. (Graving et al., 2019))

OURS

Reprojection Error

δ = 2 4 6

0.107 [100] 0.390 [73] [18]
0.085 [100] 0.321 [100] 1.716 [71]
0.045 [100] 0.256 [98] 0.994 [73]
0.045 [99] 0.205 [100] 0.325 [100]

0.146 [100] 0.363 [100] 0.797 [77]
0.054 [100] 0.336 [100] 0.531 [100]

0.046 [100] 0.198 [82] 0.417 [100]

offsets to bigger regions of 4×4 pixels rather than to each pixel of the original input.
In contrast, no downsampling could be performed on all other learning-based
benchmarks, as it would only deteriorate the precision of their predictions.

Baselines

The following classical baselines are considered: OCamCalib (Scaramuzza et al.,
2006), ROCHADE (Placht et al., 2014), OpenCV (Bradski, 2000), and MAT-
LAB (Geiger et al., 2012). We also include three learning-based benchmarks
which use the model architecture described above and are trained on our syn-
thetic dataset: standard discrete heatmap-matching with naïve argmax maximum
picking (similar to (Donné et al., 2016; Chen et al., 2018)), heatmap-matching
with local refinement through Gaussian distribution fitting (comparable to stan-
dard refinement-based approaches (Graving et al., 2019)), and higher resolution
heatmap-matching where the input images are explicitly upsampled with a factor 8
(similar to (Nehme et al., 2018)).
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Table 6.6: Full results of localization performance in low-resolution settings on the
uEye dataset (Placht et al., 2014). Consistency: mean-absolute displacement (and
90th quantile) between predictions on high and low-resolution images downsampled
by a factor δ. Reprojection Error: corresponding errors in corner reprojection
[and number of fully detected boards]. In units of original pixel size.

.

Methods

C
la

ss
ic OCamCalib (Scaramuzza et al., 2006)

Rochade (Placht et al., 2014)
OpenCV (Bradski, 2000)
MATLAB (Geiger et al., 2012)

L
ea

rn
. DL-Heatmap (sim. (Donné et al., 2016))

+ Refinement (sim. (Graving et al., 2019))

OURS

Consistency

δ = 2 4

0.783 (1.58) 1.447 (2.92)
0.176 (0.29) 0.587 (1.05)
0.126 (0.21) 0.889 (2.66)
0.090 (0.15) 0.174 (0.29)

0.955 (1.41) 1.666 (2.24)
0.077 (0.14) 0.562 (1.20)

0.134 (0.23) 0.348 (0.64)

.

Methods

C
la

ss
ic OCamCalib (Scaramuzza et al., 2006)

Rochade (Placht et al., 2014)
OpenCV (Bradski, 2000)
MATLAB (Geiger et al., 2012)

L
ea

rn
. DL-Heatmap (sim. (Donné et al., 2016))

+ Refinement (sim. (Graving et al., 2019))

OURS

Reprojection Error

δ = 2 4

0.129 [200] 0.197 [114]
0.057 [206] 0.107 [197]
0.057 [197] [0]
0.048 [206] 0.059 [204]

0.126 [206] 0.230 [175]
0.052 [206] 0.086 [162]

0.055 [200] 0.073 [187]

Evaluation and Results

We evaluate the methods on the standard uEye and GoPro datasets (Placht
et al., 2014). Since these real-world test datasets do not contain any ground-truth
corner positions, we assess the sub-pixel localization capabilities of the different
approaches both through prediction consistency across resolutions and through
corner reprojection errors. Note that, in these experiments, the upsampling
approach yields representations that are far too large to be supported by standard
GPUs, especially on the GoPro dataset, which illustrates its limits.

First, we measure prediction consistency by comparing the corner localizations
obtained on the original high-resolution images with those obtained on the lower-
resolution inputs downsampled by a factor δ. This experiment thus posits that
a direct correlation exists between a model’s ability to infer consistent sub-
pixel locations and its capacity to output consistent predictions across various
resolutions. The mean absolute displacement and the 90th quantile reported in
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Tables 6.5 and 6.6 show that our approach yields very consistent corner location
estimates (see also Figure 6.7). Overall, this performance demonstrates that our
model is capable of inferring point locations well beyond pixel accuracy.

Second, we compute the reprojection errors—a standard metric in camera calibration—
of the predicted checkerboard corners in low-resolution settings (i.e., input down-
sampled by a factor δ) after performing camera calibration with the standard
OpenCV implementation (Bradski, 2000). Overall, the excellent performance of
our approach on this task (see Tables 6.5 and 6.6), much higher than most classical
state-of-the-art approaches, reveals once again the high sub-pixel capabilities of
our model. (Additional results are included in Appendix C.2.)

In conclusion, our method displays strong overall results for all downsampling levels
and outperforms the other deep learning benchmarks on almost all measures.
More precisely, our approach is only outperformed by the OpenCV (Bradski,
2000)—on specific metrics—and MATLAB (Geiger et al., 2012) implementation.
However, while OpenCV performs slightly better on the consistency measure, its
relatively high number of false positives and false negatives have a clear impact
on its camera calibration performance (i.e., see reprojection error below). Overall,
our approach appears to be extremely suitable for high precision detection and
calibration in low-resolution settings. These results are all the more remarkable
when considering that the learning-based models are trained solely on synthetic
images and that the classical benchmarks are specifically designed for this task
only—they are not portable to other applications in contrast to our approach.

Regularization Ablation Study

As done for the single-molecule localization microscopy experiment, we perform
an ablation study to measure the impact of the counting-based regularization
on the performance of the checkerboard corner detection model. The results—
summarized in Tables 6.7 and 6.8—are in line with the findings of the single-
molecule localization microscopy experiment. Indeed, adding the counting loss
as a regularizer to the soft localization learning loss consistently improves the
performance of the trained model. For instance, there is only one metric on which
the approach without regularization outperforms its regularized counterpart (i.e.,
reprojection error on the GoPro dataset with downsampling factor δ = 4). However,
this unique favorable outcome for the approach without regularization is merely
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Table 6.7: Regularization ablation study for the experiment on the GoPro
dataset (Placht et al., 2014). Consistency: mean-absolute displacement (and
the 90th quantile) between predictions on high and low-resolution images down-
sampled by δ. Reprojection Error: corresponding errors in corner reprojection
[and the number of fully detected boards]. In units of original pixel size.

.

Without Count Regularization
With Count Regularization

Consistency

δ = 2 4 6

0.199 (0.37) 0.369 (0.66) 0.562 (0.99)
0.133 (0.24) 0.244 (0.43) 0.378 (0.66)

.

Without Count Regularization
With Count Regularization

Reprojection Error

δ = 2 4 6

0.052 [100] 0.172 [48] 0.460 [100]
0.046 [100] 0.198 [82] 0.417 [100]

due to the much lower recall it reports; indeed, the metric is thus computed on the
easiest samples only which positively biases the outcome. Overall, counting-based
regularization undoubtedly improves the learning of sub-pixel point localization.

6.4.3 Sub-frame Temporal Event Detection in Videos

As mentioned earlier, the precise temporal localization of point events in sequential
data (i.e., answering the question “when do instantaneous events occur?”) is a
widespread task with applications in numerous fields from accurate audio-to-score
music transcription, to the detection of sports events in videos. In contrast to
action extents prediction, a task that is prone to high levels of temporal ambiguity
(Sigurdsson et al., 2017), instantaneous event detection is characterized by the
sharp temporal accuracy required of the predictions. Indeed, temporal point
predictions often have to fall within a narrow margin of the ground-truth location
to be of any practical use. In recent years, several works have achieved state-of-
the-art results on diverse temporal detection tasks by leveraging the generalization
capabilities of deep neural networks (Hawthorne et al., 2019; Wu et al., 2018;
McNally et al., 2019).

However, these standard approaches, since they perform dense classification on
discrete sequences, limit the potential precision of the prediction to the temporal



132 6.4. Experiments

Table 6.8: Regularization ablation study for the the uEye dataset (Placht et al.,
2014). Consistency: mean-absolute displacement (and the 90th quantile) be-
tween predictions on high and low-resolution images downsampled by a factor δ.
Reprojection Error: corresponding errors in corner reprojection [and the number
of fully detected boards]. In units of original pixel size.

.

Methods

Without Count Regularizer
With Count Regularizer

Consistency

δ = 2 4

0.192 (0.36) 0.501 (0.90)
0.134 (0.23) 0.348 (0.64)

Reprojection Error

δ = 2 4

0.059 [148] 0.085 [137]
0.055 [200] 0.073 [187]

resolution (frame rate) of the input. Thus, millisecond precision can only be
achieved by using data with millisecond temporal resolutions.

In this section, we show that the loss function introduced in Section 6.3.2 can be
leveraged not only for spatial applications, but also for sequential data to achieve
sub-frame temporal detection. Indeed, by inferring event occurrence times directly
in R rather than on a discrete timeline (Hawthorne et al., 2019; Wu et al., 2018;
McNally et al., 2019), our approach decouples the precision of the predictions from
the resolution of the input sequence, and can thus output accurate predictions
without the need for high temporal resolution inputs. This alleviates the need
for high-resolution data collection and processing and significantly reduces the
computational burden.

Experiment Specifications

In this section, we modify the previously introduced experiment (Section 5.6.1)
proposed by McNally et al. (McNally et al., 2019) on golf swing events detection
in videos. In order to evaluate the sub-frame capability of our model and its
ability to infer precise localization in low-resolution settings, we downsample the
training and testing videos with a temporal decimation rate δ. A wide spectrum
of downsampling rates are considered, ranging from the original experiment (δ=1)
to highly downsampled settings where only 1 out of 16 frames of the video samples
are kept (δ=16). Since the tolerance within which a prediction is considered
correct (i.e., ±1 frame of the original resolution) is kept unchanged across all
experiments, the task becomes progressively more challenging as the downsampling
rate δ increases. Indeed, even though the downsampled sequences retain less
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Table 6.9: Golf swing event detection accuracy (within a ±1 frame tolerance)
as a function of the downsampling factor δ. Averages and standard deviations
(in brackets) are reported over 4 folds. The model architecture is from (McNally
et al., 2019). The temporal upsampling is performed using the state-of-the-art
frame interpolation method proposed by (Bao et al., 2019).

Naïve upsampling
Frame interpolation
Prediction upsampling

Ours

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

67.6 (0.8) 68.5 (0.7) 59.8 (1.3) 44.7 (1.0) 23.9 (0.5)
" 67.4 (0.6) 67.1 (0.6) 60.5 (1.3) 41.6 (1.9)
" 69.6 (0.6) 69.9 (0.6) 66.3 (1.1) 57.8 (1.2)

70.9 (1.4) 70.4 (1.2) 70.7 (1.3) 69.8 (1.4) 60.6 (1.6)

and less information, predictions are expected to remain as precise as in higher
resolution settings. (The code from (McNally et al., 2019) was used as is, without
any fine-tuning in all experiments.)

Our Approach

The continuous heatmap-matching loss function (Equation 6.3) can be adapted
for 1-dimensional applications simply by dropping all dependence on y. Thus,
the model is trained to infer, for each timestep in the sequence, temporal offsets
∆x∈ [0, 1] and event occurrence probabilities p∈ [0, 1]d for each event class. Since
our loss is agnostic to the underlying model, it can be directly applied in conjunc-
tion with the architecture proposed in the original paper (McNally et al., 2019).
Once again, we leverage the properties of the counting-based regularization to
achieve prediction sparsity (see Section 6.3.3).

Benchmarks

McNally et al. (2019) leverage the widely used (e.g., (Hawthorne et al., 2019; Wu
et al., 2018)) standard average stepwise cross-entropy as loss function. As this
loss function requires the predictions to be set on a discrete grid, we consider two
different video temporal upsampling regimes to augment the original model with
sub-frame detection capabilities. The first one consists in duplicating each frame of
the input δ times in order to match the original (δ=1) sequence resolution (Naïve
upsampling), while the second leverages the state-of-the-art frame interpolation
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Figure 6.8: Consistency of our temporal point predictions across all resolutions.
The colored triangles represent the predictions for each of the 8 different classes,
while the patches illustrate the tolerance window of 1 frame around the ground-
truth.

method proposed by (Bao et al., 2019) to estimate the δ−1 missing frames
(Frame interpolation). We also consider an additional benchmark that operates
on the downsampled resolution without any explicit input upsampling: instead of
inferring only one event probability per timestep, the model infers δ probabilities,
one for the current timestep and one for each of the δ−1 missing timesteps in an
effort to match the original resolution of the predictions (Prediction upsampling).
This final benchmark is reminiscent of the upsampling-based approach used
in (Nehme et al., 2018; Hu et al., 2019).

Experiment Results

Table 6.9 shows that our approach outperforms the traditional ones for all down-
sampling factors δ; the performance gap becomes even more apparent as the
downsampling rate is increased. For instance, our loss function allows for the
training of a very competitive golf event detector using only 1 out of 8 frames
of the original video (i.e., δ=8). This prediction consistency across the various
downsampling rates for a given test sequence is depicted in Figure 6.8. This figure
confirms, once again, that our approach yields both consistent event location
predictions across all downsampling rates and that, in low-resolution videos, the
model achieves a temporal precision way beyond frame accuracy.

These results overall demonstrate that our proposed approach does not only
achieve precise multi-instance sub-pixel detection accuracy in spatial applica-
tions, but can also be effective for sub-frame temporal event detection. (Note
that additional results with detailed per event class metrics can be found in
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Table 6.10: Ablation study. Golf swing event detection accuracy (within a
±1 frame tolerance) as a function of the decimation factor δ. Averages and
standard deviations (in brackets) are reported over 4 folds. The architecture and
other experiment specifications are from (McNally et al., 2019).

Without Count Regularizer
With Count Regularizer

Diff.

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

69.7 (1.9) 69.3 (1.8) 69.7 (1.0) 68.0 (1.6) 59.3 (0.8)
70.9 (1.4) 70.4 (1.2) 70.7 (1.3) 69.8 (1.4) 60.6 (1.6)

+1.2 +1.1 +1.0 +1.8 +1.6

Appendix C.3.) Additionally, by being able to operate on lower resolution inputs
without any significant performance deterioration, our approach allows for both a
more efficient training and a faster inference, which is key for low-resource and
real-time applications, especially on mobile and embedded devices.

Ablation Study

Table 6.10 reveals that the counting regularization consistently improves the
detection performance of our model on the golf swing event sequencing experiment.
Indeed, training with this regularizer yields at least a 1% improvement in accuracy
on all downsampling levels, when compared to the results obtained when training
with LHM alone. This increase is all the more substantial since the particular
task introduced by McNally et al. (2019) does not necessarily require complex
post-processing operations to be solved successfully. Indeed, the sequences in
the dataset contain exactly one occurrence for each event class (see Section 5.6.1
for more details about the characteristics of the golf video sequencing dataset),
and thus a simple global maximum-picking operation can be used to achieve
detection sparsity since multi-instance detection capabilities are not essential.
Overall, this result highlights that the incorporation of prediction sparsity directly
in the learning process through count-based regularization can further improve
the model even in settings where prediction sparsity is easily achievable.

6.5 Conclusion

In this chapter, we propose dense offset regression, continuous heatmap-matching-
based learning, and instance counting regularization to improve multi-instance
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sub-pixel localization accuracy. The novel localization learning loss function
introduced to that effect—which allows for the end-to-end learning of sub-pixel
point localization—is derived as a continuous generalization of standard heatmap-
matching approaches. The model demonstrates strong performance on molecule
localization microscopy, checkerboard corner detection, and we show how this
paradigm can also be leveraged for sub-frame temporal video event detection.

Most importantly, the experiments and examples of this chapter highlight, once
again, the usefulness of the Poisson-binomial loss function as a means of im-
proving convergence and prediction sparsity. Indeed, similar to the observa-
tions made in the previous chapter, the use of the Poisson-binomial counting-
based regularization—and by extension its unique sparsity-inducing properties—
alleviates the need for sub-optimal post-processing operations, and thus allows for
the fully end-to-end learning of sub-pixel point detection—leading to improved
spatial precision. In addition to sparsity consideration, the regularization is shown
to improve the spatial convergence of the prediction towards the ground-truth
location—inducing further improvements in the spatial precision of the predictions.
Finally, various ablation studies confirm that incorporating the prediction sparsity
objective into the learning process systematically improves sub-pixel localization
capabilities.



Chapter 7

Avenues for Future Research

The previous chapters showed how Poisson-binomial counting-based learning
can be leveraged, among other applications, for weakly-supervised temporal
localization, robust temporal point event detection, and for improved multi-
instance sub-pixel point detection. This list does, however, not constitute a full
account of the potential applications of the proposed framework. Therefore, in
order to better capture the versatility of Poisson-binomial counting, this chapter
presents several additional avenues for future research.

7.1 Semi-Supervised Learning through Counting-based
Consistency Regularization

Unlabeled data, while being easily collectible, are often disregarded in standard
learning pipelines. However, even without containing any labels, unannotated
samples can carry a vast amount of information. For instance, real-life images
are not unstructured compositions of random pixels, but instead are comprised of
coherent visual patterns. Learning these underlying visual structures can already
be a key step towards a finer-grained understanding of image content (Pathak
et al., 2016; Noroozi et al., 2017; Caron et al., 2018; Gidaris et al., 2018).

In contrast to fully-supervised learning—which discards all unlabeled samples—
and unsupervised learning—which only relies on unlabeled data for training,
semi-supervised learning (Chapelle et al., 2006) offers an in-between solution that
not only takes advantage of labeled samples as a fine-grained learning input, but
also utilizes unlabeled data as a rich additional source of information. These models
thus effectively reduce the need for costly annotations, which often constitute the
main bottleneck in the dataset creation process, by allowing to integrate parts of
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the unfathomable amounts of unannotated data that are being generated every
day into the learning process.

This section shows how Poisson-binomial counting can be leveraged, in some
settings, to alleviate some of the weaknesses of consistency regularization—a
state-of-the-art semi-supervised learning approach.

7.1.1 Consistency Regularization

Among the vast literature on semi-supervised learning (Joachims, 2003; Zhu et al.,
2003; Grandvalet & Bengio, 2005; Lee, 2013; Kingma et al., 2014; Oliver et al.,
2018; Berthelot et al., 2019), consistency regularization (Sajjadi et al., 2016;
Laine & Aila, 2017; Oliver et al., 2018; Berthelot et al., 2019) offers a simple, yet
effective, way of integrating unlabeled samples into the training process. Indeed,
by merely requiring the inclusion of a regularization term to the loss function, this
architecture-agnostic approach can augment almost any standard fully-supervised
models with semi-supervised learning capabilities.

In a nutshell, consistency regularization ensures that models output consistent
predictions when stochastic label-invariant perturbations are applied to the input
data. First, in the simplest form of the paradigm (Berthelot et al., 2019), each sam-
ple X is transformed twice independently using a stochastic augmentation function
Ω on it. The most important aspect of the transformation function is that it should
theoretically not affect the predictions of the model (i.e., f̂θ(Ω(X))≈ f̂θ(X)). For
instance, in image classification, the collection of transformations could include
image rotation, color perturbations, or slight cropping since these functions do
not impact the class semantic. Indeed, an upside-down or a grayed-out image of
a cat still represents a cat. As the two perturbed images are known per design
to have the same underlying label, the predictions of the two inputs can then be
compared and used as a consistency regularization. For instance, in classification,
the following consistency loss function is defined (Grandvalet & Bengio, 2005; Lee,
2013): ∥∥∥f̂θ(Ω(X))− f̂θ(Ω(X))

∥∥∥2

2
(7.1)

In contrast to what one might initially assume, this equation does not cancel out
since the transformation Ω is assumed to be stochastic, and thus the perturbed
input Ω(X) is also stochastic. Of course, while variations of this approach exist—
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e.g., (Tarvainen & Valpola, 2017; Miyato et al., 2018), the underlying principle
remains the same.

Consistency regularization methods, therefore, rely on the prior knowledge that
the predictions (e.g., class assignments in classification) are invariant to input per-
turbations to incorporate unlabeled data into the learning process. Indeed, Equa-
tion 7.1 does not require any labels to be computed, and thus can be leveraged
for unannotated samples as well. Overall, these approaches seek to improve the
learning of meaningful representations by encouraging the models to learn these
known underlying invariances from unlabeled samples. Of course, labeled samples
are still extremely important as they ensure that the predictions are correct in
addition to being consistent.

7.1.2 Some Limitations of Consistency Regularization

Consistency regularization relies on the existence of a balanced perturbation
function that produces rich enough input transformations, while retraining the
semantic information that is needed to make a correct prediction. Indeed, on the
one hand, leveraging only mild augmentations (i.e., Ω ≈ id) does not teach any
relevant invariances to the model, and thus makes the use of unlabeled samples
almost pointless. On the other hand, perturbing the input to the point of affecting
the underlying ground-truth can only negatively impact the learning of meaningful
representations.

Depending on the application, defining an effective and rich task-specific augmenta-
tion function Ω is challenging. Indeed, while many class-invariant transformations
exist in the visual domain (e.g., rotation, shifting, and cropping), other finer-
grained tasks present a lower level of invariance. For instance, in object detection,
the position of the bounding-box labels is not invariant to spatial transformations.
The same observation can also be made about the even finer-grained pixel-level
annotations in image segmentation. While heuristics and other color-based pertur-
bations could be leveraged in these examples, the nature of lower-level tasks often
limits the use of a wide range of transformations, and thus makes the consistency
regularization less effective in these finer-grained settings.

Another challenge consists in defining a consistency measure that accurately
reflects the consistency between different predictions. Indeed, while Equation 7.1
is a common choice in classification and regression tasks, other tasks have a
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more complex definition of consistency. For example, in object detection, models
often output several bounding-boxes surrounding the same object. Thus, the
consistency metric should be almost unaffected by which one of these similar
alternatives is ultimately selected as detection. Such a function can, however, be
highly cumbersome to design efficiently. In fact, this feature is often overlooked in
object detection where the standard approach consists in over-sampling the space
with high-likelihood bounding-boxes (Girshick, 2015; Ren et al., 2015; Redmon
et al., 2016; Liu et al., 2016), before selecting a sub-sample of them through
non-maximum suppression or other post-processing operations. The fact that a
two-step process is often preferred over single loss optimization (e.g., optimize
a MAP-based measure (Henderson & Ferrari, 2016)) when performing object
detection highlights the difficulty of implementing an effective consistency measure
in this setup. The definition of a consistency measure is also not straightforward in
temporal event detection tasks (e.g., video event detection and music transcription).
Indeed, designing a measure that takes into account the consistency of both the
existence probabilities and the temporal localization, while being robust to small
temporal shifts in the predictions, is challenging.

Overall, consistency regularization can be difficult to implement effectively and
efficiently, especially in finer-grained tasks such as object detection and temporal
event detection.

7.1.3 Counting-based Consistency Regularization

The previous chapters showed how instance counting can be applied both as a
weaker form of supervision in some settings (Chapter 4) and as a loss regular-
ization that is inherently more robust to noisy annotations than more targeted
supervision (Chapter 5). The same approach of operating on a weaker level
of supervision can be used to alleviate the issues encountered when applying
consistency regularization to tasks with finer-grained annotations. In this section,
we thus propose counting-based consistency regularization as an effective alterna-
tive for applications dealing with countable instances (e.g., object detection and
temporal event localization).

Using higher-level annotations—such as counts—implicitly alleviates the issues
highlighted in the previous section. First, weaker labels are inherently invariant
to a wide range of transformations. For example, in object detection, while
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the location of the bounding-boxes changes when the input image is subject to
rotation or cropping, the number of instances remains invariant to almost any
spatial transformation. The same observation holds in music transcription, where
the number of notes played is preserved when the input sequence is slowed down
or shifted temporally, whereas the temporal location of the instances are affected
by these perturbations. Thus, counting-based consistency regularization allows
to effectively leverage a wider range of augmentations, consequently teaching
a rich array of semantic invariances to the model and thus better utilizing the
information contained in the unlabeled data.

In addition, defining a counting-based consistency measure is straightforward,
even for complex tasks such as object detection or temporal event localization.
Indeed, assuming that the model outputs class (or existence) probabilities for each
instance—in addition to other predictions such as, for example, object positions
or bounding-box dimensions, i.e., {p1, . . . ,pN} = f̂θ(X) ∈ [0, 1]N , the consistency
between two counts can be measured using a simple squared distance:∥∥∥∑i f̂θ,i(Ω(X))−∑i f̂θ,i(Ω(X))

∥∥∥2

2
(7.2)

Counting-based supervision thus offers an intuitive alternative to standard consis-
tency regularization that is both invariant to a broader range of perturbations
and presents a simple consistency measure.

7.1.4 Poisson-binomial Counting-based Consistency Regulariza-
tion

Once again, if the ground-truth instance probabilities are known to be sparse and
if the supervised learning loss function used in conjunction with the consistency
regularization supports sparse predictions, then a more tailored learning can be
achieved by modeling counts per class as Poisson-binomial distribution rather
than scalars, i.e.,

Ĉθ(Ω(X)) :=
∑

i B
(
f̂θ,i
(
Ω(X)

))
. (7.3)
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In this stochastic setup, a consistency measure can be defined as the log-likelihood
of observing an identical count for the two perturbed inputs:

log
(

Pr
(
Ĉθ(Ω(X)) = Ĉθ(Ω(X))

))
= log

(∑∞
c=0 Pr

(
(Ĉ θ(Ω(X))=c) ∧ (Ĉθ(Ω(X))=c)

))
= log

(∑∞
c=0 Pr

(
Ĉθ(Ω(X))=c

)
· Pr
(
Ĉθ(Ω(X))=c

))
= log

(∑∞
c=0 Pr

(∑
i B
(
f̂θ,i
(
Ω(X)

))
=c
)
· Pr
(∑

i B
(
f̂θ,i
(
Ω(X)

))
=c
))
.

(7.4)

For readability, the consistency measure is presented for a single class since the
extension to higher dimensions is trivial.

Since the modeling of counts as a distribution rather than a scalar does not affect
their invariance to augmentations, Equation 7.4 offers a more tailored supervision
than Equation 7.2 without limiting the range of usable transformations. Indeed,
similar sparsity convergence properties to that of Chapter 3 can be derived for
the proposed regularization (e.g., the loss function is minimized if and only if
the predictions are sparse). Thus, in addition to teaching transformation invari-
ances to the model, this proposed Poisson-binomial counting-based consistency
regularization implicitly teaches the model to infer sparse predictions.

Future Work

The rigorous empirical evaluation of the proposed approach still needs to be done.
However, based on the experiments and conclusions of the previous chapters, the
more tailored supervision offered by Equation 7.4 is expected to be more effective
at leveraging unlabeled data in fine-grained tasks that are known to have sparse
ground-truth instance probability assignments.

7.2 Sparse Adversarial Attack on Image Classification

While deep learning models have demonstrated remarkable performance in image
classification (Krizhevsky et al., 2012), they have also been shown to be extremely
vulnerable to targeted alterations of the input image (Szegedy et al., 2013).
Indeed, small image-specific perturbations that are almost undetectable to the
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human eye can often be crafted to fool a trained neural network (Szegedy et al.,
2013; Goodfellow et al., 2014; Papernot et al., 2016; Moosavi-Dezfooli et al.,
2016). Moosavi et al. (2017) further proved that highly effective universal (i.e.,
image-agnostic) adversarial perturbations often exist. Overall, the development of
such adversarial attack methods is not only useful for assessing the robustness of
existing models, but more importantly is key for obtaining a better understanding
of deep learning and ultimately designing models that are more effective (e.g.,
adversarial training (Goodfellow et al., 2014; Huang et al., 2015)).

7.2.1 One Pixel Adversarial Attack

Su et al. (2019) showed that image classification models are prone to misclas-
sification even when perturbing only one pixel of the input image is perturbed.
To that effect, they propose performing a d-pixel targeted-attack by solving the
following optimization problem:

max
π

f̂θ,iadv(X + π(X)) s.t. ‖π(X)‖0 ≤ d, (7.5)

where f̂θ is the trained classification function that has to be fooled, the index iadv
is the desired output class of the model after the perturbation π(X) is applied to
the input image X, and d is the selected maximum number of pixels that can be
perturbed for the adversarial attack. In a nutshell, successfully maximizing this `0-
constrained equation helps to find the d-pixel perturbation π(·) that, when applied
to the input image X, maximizes the model’s misclassification for the wrong class
iadv. The objective of this attack is thus simply to modify the input image X in
such a way that the model classifies the slightly perturbed input X+π(X) as an
image of class iadv, instead of the true class itrue. A d-pixel untargeted-attack
can be performed in a similar manner by minimizing the probability that the
model infers for the correct class itrue. Overall, Su et al. (2019) demonstrate that
altering a single pixel (i.e, d = 1) is often enough to deceive classical models.

This d-pixel approach strongly contrasts with classical methods, which perturb
every pixel in the input image while ensuring that the total amount of alterations
remains of small magnitude in order to be as unnoticeable as possible, e.g.,

max
π

f̂θ,iadv(X + π(X)) s.t. `1(π(X)) ≤ L, (7.6)
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where L represents an arbitrary upper-bound for the magnitude of the image
perturbation π(X). While the two maximization problems might appear similar
at first sight, the change from an `1 to an `0 constraint has a significant impact
on the optimization process. Indeed, while the latter maximization problem
(Equation 7.5) is often solved through simple backpropagation (Szegedy et al.,
2013; Goodfellow et al., 2014), the non-differentiability of the `0-norm makes this
simple approach significantly less compelling for the optimization of Equation 7.6.
Therefore, Su et al. (2019) propose solving the `0-constrained maximization
problem through differential evolution (Storn & Price, 1997; Das & Suganthan,
2010), a specific form of evolutionary algorithm.

In the next section, we will show how the sparsity-inducing ability of the Poisson-
binomial counting loss function can be leveraged to nevertheless optimize Equa-
tion 7.6 through backpropagation.

7.2.2 Sparse Attack with Poisson-Binomial Counting

As shown in Section 5.5.2, the optimization of a function under constraints can be
done through backpropagation using a differentiable penalized objective function.

Attack Maximization

The main objective of an adversarial attack consists in optimizing the pertur-
bations π in such a way that the classification model f̂θ is deceived as much as
possible. More specifically, a targeted attack attempts to maximize the probability
the model infers for a target adversarial class iadv:

max
π

f̂θ,iadv(X + π(X)). (7.7)

This maximization problem is, however, similar to a standard classification task,
but with the wrong label assignment. In this scenario, the cross-entropy is,
therefore, the natural choice of loss function to optimize the perturbation through
backpropagation, i.e.,

max
π

f̂θ,iadv(X + π(X)) = min
π
{− log(f̂θ,iadv(X + π(X))} =: min

π
LTAR(π). (7.8)
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Similarly, the loss function for an untargeted attack, which seeks to reduce the
probability that the model infers for the true class itrue, can be defined as a
log-likelihood function:

min
π
f̂θ,itrue(X + π(X)) = min

π
{− log(1− f̂θ,itrue(X + π(X))} := min

π
LUNT(π).

(7.9)

While minimizing these loss functions alone yields effective attacks, the resulting
perturbations they produce do certainly not fulfill the d-pixel limitation set by the
optimization problem (Equation 7.5). The next section, therefore, shows how the
Poisson-binomial counting loss function can be utilized as a sparsity regularization
to impose this strict sparsity constraint.

Counting Sparsity Constraint

The Poisson-binomial counting loss function offers a unique way of encouraging—
and even sometimes forcing—the model to output, for each training sample,
a strict and given number of non-zero instances. This controllable sparsity is
highlighted by Theorem 3.1, which state that, for all c ∈ N

LPB(p̂ | c) := DKL(1c‖
∑

iB(p̂i))= 0 ⇐⇒ (‖p̂‖0 =c) ∧ (p̂∈{0,1}N ). (7.10)

Indeed, this equation indicates that, in some settings, the Poisson-binomial
counting loss function can be used as a differentiable replacement for the con-
straint ‖ · ‖0 = c. Thus, in contrast to sparse activation functions (Martins &
Astudillo, 2016; Martins & Kreutzer, 2017; Malaviya et al., 2018), which produce
sparsity with only limited control on the number c of non-zero instances, the
Poisson-binomial loss function can be leveraged to teach models to output exactly c
non-zero instances. Several applications of this principle have been presented in
Chapter 5 and Chapter 6.

In this section, the differentiability of the Poisson-binomial loss function and most
importantly its unique controllable sparsity-inducing abilities are used to optimize
the d-pixel targeted-attack problem using backpropagation (Equation 7.5).

First, one of the main assumptions underlying the sparsity regularization through
Poisson-binomial counting is that the optimal non-zero instance predictions have
to be exactly equal to 1 as shown by the second conditional in Equation 7.10
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(i.e., p̂θ ∈ {0,1}T ). In the context of the d-pixel adversarial attack, the in-
stances that are regularized through the `0-constraint are the elements of the
perturbation π(X). However, the optimal perturbation is not necessarily con-
tained in {0,1}N×M—where N ×M is the dimension of the input image X—and
thus the Poisson-binomial loss function cannot be directly applied to enforce
the constraint ‖π(X)‖0 ≤ d from Equation 7.5. To that effect, we propose to
first decompose the perturbation π as a product of masking probabilities p and
perturbation magnitudes m:

π(X) = p(X) ·m(X). (7.11)

In a nutshell, for each pixel in the original image, its corresponding masking
probability pi indicates the likelihood of it being altered by the perturbation,
while mi indicates the magnitude of the potential alterations. After the decom-
position, given the setting of the d-pixel attack problem (Equation 7.5), the
optimal p now fulfill both ‖p̂‖0≤ c and p̂∈{0,1}N×M . Further, the constraint
‖p̂‖0 ≤ c can intuitively be modified to ‖p̂‖0 = c since reducing the number of
perturbed pixels can only decrease the effectiveness of the adversarial attack.
Since both conditionals on the right-hand side of Equation 7.10 are now fulfilled
by the optimal masking probabilities p, these optimal p are conversely those that
minimize the Poisson-binomial loss function with c :=d. Therefore, we propose to
use Poisson-binomial sparsity regularization p to enforce the sparsity constraint
on the perturbation.

Penalized Objective Function

Thus, as already demonstrated in Section 5.5.2, an unconstrained version of
the d-pixel constrained optimization problem (Equation 7.5) can be derived by
integrating the sparsity constraint as a penalty function to the attack-maximization
objective function, e.g.,

min
p(·),m(·)

(1− λ) · LTAR(p(X) ·m(X)) + λ · LPB(p̂(X) | d) (7.12)

where the weight λ is gradually increased during the training to progressively
enforce the constraint. The loss function for the untargeted attack is analogous.
Overall, since all elements of the loss function are continuously differentiable,
the learning of the perturbation π(X) = p(X) ·m(X) can be performed through
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backpropagation. However, it has to be noted that, while the existence of a
differentiable loss function for the learning of the attack (e.g., Equation 7.12)
allows the training to be done through backpropagation, this approach does
not guarantee a convergence towards the global optimum since the optimization
problem is highly non-convex. This is discussed in more detail below.

Preliminary Experiment

In this section, the proposed backpropagation-based optimization of the d-pixel
perturbation is applied to fool the LeNet architecture (LeCun et al., 1989) on
some samples of the CIFAR-10 dataset (Krizhevsky et al., 2009). More specifically,
for each sample X, the pre-sigmoid masking probabilities p(X) and perturbation
magnitudes m(X) are first initialized using a normal distribution with standard
deviations 0.1 and 0.5 and means log(0.82/32×32 − 1) and 0 respectively—see
Section 2.3.3 for more precision about the bias required for a sound initialization—
and 0 respectively. These initial values are then iteratively updated to minimize
Equation 7.12 through 5000 timesteps of gradient descent optimization. A large
learning rate of 100 is chosen in order to compensate for the tiny gradients the
model produces. Finally, in this experiment, a fixed λ (c.f. Equation 7.12) of 0.9

was shown to be sufficient to achieve prediction sparsity.

Figure 7.1 presents a few examples of successful adversarial attacks using the
proposed backpropagation-based algorithm. For instance, in Figure 7.1a, the
approach was able to modify the class inferred by the LetNet model from ship (with
a probability of 89.9%) to automobile (with a probability of 71.3%) by altering
the color of a single pixel in the input image. Remarkably, in these examples,
while performing the untargeted attack through deferential evolution (Su et al.,
2019) or backpropagation produces different perturbations, the wrong object class
towards which the predictions converge is identical. Overall, these examples not
only highlight the high sensitivity of the LetNet model to a few altered pixels,
but most importantly show that backpropagation can be leveraged for d-pixel
attacks on image classification.

Finally, it has to be emphasized that the proposed backpropagation-based approach
optimizes the sparsity of the perturbations in an end-to-end manner. Indeed,
Figure 7.1 presents the raw perturbed inputs produces by the model, without
any additional post-processing heuristic. This underlines once again the unique
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(a) 1-pixel attack on an image of a ship.

Cat [84.6%]O
ri
gi
n
al

Im
ag
e

Deer [59.3%]D
iff
er
en
ti
al

E
vo
lu
ti
on

Deer [43.3%]O
u
r
A
tt
ac
k

(b) 3-pixel attack on an image of a cat.
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(c) 5-pixel attack on an image of a frog.

Figure 7.1: Examples of successful untargeted adversarial attacks using the
proposed backpropagation-based algorithm. The object name and the percentage
stand for the most likely object class inferred by LeNet and its corresponding
probability. The sparsity of our model is learned in an end-to-end manner, and
thus is achieved without any post-processing operation.
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Dog [65.3%]

(a) 3-pixel attack.

Cat [31.4%]

(b) 1-pixel attack.

Figure 7.2: Examples of samples where the proposed backpropagation-based
algorithm failed the untargeted d-pixel adversarial attacks, while the differential
evolution approach (Su et al., 2019) succeeded: (a) the 3-pixel constraint is
violated since 4 pixels where altered, and (b) the attack—while reducing the
probability assigned to the correct object class—does not modify the class the
LeNet model infers.

ability of the Poisson-binomial counting loss function to enforce a theoretically
non-differential operation in an end-to-end manner.

Limitations and Future Work

As briefly mentioned above, the d-pixel optimization problem (Equation 7.5) is
highly non-convex. Thus, while the proposed differentiable penalized objective
function (Equation 7.12) is minimized if and only if the optimization problem is
solved, its optimization through backpropagation does not necessarily guarantee
the convergence of the perturbation towards the global maximum. Figure 7.2
depicts some examples where the optimization got stuck in a local maximum, and
thus where the proposed learning procedure failed. For instance, in Figure 7.2b, the
resulting 1-pixel adversarial attack reduces only slightly the probability assigned to
the correct class, while the differential evolution-based approach (Su et al., 2019)
successfully manages to mislead the model. These sub-optimal perturbations
clearly demonstrate that gradient-based learning alone is not sufficient in such
highly non-convex optimization problems.

Future work could focus on combining the proposed backpropagation-based
method with population-based learning. Indeed, while the latter offers a more
dense coverage of the solution space, and thus allows for a more complete ex-
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ploration of the space, the former could be utilized to perform a fine-grained
gradient-based update of the population which could better take advantage of
the local structure of the optimization problem. Overall, this hybrid optimization
approach could increase the likelihood of converging towards a good local optimum
perturbation, if not the global optimum.

7.3 Learning Non-maximum Suppression in Object De-
tection

As already mentioned, object detection is often a two-step process that consists
in over-sampling the space with numerous high-quality bounding-boxes before
refining the selection through non-differential operations such as non-maximum
suppression (Girshick, 2015; Ren et al., 2015; Redmon et al., 2016; Liu et al.,
2016). However, while they have proven to be effective, these approaches split
the object detection process into a trainable component and fixed heuristic and,
as a result, optimize the model parameters on a sub-task only (i.e., outputting a
large collection of meaningful bounding-boxes) rather than on the final detection
objective. By not performing the learning of the task in a fully end-to-end manner—
a paradigm that has been at the core of the advent of deep learning (Krizhevsky
et al., 2012; Sutskever et al., 2014; Long et al., 2015; Levine et al., 2016), the
models introduce a potentially sub-optimal dichotomy between training objective
and task objective. Indeed, for instance, as demonstrated in Chapter 5 and
Chapter 6, effectively replacing untrainable post-processing stages with tailored
training objectives often leads to improved performance since the model directly
learns the mapping between the input data and the objective of the task without
relying on uncontrollable operations for inference.

7.3.1 End-to-end Learning with Non-maximum Suppression

Several alternatives have been proposed for integrating the non-maximum suppres-
sion operation into the training process, and thus learning object detection in an
end-to-end manner. The first approach consists in including the non-differentiable
operation in the forward path, but then replacing the ill-defined gradients with
pseudo gradients during the backpropagation. For example, Henderson & Fer-
rari (2016) directly optimize the mean-average precision (i.e., the standard per-
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formance metric in object detection) by computing pseudo partial derivatives
for piecewise-constant functions through either single-sided finite difference or
linear envelope estimation. Thus, they replace the gradients of the combined
non-maximum suppression and metric computation layer with smoothed pseudo
gradients in the backward path of the gradient-based optimization algorithm.
While offering a fully end-to-end supervision of object detection, this method
yields however sparse gradients that affect the effectiveness of the learning process.
For instance, since not every change in the detection score of some bounding-boxes
necessarily impacts the overall mean-average precision, their approach implicitly
does not take all predictions into account for the optimization; thus, some instances
are indirectly removed from the learning process. Further, Song et al. (2016)
introduce as an alternative a dynamic programming algorithm that enables the
training of models using non-differentiable loss functions through loss-augmented
inference. While they explicitly discard non-maximum suppression from models
in their experiments, the general principle could be leveraged to train models that
include this specific non-differentiable operation in their forward path. Finally,
Wan et al. (2015) propose a custom structured loss function for learning with a
variant of the standard non-maximum suppression operation. The loss function
not only incorporates information about suppressed bounding-boxes, but also
requires the knowledge of which bounding-box was selected instead (i.e., which
detection was responsible for the suppression). As this approach is tailored to
the chosen non-maximum suppression operation, it only finds limited application
outside of this framework.

7.3.2 Learning Non-maximum Suppression

Learning non-maximum suppression is another way of indirectly incorporating
this non-differential operation into the decision process. Indeed, instead of ex-
plicitly including this operation as a layer in the architecture, the model can
be trained to implicitly mimic its sparsity-inducing effect. Based on that idea,
Hosang et al. (2017) propose a learnable rescoring scheme that updates the original
detection probabilities assigned to each bounding-box with more extreme ones
(i.e., closer to 0 or 1). However, while it is designed to output a sparser probability
assignment, the model is unable to mimic the hard selection process induced
by the NMS operation on its own. Similar to its classical counterparts, this
approach still relies on an untrainable heuristic—here, thresholding—to achieve
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clear-cut predictions. Nevertheless, it has to be noted that the sparser rescoring
of the bounding-box predictions makes this approach much less reliant on the
post-processing stage than the traditional object detection models. Indeed, while
the final predictions still depend on the selected thresholding factor, the results
are by design quite robust to changes in that hyperparameter.

7.3.3 Learning NMS through Poisson-Binomial Counting

This work presents several applications in which the Poisson-binomial counting
loss function (see Chapter 3) can be leveraged to replace non-differential sparsity-
inducing operations. For instance, Chapter 5 demonstrates how learning to count
instances can alleviate the need for peak-picking or thresholding-based heuristics
in precise temporal event detection such as piano onset detection or video event
detection. Similarly, Chapter 6 shows how counting-based regularization can
replace non-maximum suppression in point object detection tasks such as single-
molecule localization microscopy or checkerboard corner detection. In all these
applications, the sparsity of the predictions is not achieved through an explicit
sparsity-inducing operation, but is rather implicitly learned by the model as a
byproduct of learning to count instances.

The same versatile counting-based approach to prediction sparsity could be
applied to object detection. For instance, the Poisson-binomial loss function
could be leveraged as part of a bounding-box rescoring scheme that aims at
outputting a sparse selection of detections. However, in contrast to the work of
Hosang et al. (2017) that still relies on thresholding to obtain prediction sparsity,
the Poisson-binomial loss function can enforce sparsity in a totally end-to-end
manner. Indeed, for example, recall Figure 4.3 (digit detection) or Figure 6.6
(single-molecule localization microscopy) which display raw model outputs without
any post-processing. The counting-based loss function could thus act as a concrete
trainable replacement for the non-maximum suppression operation, and thus make
the inference independent from any thresholding factor.

Further, replacing the non-maximum suppression operation with Poisson-binomial
counting-based learning could potentially also improve the method proposed by
Henderson & Ferrari (2016). In their work, the authors acknowledge that the
sparsity of the proposed gradients (i.e., not all bounding-boxes contribute to
the loss computation, and thus to the optimization) can negatively affect the
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effectiveness of the approach. In contrast, learning sparsity through counting-based
supervision would couple all the bounding-box predictions to the loss computation;
indeed, any variation in the existence probability of any instance has a direct
effect on the count and on the gradient computation. Every bounding-box would
thus contribute to the learning process by propagating information back.

Future Work

Of course, the effectiveness of counting-based supervision as a trainable replace-
ment for the non-maximum suppression in object detection still has to be evaluated.
The main expected challenge resides in the development of a loss function that can
both accurately assess the consistency between the set of predicted and labeled
bounding-boxes, and that works properly with the counting-based sparsity regu-
larization. To that end, the loss has to be able to handle sparse predictions, unlike
standard loss functions (Girshick, 2015; Ren et al., 2015; Redmon et al., 2016;
Liu et al., 2016). The first efforts could be devoted to combining counting-based
learning with direct MAP-based training (Henderson & Ferrari, 2016).





Chapter 8

Conclusion

Not Everything That Counts Can Be Counted

This work demonstrates how instance counting can be leveraged to learn prediction
sparsity in an end-to-end manner. The novel Poisson-binomial counting loss
function, introduced to that effect, was indeed shown to present unique convergence
properties. In a nutshell, if a model accurately learns to count using the Poisson-
binomial loss function, the instance probabilities it infers will inexorably converge
towards clear-cut values (i.e., either towards 0 or 1); sparsity is not learned, but
rather emerges implicitly as a byproduct of learning to count these instances.
This claim is not only supported theoretically by several convergence theorems
(Chapter 3), but is most importantly demonstrated experimentally throughout
the work.

In practice, the Poisson-binomial loss function helps, above all, incorporate the
implicit prior knowledge that predictions are sparse directly into the training
without harming the end-to-end learning process. The unique sparsity-inducing
ability of the loss thus finds a direct use in the many applications where the
optimal probability assignments are known to be sparse. This includes the de-
tection of instantaneous events in videos or audio sequences (e.g., piano onset
detection), the localization of point objects in images (e.g., single-molecule local-
ization microscopy), and the detection of objects in images (e.g., bounding-box
prediction). Overall, this work shows that the proposed cost function can not
only be successfully leveraged as a standalone loss function in certain settings
(Chapter 4) but can also be used as a sparsity regularization in conjunction with
other more targeted loss functions to enforce sparsity constraints in an end-to-end
fashion (Chapter 5–7). Among other applications, the Poisson-binomial loss
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function allows for improved single-molecule localization microscopy, for efficient
checkerboard corner detection, and for competitive weakly-supervised learning
of piano onset detection, while its invariance to label misalignment allows for a
more robust video point event sequencing and a more reliable learning of wearable
sensors time series detection.

In conclusion, this work not only proposes a novel loss function, but most im-
portantly shows how careful, yet simple, loss modeling can sometimes replace
complex architectural designs or can alleviate the need for ineffective heuristics.
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Appendix A

Local Minima Proof of Chapter 3

The identification of the local minima of the loss function with respect to the
instance probabilities p={p1, . . . , pN}∈ [0, 1]N plays an important role in under-
standing how well a gradient-based optimization converges towards one of the
global optima. In this regard, Theorem 3.2 is key to proving that optimizing the
non-convex Poisson-binomial loss function leads to the sparsity of the individual
instances since it shows that the only local minima of the loss function are the
global minima themselves, recall

Theorem (Local Minima). Let l(x) :=DKL(1c‖
∑

iB(xi)), then ∀c ≤ N{
p = {p1, . . . , pN} ∈ [0, 1]N | p is a local minimum of l(x)

}
≡
{
p = {p1, . . . , pN} ∈ [0, 1]N | l(p) = DKL(1c‖

∑
iB(pi))= 0︸ ︷︷ ︸

Global Minimum

}
.

(A.1)

This chapter presents a comprehensive proof of this important theorem. Overall,
since any global minimum is per definition also a local minimum, it only remains
to show that all local minima of the Poisson-binomial loss function are in fact
global minima in order to prove the full equivalence.

In order to simplify notation, we investigate throughout this chapter the local
maxima of the function

h(p) := Pr
(∑

i B(pi) = c
)

(A.2)

whose local maxima are identical to the local minima of the loss function l(p)

(see Equation 2.9).

A-1
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Definition of Local Minima

As an introduction, it is useful to formally define what a local minimum of a
function is:

Definition A.1 (Local Minimum). In the Euclidean space, x is a local minimum
of the function f : X→R if ∃ε>0 such that ∀x̃∈X,

d(xi, x̃i)=
√∑

i(xi−x̃i)2<ε =⇒ f(x) ≤ f(x̃) (A.3)

The definition of local maximality is analogous. In a nutshell, a point p is a local
maximum of the function h(x) if there exists a neighborhood Ω around p such that,
for any p̃ ∈ Ω, the value at that point is smaller than h(p) (i.e., h(p) ≥ h(p̃)).

No Local Minima in (0, 1)N

We first demonstrate that h(p) has no local maxima on the interval (0, 1)N , and
thus prove by extension that the Poisson-binomial loss function l(p) has no local
minima on that plane. This can be achieved by proving that the Hessian Hh(p)

is not negative-definite at any point p∈(0, 1)N for all values of c∈N.

The Hessian matrixHh(p) of h(p) can easily be computed using the distribution of
the Poisson-binomial distribution (Property 2.1) and its recursion property (Prop-
erty 2.4). Indeed, for c > 1 (the case c= 0 is analogous), the function h(p) is
equivalent to

h(p) := Pr
(∑

i B(pi) = c
)

(2.4)
=

∑
S∈Fc

∏
i∈S

pi
∏
j∈Sc

(1− pj)

(2.11)
= (1− pn)

∑
S∈F\nc

∏
i∈S

pi
∏
j∈Sc

(1− pj) + pn
∑

S∈F\nc−1

∏
i∈S

pi
∏
j∈Sc

(1− pj),

(A.4)

where F\nc is the set of all subsets of P ({1, . . . , N}\{n}) of size c. The last equality
holds for any n ≤ N since the indices of the instance probabilities can be reordered
due to the independence assumption of the Bernoulli distributions.
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Thus, the second derivative of h(p) with respect to pn is equal to zero:

∂2

∂p2
n

h(p) =
∂2

∂p2
n

(1− pn)
∑
S∈F\nc

∏
i∈S

pi
∏
j∈Sc

(1− pj) +
∂2

∂p2
n

pn
∑

S∈F\nc−1

∏
i∈S

pi
∏
j∈Sc

(1− pj)

= − ∂

∂pn

∑
S∈F\nc

∏
i∈S

pi
∏
j∈Sc

(1− pj) +
∂

∂pn

∑
S∈F\nc−1

∏
i∈S

pi
∏
j∈Sc

(1− pj)

= 0.
(A.5)

This property implies that the diagonal entries of the Hessian matrix are all equal
to zero, and thus its trace, which is defined as the sum of the entries on the
diagonal, is equal to zero. Therefore, as it is well known that the trace of a matrix
is equal to the sum of eigenvalues λi, the sum of the eigenvalues of the Hessian is
equal to zero, i.e.,

trace(Hh(p)) =
∑

n
∂2

∂p2n
h(p) = 0 =

∑
i λi (A.6)

In addition, since the function h(p) fulfils all conditions of Schwarz’s theorem,
the Hessian matrix Hh(p) is symmetric, i.e.,

∂

∂pi

∂

∂pj
h(p) =

∂

∂pj

∂

∂pi
h(p). (A.7)

From linear algebra, it thus follows that the matrix Hh(p) has exactly N real-
valued eigenvalues. By combining this result with Equation A.6, it can be
concluded that either the eigenvalues of the Hessian Hh(p) are all equal to zero
(in fact only possible for N = 1) or that some eigenvalues are negative and some
others are positive. Consequently, the Hessian Hh(p) is certainly not negative-
definite (i.e., all eigenvalues are not all strictly negative) at any point p∈(0, 1)N ,
and thus there are no local minima of the loss function in that interval.

Local Minima are only possible for p ∈ {0, 1}N

As no local minima can be found in the interval (0, 1)N , the only points where local
minima might arise lie on the boundaries of the [0,1] interval. It can further be
shown that these local minima can only be found at the corners of the hypercube,
i.e., p∈{0, 1}N .
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This more restricting statement can be proven by contradiction. Indeed, let us
assume that a point p /∈{0, 1}N is a local maximum of the function h(p). Then,
since p cannot be in the interval (0, 1)N—as shown above—there exists an index
ζ1≤N such that pζ1 ∈{0, 1}. Before proceeding further, it is worth mentioning
that c has to be larger than zero since otherwise the only unique local minimum
would trivially be p = 0, which would contradict the claim that p /∈{0, 1}N .

Using the recursion properly (Property 2.4) as done above, the instance pζ1 can
be factorized as follow:

h(p) := Pr
(∑

i B(pi) = c
)

= (1− pζ1)
∑

S∈F\ζ1c

∏
i∈S

pi
∏
j∈Sc

(1− pj) + pζ1
∑

S∈F\ζ1c−1

∏
i∈S

pi
∏
j∈Sc

(1− pj).

(A.8)

Thus, in the case pζ1 = 0, the function simplifies to

h(p) =
∑

S∈F\ζ1c

∏
i∈S

pi
∏
j∈Sc

(1− pj), (A.9)

which correspond to a Poisson-binomial loss function with one less instance
probability (i.e., N − 1).

The case where pζ1 = 1 is almost equivalent

h(p) =
∑

S∈F\ζ1c−1

∏
i∈S

pi
∏
j∈Sc

(1− pj), (A.10)

except c is decreased by one. In the case where c reaches zero, the assumption
that p /∈{0, 1}N is violated and, thus, the statement that the minima of the loss
function can only exist in {0, 1}N is proven by contradiction.

Consequently, either the assumption is violated (i.e., c=0) or either the resulting
function is a lower-dimension Poisson-binomial loss function with one less instance
probability. However, the remaining probabilities (i.e., pi 6= pζ1) cannot all be
in (0, 1) since it was shown above that there cannot be a local minimum of the
(N −1)-dimensional Poisson-binomial loss function in (0, 1)N−1. Thus, there
has to be an addition index ζ2 (i.e., ζ2 6= ζ1) that satisfies pζ2 ∈ {0, 1}. This
process repeats itself until all probability instances are in {0, 1}, thus proving by



Local Minima Proof of Chapter 3 A-5

contradiction that p∈{0, 1}N if p is a local minimum of the loss function. (This
claim could be proven more formally by induction.)

A complete proof also requires to consider the case where, during the recursion,
the remaining label count to be accounted for (i.e., c−∑ pζi) becomes larger than
the number of remaining instances (i.e., N−|ζ|). In this scenario, the function
is equal to zero (i.e., h(x)=0) regardless of the value assigned to the remaining
instance probabilities. Indeed, each instance probability can only increment the
predicted count by 1, thus counts higher than the number of instances N are
unattainable and have no probability mass assigned to them. Let us denote one
of these points as pκ. In order to show that such a point is not local maxima of
h(x), let us define the point pδ :=(1− 2δ)pκ. In a nutshell, this operation linearly
maps all zeros of pκ to δ and all ones to 1−δ. From the definition of h(x), it can
easily be observed that h(pδ)>0 for any value 0<δ<1 since products and sums
of strictly positive numbers yield strictly positive results. Thus, for any 0<δ<1,
we obtain the following inequality:

h(pκ) = 0 < h(pδ) (A.11)

Since δ can be selected arbitrarily small, a neighborhood Ω of pκ such that
h(p)≥ h(p̃),∀p̃ ∈ Ω cannot be constructed (i.e., one can always find a δ such
that pδ ∈ Ω). Thus, p cannot be a local maximum of h by definition (see
Definition A.1).

Final Identification of Local Minima

So far, we have shown that local minima of the loss function can only be found at

the corners of the domain of the loss function (i.e., p
!∈{0, 1}N ). Thus, it only

remains to demonstrate that any point p ∈{0, 1}N that does not satisfy the global
minimality criterion (Theorem 3.1) is not a local minimum of the loss function.

First, since p ∈ {0, 1}N , it can intuitively be shown, using Property 2.3, that
the resulting Poisson-binomial count is a scalar in this case and that it takes
integer values, i.e.,

∑
i pi∈N. Thus, the sum

∑
i pi is either equal to the correct

label count c or not. However, any p that satisfies
∑

i pi = c) is obviously a
global minimum of the loss function since it maximizes the probability assigned
to the correct count c., i.e., h(x) = 1. Thus, it remains to show that any p that
satisfies

∑
i pi 6=c is not a local maxima of h.
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To that end, let us once again define the point pδ := (1 − 2δ)p. In a nutshell,
as explained above, given a point p∈{0, 1}N , pδ is simply a copy of it with all
the zeros mapped to δ and all the ones mapped to 1− δ. Recall that from the
definition of h(x), it can easily be seen that h(pδ)> 0 for any value 0< δ < 1

since products and sums of strictly positive numbers yield strictly positive results.
Thus, for any 0<δ<1 and any p that satisfies

∑
i pi 6=c, we obtain the following

inequality:

h(p) = Pr
(∑

i pi = c
)

= 0 < h(pδ) (A.12)

The same argument presented previously for the point pκ can be made for
p: since δ can be selected arbitrarily small, a neighborhood Ω of p such that
h(p) ≥ h(p̃),∀p̃ ∈ Ω cannot be constructed (i.e., one can always find an δ such
that pδ ∈ Ω). Thus, p cannot be a local maximum of h by definition (see
Definition A.1), which concludes the proof that any p that satisfies

∑
i pi 6=c is

not a local maximum of h.

In conclusion, the set of local maxima of h(p) corresponds to the set of global
maxima of h(p). By extension, the set of local minima of the loss function is
identical to the set of global minima of the loss function.
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Convergence Proofs of Example
from Chapter 5

B.1 Proof of Example: LCE

The minimization problem presented in the example of Section 5.4.1 can be
simplified using, among others, the definition of LCE and y(i):

arg minφ
∑

i LCE(φ ∗ x(i),y(i))

= arg minφ
∑

i
1
NLCE(φ ∗ x(i),y(i))

N large≈ arg minφ Eε∼E [LCE(φ ∗ x(i),y(i))]

= −arg minφ Eε∼E [
∑

t yt log((φ∗x(i))t)

+ (1−yt) log(1−(φ∗x(i))t)]

=arg maxφ Eε∼E [
∑

t yt log((φ∗x(i))t)

+ (1−yt) log(1−(φ∗x(i))t)]

=arg maxφ Eε(i)∼E [
∑

t 1[t=t(i)+ε(i)] log((φ∗x(i))t)

+ (1−1[t=t(i)+ε(i)]) log(1−(φ∗x(i))t)]

= arg maxφ Eε∼E [log((φ ∗ x(i))t(i)+ε(i))

+
∑

t6=t(i)+ε(i) log(1−(φ ∗ x(i))t]

= arg maxφ
∑

kP (E=k)[ log((φ ∗ x(i))t(i)+k)

+
∑

t/∈t(i)+k log(1−(φ ∗ x(i))t]

= arg maxφ
∑

kP (E+t(i) =k) log((φ ∗ x(i))k)

+ (1−P (E+t(i) =k)) log(1−(φ ∗ x(i))k)

(B.1)

B-1
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Using the definition of x(i) and of the convolution operation, the expression can
be simplified further:

arg maxφ
∑

kP (E+t(i) =k) log((φ ∗ x(i))k)

+ (1−P (E+t(i) =k)) log(1−(φ ∗ x(i))k)

= arg maxφ
∑

kP (E+t(i) =k) log(
∑

tφ(t)·x(i)
k−t)

+ (1−P (E+t(i) =k)) log(1−∑tφ(t)·x(i)
k−t

= arg maxφ
∑

kP (E+t(i) =k) log(φ(k−t(i)))
+ (1−P (E+t(i) =k)) log(1−φ(k−t(i)))

= arg maxφ
∑

kP (E =k−t(i)) log(φ(k−t(i)))
+ (1−P (E =k−t(i))) log(1−φ(k−t(i)))

= arg maxφ
∑

kP (E =k) log(φ(k))

+ (1−P (E =k)) log(1−φ(k)).

(B.2)

Since the value of the different timesteps (k) are mutually independent from one
another in the optimization problem, each bin of the convolution filter φ can be
optimized separately, i.e.,

arg maxφ(k)P (E =k) log(φ(k))

+ (1−P (E =k)) log(1−φ(k)).
(B.3)

Each individual optimization problem can be expressed as

arg maxx α log(x) + (1− α) log(1− x), (B.4)

which has the following closed-form solution:

∂

∂x
α log(x) + (1− α) log(1− x)

!
= 0

⇐⇒ α

x
− 1− α

1− x
!

= 0

x 6=0,1⇐⇒ α(1− x)
!

= (1− α)x

⇐⇒ x
!

= α.

(B.5)
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Thus, combining Equation (B.3) and Equation (B.5), we obtain the result reported
in Equation (5.5) from the main text:

φ∗=arg minφ
∑

iLCE(φ∗x(i),y(i))

⇐⇒ φ∗(τ)≈P (E=τ), ∀τ.
(B.6)

B.2 Proof of Example: LLS|CE

The derivation of the result from Equation (5.10) is similar to the one presented
in Section B.1; thus, a summarized version of the proof is given instead:

arg minφ
∑

i LLS|CE(φ ∗ x(i),y(i) |Φ)

= arg minφ
1
N

∑
i LLS|CE(φ ∗ x(i),y(i) |Φ)

N large≈ arg minφ Eε∼E [LLS|CE(φ ∗ x(i),y(i) |Φ)]

= arg minφ Eε∼E [−∑t

(
(Φ ∗ y(i))t log((φ ∗ x(i))t)

+(1−(Φ ∗ y(i))t log(1−(φ ∗ x(i))t)
)

]

= arg maxφ Eε∼E [
∑

t

(
(Φ ∗ y(i))t log((φ ∗ x(i))t)

+(1−(Φ ∗ y(i))t log(1−(φ ∗ x(i))t)
)

]

= arg maxφ Eε∼E [
∑

t

(∑T
τ=0 yi,τΦ(t−τ) log((φ ∗ x(i))t)

+(1−
∑T

τ=0 yi,τΦ(t−τ)) log(1−(φ ∗ x(i))t)
)

]

= arg maxφ Eε∼E [
∑

t

(
Φ(t−t(i) − ε(i)) log((φ ∗ x(i))t)

+(1−Φ(t−t(i) − ε(i))) log(1−(φ ∗ x(i))t)
)

]

= arg maxφ
∑

k P (E = k)
∑

t

(
Φ(t−t(i) − ε(i)) log((φ ∗ x(i))t)

+(1−Φ(t−t(i) − ε(i))) log(1−(φ ∗ x(i))t)
)

= arg maxφ
∑

t

∑
k P (E = k)

(
Φ(t−t(i)−ε(i)) log((φ ∗ x(i))t)

+(1−Φ(t−t(i) − ε(i))) log(1−(φ ∗ x(i))t)
)

]

= arg maxφ
∑

t(E ∗ Φ)t−t(i) log((φ ∗ x(i))t)

+(E ∗ (1−Φ))t−t(i) log(1−(φ ∗ x(i))t)

= arg maxφ
∑

t(E ∗ Φ)t−t(i) log((φ ∗ x(i))t)

+(1−(E ∗ Φ)t−t(i)) log(1−p̂θ,t)

(B.7)
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Thus, using Equation (B.5) and the same argument as in Section B.1, we obtain
the final result (Equation (5.9) in the main text):

φ∗=arg minφ
∑

iLLS|CE(φ∗x(i),y(i) |Φ)

⇐⇒ φ∗(τ)≈(E ∗ Φ)τ =
∑

i P (E = i)Φ(τ − i), ∀τ.
(B.8)

B.3 Proof of Example: LSLL

The beginning of the derivation is done as in previous sections:

arg minφ
∑

i LSLL(φ ∗ x(i),y(i) |Φ, E)

= arg minφ
1
N

∑
i LSLL(φ ∗ x(i),y(i) |Φ, E)

N large≈ arg minφ Eε∼E [LSLL(φ ∗ x(i),y(i) |Φ, E)]

= arg minφ Eε∼E [
∑

t

(
(E ∗ Φ ∗ φ ∗ x(i))t−(Φ ∗ y(i))t

)2
]

= arg minφ Eε∼E [
∑

t (E ∗ Φ ∗ φ ∗ x(i))2
t

+(Φ ∗ y(i))2
t

−2(E ∗ Φ ∗ φ ∗ x(i))t · (Φ ∗ y(i))t]

= arg minφ Eε(i)∼E [
∑

t (E ∗ Φ ∗ φ ∗ x(i))2
t

+Φ(t−t(i)−ε(i))2

−2(E ∗ Φ ∗ φ ∗ x(i))t · Φ(t−t(i)−ε(i))]
= arg minφ

∑
t(E ∗ Φ ∗ φ ∗ x(i))2

t

+Eε(i)∼E [
∑

t Φ(t−t(i)−ε(i))2

−2(E ∗ Φ ∗ φ ∗ x(i))t · Φ(t−t(i)−ε(i))]
= arg minφ

∑
t(E ∗ Φ ∗ φ ∗ x(i))2

t

+
∑

k P (E=k)[
∑

tΦ(t−t(i)−k)2

−2(E ∗ Φ ∗ φ ∗ x(i))t · Φ(t−t(i)−k)]

= arg minφ
∑

t(E ∗ Φ ∗ φ ∗ x(i))2
t

+
∑

k,t P (E=k)Φ(t−t(i)−k)2

−2
∑

k,t P (E=k)(E ∗ Φ ∗ φ ∗ x(i))t ·Φ(t−t(i)−k)

= arg minφ
∑

t(E ∗ Φ ∗ φ ∗ x(i))2
t

+
∑

t(Φ
2 ∗ E)t−t(i)

−
∑

t 2(E ∗ Φ ∗ φ ∗ x(i))t ·(Φ ∗ E)t−t(i)

(B.9)
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The second term does not depend on φ, thus

arg minφ
∑

i LSLL(φ ∗ x(i),y(i) |Φ, E)

≈ arg minφ
∑

t(E ∗ Φ ∗ φ ∗ x(i))2
t

−2(E ∗ Φ ∗ φ ∗ x(i))t ·(Φ ∗ E)t−t(i)

(B.10)

Differentiating by φ yields,

∂

∂φ

∑
t(E ∗ Φ ∗ φ ∗ x(i))2

t − 2(E ∗ Φ ∗ φ ∗ x(i))t ·(Φ ∗ E)t−t(i)

=
∑

t 2(E ∗ Φ ∗ φ ∗ x(i))t · (E ∗ Φ ∗ 1 ∗ x(i))t

−2(E ∗ Φ ∗ 1 ∗ x(i))t ·(Φ ∗ E)t−t(i)

1∗Φ=1
=

∑
t 2(E ∗ Φ ∗ φ ∗ x(i))t · (E ∗ 1 ∗ x(i))t

−2(E ∗ 1 ∗ x(i))t ·(Φ ∗ E)t−t(i)

1∗E=1
=

∑
t 2(E ∗ Φ ∗ φ ∗ x(i))t · (1 ∗ x(i))t

−2(1 ∗ x(i))t ·(Φ ∗ E)t−t(i)

1∗E=1
=

∑
t 2(E ∗ Φ ∗ φ ∗ x(i))t − 2(Φ ∗ E)t−t(i)

(B.11)

Using the definition of x(i)

∑
t 2(E ∗ Φ ∗ φ ∗ x(i))t − 2(Φ ∗ E)t−t(i) = 0

⇐⇒ ∑
t(E ∗ Φ ∗ φ ∗ x(i))t − (Φ ∗ E)t−t(i) = 0

⇐⇒ ∑
t(E ∗ Φ ∗ p∗ (i))t − (Φ ∗ E)t−t(i) = 0

⇐⇒ ∑
t(E ∗ p∗ (i))t − (E)t−t(i) = 0

⇐⇒ ∑
t(E ∗ p∗ (i))t − (E∗g(i))t = 0

(B.12)

Thus, we obtain the final result presented in Equation (5.13), which states that
the optimal prediction p∗ (i) that minimizes the loss

∑
i LSLL(φ ∗ x(i),y(i) |Φ, E)

has the form:
(E∗p∗ (i))τ ≈(E∗g(i))τ (B.13)

B.4 Proof of Example: LSoftLoc

As done previously,
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arg minφ
∑

i LSoftLoc(φ ∗ x(i),y(i))

= arg minφ
1
N

∑
i LSoftLoc(φ ∗ x(i),y(i))

N large≈ arg minφ Eε∼E [LSoftLoc(φ ∗ x(i),y(i))]

(B.14)

As the training progresses (i.e., ατ → 1), the counting-based constraint becomes
more predominant and ensures that only one timestep is assigned all the mass
for the event of interest. Thus, given the definition of x(i) and φ, the smoothed
prediction is of the form

(Φ ∗ φ ∗ x(i))t = Φ(t− t(i) − β), (B.15)

where β ∈ N is a model constant. Thus, as the counting-based constraint already
ensure that exactly one timestep has probability 1 (i.e., t(i)+β), while all other
are assigned zero probability, it simply remains to show that the model bias β is
equal to zero. Indeed, it would apply that the predictions are perfectly aligned
with the ground-truth without any bias.

Plugging Equation (B.14) into Equation (B.15),

arg minφ
∑

i LSoftLoc(φ ∗ x(i),y(i))

ατ→1≈ arg minβ Eε∼E [
∑

t

(
Φ(t−t(i)−β)−Φ(t−t(i)−ε)

)2
]

= arg minβ Eε∼E [
∑

t

(
Φ(t−β)−Φ(t−ε)

)2
]

(B.16)

Using the properties of the filter Φ, it can be shown that the sum inside the
expectation of Equation (B.16) is only a function of the distance between the
prediction and the misaligned label (i.e., |ε−β|):

∑
t

(
Φ(t−β)−Φ(t−ε)

)2
=


∑

t̄

(
Φ(t̄)−Φ(t−(ε− β))

)2

∑
t̄

(
Φ(t̄−(β − ε))−Φ(t)

)2

=⇒ ∑
t

(
Φ(t−β)−Φ(t−ε)

)2
=
∑

t

(
Φ(t)−Φ(t− |ε−β|)

)2
.

(B.17)

Thus, by setting

γ(x) :=
∑

t

(
Φ(t)−Φ(t− |x|)

)2
, (B.18)
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Equation (B.16) becomes

arg minφ
∑

i LSoftLoc(φ ∗ x(i),y(i))

= arg minβ Eε∼E [
∑

t

(
Φ(t−β)−Φ(t−ε)

)2
]

= arg minβ Eε∼E [γ(ε− β)]

= arg minβ
∑

k P (E=k) · γ(k − β),

(B.19)

where γ(x) is a positive and symmetric (around 0) function, which is monotonically
increasing in [0,∞]—and thus monotonically decreasing in [−∞, 0] by symmetry.

The main results can thus be proven by showing that

∑
k P (E=k) · γ(k − β) ≥∑k P (E=k) · γ(k − 0), ∀β ∈ N. (B.20)

Let us assume that β is odd, then the sum can be reordered as follows:∑
k P (E=k) · γ(k − β)

=
∑

t≥0

(
P (E=dβ/2e+t) · γ(dβ/2e+t−β)

+ P (E=bβ/2c−t) · γ(bβ/2c−t−β)
). (B.21)

Using the fact that γ(x) is monotonically increasing in [0,∞] and monoton-
ically decreasing in [−∞, 0] and that the noise distribution is well-behaved
(i.e., P (E=k)≤P (E= k̃) ⇐⇒ |k| ≥ |k̃|) and symmetric, the following inequality
holds: ∑

k P (E=k) · γ(k − β)

=
∑

t≥0

(
P (E=dβ/2e+t) · γ(dβ/2e+t−β)

+ P (E=bβ/2c−t) · γ(bβ/2c−t−β)
)

≥∑t≥0

(
P (E=dβ/2e+t) · γ(bβ/2c−t−β)

)
+ P (E=bβ/2c−t) · γ(dβ/2e+t−β)

(B.22)
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The equation can be simplified further using the definition of the rounding
operator:∑

k P (E=k) · γ(k − β)

≥∑t≥0

(
P (E=dβ/2e+t) · γ(bβ/2c−t−β)

)
+ P (E=bβ/2c−t) · γ(dβ/2e+t−β)

=
∑

t≥0

(
P (E=dβ/2e+t) · γ(−dβ/2e−t)

)
+ P (E=bβ/2c−t) · γ(−bβ/2c+t).

(B.23)

Finally, the final inequality is obtained by both using the symmetry—around
zero—of the function γ(x) and performing a reordering of the sum:∑

k P (E=k) · γ(k − β)

≥∑t≥0

(
P (E=dβ/2e+t) · γ(−dβ/2e−t)

)
+ P (E=bβ/2c−t) · γ(−bβ/2c+t)

=
∑

t≥0

(
P (E=dβ/2e+t) · γ(dβ/2e+t)

)
+ P (E=bβ/2c−t) · γ(bβ/2c−t)

=
∑

k P (E=k) · γ(k).

(B.24)

The derivation for β even is analogous.

In conclusion, since

∑
k P (E=k) · γ(k − β) ≥∑k P (E=k) · γ(k − 0),∀β ∈ N, (B.25)

then the main result

β∗=arg minβ
∑

t,k P (E=k)
(

Φ(t−β)−Φ(t−k)
)2

=⇒ β∗=0
(B.26)

follows from Equation (B.19). Of course, stronger statements—with weaker
assumptions—could be derived if the noise distribution E was explicitly known
(e.g., E = N(0, σ2)).



Appendix C

Supplement for Chapter 6

C.1 Derivation of the Loss Function and its Gradients

In this section, we present a step-by-step derivation of the closed-form continuous
heatmap-matching loss LHM proposed in Section 6.3.2 and its partial derivatives.
The final equations allow for an straight-forward implementation of the loss
function and its gradients; both a Tensorflow and a PyToch implementation are
available1.

C.1.1 Loss Derivation

The definition of the loss function contains improper integrals of squared differences
of summations that do not allow for its direct computation:

LHM(Pθ,L)

=

∫∫
R2

D(x0, y0 | Pθ,L)dx0dy0

=

∫∫
R2

[
S(x0, y0 | L)− Ŝ(x0, y0 | Pθ)

]2
dx0dy0

=

∫∫
R2

[∑
j

exp

(
−(xj − x0)2

λ2
− (yj − y0)2

λ2

)
−
∑
i

p̂i exp

(
−(x̂i − x0)2

λ2
− (ŷi − y0)2

λ2

)]2

dx0dy0.

(C.1)

1https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization

C-1

https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization
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Overall, the key idea behind the simplification of this formula is to swap the integra-
tions and summations using Fubini’s theorem (or Tonelli’s theorem). Afterwards,
the loss function can be computed analytically.

Distributivity (a− b)2 = a2 + b2 − 2ab

=

∫∫
R2

[∑
j

exp

(
−(xj − x0)2 + (yj − y0)2

λ2

)]2

dx0dy0

+

∫∫
R2

[∑
i

p̂i exp

(
−(x̂i − x0)2 + (ŷi − y0)2

λ2

)]2

dx0dy0

− 2

∫∫
R2

[∑
j

exp

(
−(xj − x0)2 + (yj − y0)2

λ2

)]
·
[∑

i

p̂i exp

(
−(x̂i − x0)2 + (ŷi − y0)2

λ2

)]
dx0dy0

(C.2)

Distributivity 2
(∑

i ai
)
·
(∑

j bj
)

=
∑

i

∑
j ai · bj

=

∫∫
R2

∑
i

∑
j

exp

(
−(xi−x0)2+(yj−y0)2+(xj−x0)2+(yj−y0)2

λ2

)
dx0dy0

+

∫∫
R2

∑
i

∑
j

p̂ip̂j exp

(
−(x̂i−x0)2+(ŷi−y0)2+(x̂j−x0)2+(ŷj−y0)2

λ2

)
dx0dy0

− 2

∫∫
R2

∑
i

∑
j

p̂i exp

(
−(xj− x0)2+(yj− y0)2+(x̂i− x0)2+(ŷi− y0)2

λ2

)
dx0dy0

(C.3)

Fubini’s Theorem If
∑

i

∫
|fi(x)dx| <∞ and

∫ ∑
i |fi(x)dx| <∞, then∑

i

∫
fi(x)dx =

∫ ∑
i fi(x)dx
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=
∑
i

∑
j

∫∫
R2

exp

(
−(xi − x0)2 + (yi − y0)2 + (xj − x0)2 + (yj − y0)2

λ2

)
dx0dy0

+
∑
i

∑
j

∫∫
R2

p̂ip̂j exp

(
−(x̂i − x0)2 + (ŷi − y0)2 + (x̂j − x0)2 + (ŷj − y0)2

λ2

)
dx0dy0

−2
∑
i

∑
j

p̂i

∫∫
R2

exp

(
−(xj − x0)2 + (yj − y0)2 + (x̂i − x0)2 + (ŷi − y0)2

λ2

)
dx0dy0

(C.4)

Integration

∫∫
R2

exp

(
−(a− x0)2 + (b− y0)2 + (c− x0)2 + (d− y0)2

λ2

)
dx0dy0

(WolframAlpha)
=

∫
R
−
√
πλ2

8
erf

(
a+ c− 2x0√

2λ2

)
· exp

(
−a

2 − 2ac+ 2b2 − 4by0 + c2 + 2d2 − 4dy0 + 4y2
0

2λ2

) ∣∣∣∣∣
∞

x0=−∞

dy0

=

∫
R

2

√
πλ2

8
exp

(
−a

2 − 2ac+ 2b2 − 4by0 + c2 + 2d2 − 4dy0 + 4y2
0

2λ2

)
dy0

=

√
πλ2

2
exp

(
−a

2 − 2ac+ 2b2 + c2 + 2d2

2λ2

)∫
R

exp

(
−−4by0 − 4dy0 + 4y2

0

2λ2

)
dy0

(WolframAlpha)
=

√
πλ2

2
exp

(
−a

2 − 2ac+ 2b2 + c2 + 2d2

2λ2

)
·
(
−
√
πλ2

8
exp

(
(b+ d)2

2λ2

)
erf

(
b+ d− 2y0√

2λ2

)) ∣∣∣∣∣
∞

y0=−∞

=

√
πλ2

2
exp

(
−a

2 − 2ac+ 2b2 + c2 + 2d2

2λ2

)(
2

√
πλ2

8
exp

(
(b+ d)2

2λ2

))

=
πλ2

2
exp

(
−a

2 − 2ac+ 2b2 + c2 + 2d2 − b2 − d2 − 2bd

2λ2

)
=
πλ2

2
exp

(
−(a− c)2 + (b− d)2

2λ2

)
.

(C.5)
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Plugging Equation C.5 into Equation C.4

LHM(Pθ,L) =
∑
i

∑
j

πλ2

2
exp

(
−(xi − xj)2 + (yi − yj)2

2λ2

)

+
∑
i

∑
j

p̂ip̂j
πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)

− 2
∑
i

∑
j

p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)
(C.6)

C.1.2 Derivative of the Loss by p̂k

∂

∂p̂k
LHM(Pθ,L) =

∂

∂p̂k

∑
i

∑
j

πλ2

2
exp

(
−(xi − xj)2 + (yi − yj)2

2λ2

)

+
∂

∂p̂k

∑
i

∑
j

p̂ip̂j
πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)

− ∂

∂p̂k
2
∑
i

∑
j

p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)

= 0 +
∑
i

∑
j

∂

∂p̂k
p̂ip̂j

πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)

− 2
∑
i

∑
j

∂

∂p̂k
p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)

= 0 +
∑
i

∑
j

∂

∂p̂k
p̂ip̂j

πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)

− 2
∑
i

∑
j

∂

∂p̂k
p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)

= πλ2
∑
i

p̂i exp

(
−(x̂i − x̂k)2 + (ŷi − ŷk)2

2λ2

)

− πλ2
∑
j

exp

(
−(x̂k − xj)2 + (ŷk − yj)2

2λ2

)
(C.7)
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C.1.3 Derivative of the Loss by x̂k

∂

∂x̂k
LHM(Pθ,L) =

∂

∂x̂k

∑
i

∑
j

πλ2

2
exp

(
−(xi − xj)2 + (yi − yj)2

2λ2

)
(C.8)

+
∂

∂x̂k

∑
i

∑
j

p̂ip̂j
πλ2

2
exp

(
−(x̂i − x̂j)2 + (ŷi − ŷj)2

2λ2

)
(C.9)

− ∂

∂x̂k
2
∑
i

∑
j

p̂i
πλ2

2
exp

(
−(x̂i − xj)2 + (ŷi − yj)2

2λ2

)
(C.10)

= 0 +
∑
i 6=k

p̂ip̂k
πλ2

2
exp

(
−(x̂i − x̂k)2 + (ŷi − ŷk)2

2λ2

)(
2 (x̂i − x̂k)

2λ2

)
(C.11)

+
∑
j 6=k

p̂kp̂j
πλ2

2
exp

(
−(x̂k − x̂j)2 + (ŷk − ŷj)2

2λ2

)(−2 (x̂k − x̂j)
2λ2

)
(C.12)

− 2
∑
j

p̂k
πλ2

2
exp

(
−(x̂k − xj)2 + (ŷk − yj)2

2λ2

)(−2 (x̂k − xj)
2λ2

)
(C.13)

= p̂kπ
∑
j

exp

(
−(x̂k − xj)2 + (ŷk − yj)2

2λ2

)
(x̂k − xj)

− p̂kπ
∑
i

p̂i exp

(
−(x̂i − x̂k)2 + (ŷi − ŷk)2

2λ2

)
(x̂k − x̂i)

(C.14)

(C.15)

C.2 Checkerboard Corner Detection Experiment

C.2.1 Additional Results

Additional experiments have been conducted for the checkerboard corner localiza-
tion experiment.
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Table C.1: Corner localization performance on our synthetic test set. The mean-
absolute deviation (MAD) from ground-truth (in units of original pixel size) as
well as precision, recall, and F1-scores (with a tolerance of 3 pixels) are reported.

Methods

C
la

ss
ic OCamCalib (Scaramuzza et al., 2006)

Rochade (Placht et al., 2014)
OpenCV (Bradski, 2000)
MATLAB (Geiger et al., 2012)

L
ea

rn
. DL-Heatmap (sim. (Donné et al., 2016))

+ Refinement (sim. (Graving et al., 2019))

OURS

MAD

0.362
0.147
0.137
0.086

0.488
0.130

0.105

Rec. Prec. F1

97.0 99.8 98.4
59.1 99.9 74.3
45.6 89.5 60.4
65.8 96.4 78.2

98.1 99.7 98.9
98.1 99.7 98.9

99.3 99.9 99.6

Experiment: Sub-Pixel Accuracy on Synthetic Test Data

To evaluate the absolute sub-pixel accuracy of our method, we test it on a synthetic
test dataset generated analogously to the training dataset described in the main
text. (Appendix C.2.2 illustrates the variety of the data generated.) The exact
ground-truth corner locations are thus known by construction. For all benchmarks,
1000 synthetic images are used for testing. The results are summarized in Table C.1.
Overall, our method consistently outperforms state-of-the-art algorithms both in
terms of absolute spatial precision—with typical errors in the order of ≈1/10th of
a pixel—as well as in terms of detection rates. Especially noteworthy is the fact
that the excellent spatial precision of our approach is not a result of a low recall
rate. In contrast, the lower recall values achieved by other methods, show that they
often fail to detect challenging corners (due to distortions, noise, low contrast),
and hence only the most easily detectable ones are taken into account when
computing the spatial error for these methods. For instance, the remarkable mean
absolute error of 0.086 pixels achieved by MATLAB (Geiger et al., 2012) results
from only 65.8% of the corners it was able to detect in the first place. Finally, our
method does not require additional information about the grid structure of the
calibration board and its size—in contrast to (Bradski, 2000; Placht et al., 2014;
Scaramuzza et al., 2006) which leverage this information to refine the predictions.

Further, we note that the above state-of-the-art methods, with the exception of
deep learning-based ones, rely on traditional image processing techniques that
have been hand-crafted specifically for this task. Hence, they do not generalize
well to other applications. In contrast, we hypothesize that our approach can be
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straightforwardly applied to any sub-pixel localization task, such as the accurate
analysis of medical images.

Finally, in terms of inference efficiency, our point prediction approach is signifi-
cantly faster (3.43 images/second on a 4.3 GHz CPU, and 100+ with an NVidia
TitanXp GPU) than OpenCV (2.04 images/s), the saddle point-based ROCHADE
(1.10 images/s), and the heatmap-based approach (1.15 images/s) which is slowed
down by the corner-refinement step and the lack of spatial downsampling.

C.2.2 Synthetic Dataset

The code for the generation of the synthetic checkerboard dataset is provided2

(c.f. create_dataset.py).

(6x6) board (6x5) board (3x3) board

Figure C.1: Initial checkerboard of various size, shape and coloration

Overall, initial checkerboards are first generated by randomly sampling their
size, shape, and coloration (see Figure C.1). Then, some of these checkerboards
are projected onto textures such as wood, paper, and stone (see the first row of
Figure C.2). Finally, between one and eight (sampled uniformly at random) of
the following eight transformations are applied to these checkerboards: blurring,
lighting, sharpening, contrast change, scaling, distortion, perspective transform,
and rotation (see Figure C.2 for examples). All of these transformations have
hyperparameters that are also sampled at random, such as the level of distortion
or the angle of the rotation.

While this process allows for a rich variety of checkerboards to be generated
(see Figure C.3), most importantly it allows to track the location of the corners
with high levels of precision. Indeed, spatial transformations (e.g., rotation and

2https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization

https://github.com/SchroeterJulien/ACCV-2020-Subpixel-Point-Localization
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Stone Texture Wood Texture Paper Texture

Distortion Perspective Rotation

Figure C.2: Examples of transformations applied to the initial checkerboard
images

Figure C.3: Example checkerboard training images from our synthetic dataset
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perspective transform) can be applied to both checkerboard images and corner
locations without any significant approximation. Thus, we are able to leverage
these precise labels as the ground truth to train our sub-pixel precision model.

C.3 Golf Swing Event Localization Experiment

C.3.1 Additional Results

Table 5 (in the main text) reports the mean golf swing event detection accuracy over
all event classes, i.e., address (A), toe-up (TU), mid-backswing (MB), top (T), mid-
downswing (MD), impact (I), mid-follow-through (MFT), and finish (F) (McNally
et al., 2019). However, each of these classes differs drastically from one another,
especially in terms of temporal ambiguity and detection difficulty. Therefore, in
order to assess whether the performance improvement achieved by our model can
be attributed to a few event classes only or whether the improvement is consistent
across all classes, we provide a detailed report of per class detection accuracy in
Table C.2.

Overall, our method displays consistent improvement on most event classes and
decimation rates. (Given the relatively moderate size of the testing splits and
the stochastic nature of the learning process, a few outliers are to be expected.)
Our approach not only improves the detection accuracy of temporally ambiguous
events (e.g., A and F) but also pushes further the detection capabilities on more
easily detectable classes (e.g., MD and MFT).
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Table C.2: Golf swing event detection accuracy (within a ±1 frame tolerance) per
class as a function of decimation factor δ. Averages are reported over 4 folds. The
architecture is from (McNally et al., 2019).

Loss

A

Naïve upsampling
Frame interpolation
Dense classification

Ours

TU

Naïve upsampling
Frame interpolation
Dense classification

Ours

MB

Naïve upsampling
Frame interpolation
Dense classification

Ours

T

Naïve upsampling
Frame interpolation
Dense classification

Ours

MD

Naïve upsampling
Frame interpolation
Dense classification

Ours

I

Naïve upsampling
Frame interpolation
Dense classification

Ours

MFT

Naïve upsampling
Frame interpolation
Dense classification

Ours

F

Naïve upsampling
Frame interpolation
Dense classification

Ours

δ = 1 frame 2 frames 4 frames 8 frames 16 frames

18.2 18.4 20.9 22.1 20.5
" 19.4 23.1 19.0 15.6
" 19.7 22.9 21.3 21.2

23.9 24.6 23.4 25.1 22.4

79.0 80.5 68.7 47.7 28.1
" 73.3 71.2 60.2 42.5
" 81.8 78.8 75.6 63.1

80.1 77.9 79.0 76.5 69.6

81.3 83.7 68.9 46.6 30.4
" 82.3 78.6 66.3 44.2
" 82.9 84.4 78.6 63.6

86.6 86.4 84.3 81.9 68.8

62.3 62.8 60.6 43.1 25.1
" 64.5 64.6 62.4 45.3
" 69.4 72.8 69.3 67.4

70.4 70.5 75.7 78.0 70.5

95.7 95.3 83.9 52.0 30.3
" 95.1 94.0 85.8 58.6
" 96.3 94.9 89.1 77.8

96.2 92.9 95.0 90.4 75.7

94.7 94.6 80.4 57.8 14.1
" 94.7 93.5 88.8 60.2
" 96.3 94.6 91.2 79.3

95.3 96.1 94.6 92.1 80.4

94.4 94.6 80.6 71.5 31.6
" 92.9 92.0 84.6 55.4
" 94.8 92.9 87.2 75.8

94.9 94.3 93.3 91.3 77.7

15.9 17.8 15.9 15.8 10.8
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