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Abstract

Groupwise functional analysis of gene variants is becoming standard in next-generation sequencing studies. As the function
of many genes is unknown and their classification to pathways is scant, functional associations between genes are often
inferred from large-scale omics data. Such data types—including protein–protein interactions and gene co-expression
networks—are used to examine the interrelations of the implicated genes. Statistical significance is assessed by comparing
the interconnectedness of the mutated genes with that of random gene sets. However, interconnectedness can be affected
by confounding bias, potentially resulting in false positive findings. We show that genes implicated through de novo
sequence variants are biased in their coding-sequence length and longer genes tend to cluster together, which leads to
exaggerated p-values in functional studies; we present here an integrative method that addresses these bias. To discern
molecular pathways relevant to complex disease, we have inferred functional associations between human genes from
diverse data types and assessed them with a novel phenotype-based method. Examining the functional association
between de novo gene variants, we control for the heretofore unexplored confounding bias in coding-sequence length. We
test different data types and networks and find that the disease-associated genes cluster more significantly in an integrated
phenotypic-linkage network than in other gene networks. We present a tool of superior power to identify functional
associations among genes mutated in the same disease even after accounting for significant sequencing study bias and
demonstrate the suitability of this method to functionally cluster variant genes underlying polygenic disorders.
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Introduction

It is widely postulated that the products of genes whose variants

are implicated in the same disease participate in the same

biological function or process whose disruption leads to the disease

[1,2]. This concept is supported by examples of complex disease in

which the proteins encoded by the implicated genes interact, form

a molecular complex or function at different steps of the same

biochemical pathway [3,4]. As there is limited power to associate

rare variants with disease by case–control studies, the use of

functional-enrichment approaches that identify a shared function

in a set of mutated genes is becoming standard in the

interpretation of variants [5–8].

Since the function of many genes is not known and their

classification to pathways is scant, functional associations between

genes are often inferred from large-scale omics data [4,6–9].

However, the suitability of such data types, including protein–

protein interactions and gene co-expression networks, for func-

tional-enrichment analysis remains unclear. Moreover, the

inferred functional associations can be affected by confounding

factors, potentially resulting in false positive findings. Thus, it is

important to identify any bias affecting the implicated genes and

control for them. Multiple exome-sequencing studies currently test

variants for functional enrichment and yet there is no consensus

concerning what to control for [6–9].

In this study, we have inferred functional associations between

human genes from diverse data types and assessed the phenotypic

agreement of the inferred gene–gene associations. We have

examined different data types and networks and found that genes

mutated in the same disease cluster more significantly in an

integrated phenotypic-linkage network than in other gene

networks. Examining the functional association between de novo
gene variants, we have identified a confounding bias in coding-

sequence length that we control for. We present a tool that

identifies functional associations among genes mutated in the same

disease even after accounting for significant sequencing study bias

and demonstrate the power of this tool to functionally subcluster

the gene variants underlying a polygenic disorder.

Results

To test for functional associations among gene variants, we

derived functional links between genes from diverse data types.

For example, we calculated correlation coefficients from expres-

sion profiles, whereas gene annotation data were processed in the

form of semantic similarity, which is a measure of relatedness

between two genes assessed by the similarity of their annotations

[10] (Figure 1A). The data were likely to include noise leading to

false links and their reliability was unknown. To estimate and take
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into account the accuracy of the links, we evaluated the individual

data types with a novel, phenotype-based method, by examining

the semantic similarity between the mouse phenotypes of the genes

they related to each other (Figure 1B). That is, each data type in

turn indicated gene–gene linkages (gene pairs) and the accuracy of

these links was assessed by considering the similarity of the

phenotypes arising from the disruption of the unique mouse

orthologs of these genes. We expected the data types to link

together genes whose knockouts give rise to the same phenotypes,

even if these mouse phenotypes were not necessarily expected to

resemble human symptoms. The similarity of mouse phenotype

annotations correlated with the similarity of human disease

phenotypes (r= 0.223, P,2610216; Figure S1) and mouse

phenotypes have been assigned to 6169 unique orthologs of

human genes, 3.4-fold more than the 1801 genes annotated by the

Human Phenotype Ontology (HPO; downloaded in 2012) [11].

Consequently, we used the phenotype annotations from the Mouse

Genome Database [12] as the benchmark against which to

evaluate other data types and set aside the HPO annotations for

use as a test set for validation.

Integration of different data types into a combined network is

expected to improve the accuracy of links and thus, in addition to

considering individual data types, we also built an integrated gene

network [13,14]. For this, we selected data types that consistently

linked together genes associated with similar mouse knockout

phenotypes and that produced a positive correlation with the

semantic similarity of mouse phenotypes (Table S1). For each data

source suggesting functional links, we fitted regression curves in order

to re-score the links so that any data-specific scores characterising the

gene pairs were replaced with the semantic similarity that they

corresponded to according to a regression function (see Figure 1B).

When multiple data sources suggested functional linkage between

the same two genes, we summed their link weights according to the

approach of Marcotte and colleagues [15], thereby down-weighting

less reliable data (see Methods). The resulting integrated gene

network outperforms networks derived from the individual data

types both in terms of coverage and accuracy (Figure 1C).

We corroborated the integrated phenotypic-linkage network by

showing that genes whose perturbations are implicated in the same

disease tend to be closely interlinked (Figures S2, S3, S4, S5, S6,

S7). It is possible that their tendency to be closely interconnected is

due to shared functional annotations assigned to them because

they were implicated in the same disease in the literature. Also, we

cannot assume that the associations of genes to phenotypes –

forming the test sets – were made independently of any data type.

Consequently, we turned to recently reported de novo mutations

associated with developmental disorders that were identified

independently of the data types included in the network.

Genes with de novo substitutions in patients with the same

disorder [6–9,16–18] showed a tendency to be more interconnected

Author Summary

Plenty of gene variants have been associated with a
disease, yet most of the heritability, along with the
molecular basis, of common diseases remains unexplained.
However, it is widely thought that the products of genes
whose mutations are implicated in the same disease
function together in the same biological pathways and it is
the disruption of these pathways that underlies the
disease. Such pathways are not well defined and their
identification could help elucidate disease mechanisms.
Consequently, groupwise functional analyses of gene
variants to identify common disease-relevant pathways
are becoming standard in next-generation sequencing
studies, but we find that these analyses are confounded by
coding-sequence length bias. We control for these bias
and describe a phenotype-based approach which outper-
forms other methods in discerning functional associations
among the disease-associated genes. We also demonstrate
the suitability of this method to functionally dissect the
gene variants underlying a complex disorder, the identified
functional clusters offering insight into disease mecha-
nisms.

Figure 1. Processing and comparison of functional genomics data. (A) Terms in a phenotype ontology have an information content (IC)
which is inversely proportional to the number of genes annotated with them. The semantic similarity between any two terms equals to the IC of their
closest common ancestor term(s). (B) Gene–gene linkages derived from a data type are assessed and rescored according to the semantic similarity of
the linked genes’ mouse phenotype annotations. (C) The similarity in human phenotype annotations from the HPO is a benchmark on which all the
data types can be compared, revealing their relative accuracy and coverage.
doi:10.1371/journal.pcbi.1003815.g001
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in the gene networks than random gene sets of the same size.

However, as the interconnectedness of genes can be affected by

confounding factors, it is important to identify any bias affecting the

studied genes and control for them during the randomizations. We

have found that the genes implicated through de novo sequence

variants are biased in their coding-sequence (CDS) length, as longer

genes are more likely to be mutated by chance (Figure 2). We also

observe that genes with longer CDS tend to be interconnected

(Figure 2C) and thus controlling for CDS length during the

randomizations can significantly affect their relative degree of

clustering (Figure 3). To control for coding-sequence (CDS) length

during the randomizations, we have selected random genes the

CDS length of which matched the CDS length of the studied

candidate genes. Node degree has been previously identified as a

confounding factor in functional analyses, particularly where an

increase in degree results from study bias [19]. However, controlling

for node degrees in a gene network does not correct the CDS length

bias (Figure 3B). CDS length correlates very weakly with node

degree (Spearman’s r= 0.050). The length bias are highly

significant in all the studied gene sets (Figure 2), while the node

degrees are significantly different only in some of the candidate gene

sets and there is no correlation between the node degree and

mutational burden of genes (Figure S8). Having examined different

data types and networks [15,20,21], we find that the disease-

associated genes cluster more significantly in the integrated

phenotypic-linkage network than in other gene networks (Figure 3).

Discussion

We have inferred functional-association networks of human

genes from diverse data types and assessed the phenotypic

agreement of the inferred links. Having examined different data

types and networks, we have found that genes mutated in the same

disease cluster more significantly in an integrated phenotypic-

linkage network than in other gene networks (Figure 3C). We note

that another gene network, called NETBAG, has been developed

by Gilman and colleagues [22]. We could not access NETBAG for

the performance comparison. Nevertheless, Gilman and col-

leagues state the use of shared disease associations among 478

human genes as the gold standard in their network construction

[22] and the used disease associations originate from a study

published in 2001 [23]. By comparison, our method takes

advantage of over 100,000 mammalian genotype–phenotype

relations and fully exploits bio-ontologies by means of semantic

similarity, with both advances expected to enhance greatly the

phenotypic-linkage network that we explicitly present here.

Examining the functional association between de novo gene

variants, we have identified a confounding bias in coding-sequence

length that we control for to avoid false positive findings.

Numerous implicated variants are in fact expected to be neutral

mutations but they are more likely to appear in genes with longer

CDS, leading to a tendency of the implicated genes to be

interconnected in gene networks (see Figure 2). These bias have

confounded functional analyses and likely led to an overestimation

of functional clustering in former studies. We have found that the

CDS-length bias were highly significant in all the studied gene sets,

including the unaffected siblings, while the node degrees were not.

The higher node degrees in some of the candidate gene sets may

indicate a functional signal, as the same genes are significantly

more conserved (Figure S8). We conclude that controlling for CDS

length in functional analyses of gene variants is appropriate.

One way of controlling for CDS length is to compare the

interconnectedness of the implicated genes with that of genes

mutated in unaffected controls [9]. However, we observe that the

control genes tend to be less interconnected than random genes

(Figure S9), which suggests that our way of controlling for CDS

length (see Methods) is more conservative.

The nature of the phenotypic-linkage network suggests that the

clustered genes function together in the same disease-relevant

cellular pathways (Figure S10). The functional convergence that

we identify among the three sets of genes from independent exome

studies of autism spectrum disorder demonstrates that the method

is able to detect biological coherence among variant genes

(Figures 3 and S10). Throughout, we have considered the larger

class of non-synonymous variants which is likely to possess a more

diluted signal than nonsense variants. As with all clustering

methods, our method is sensitive to the number of variants

identified and the likelihood of their causal relation. Half of our

study sets included only 5–10 genes with nonsense variants,

between which we either did not find any functional links or the

Figure 2. Coding sequence (CDS) lengths of genes with de novo variants. (A) ‘All genes’ denotes all translated human genes, ‘Siblings’
denotes genes with de novo mutations in non-autistic siblings of ASD cases published by O’Roak et al. and Sanders et al. Even the genes mutated in
the healthy siblings are significantly longer than all coding genes (Mann–Whitney U test, P,2610216). The box plots depict the values between the
1st and 3rd quartile of a distribution, the 2nd quartile (thick band) represents the median. (B) Mutational burden strongly correlates with coding
sequence length in the Exome Variant Server (Spearman’s r= 0.710, P,2610216; http://evs.gs.washington.edu/EVS). All nonsynonymous mutations
were considered across all human chromosomes. (C) The median CDS length of a gene’s connections correlates with its CDS length (Spearman’s
r= 0.508, P,2610216). We considered the strongest 100,000 links from the integrated phenotypic-linkage network.
doi:10.1371/journal.pcbi.1003815.g002
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sum of link weights was not significantly higher than expected after

controlling for CDS length. For studies of rare or de novo variants

derived from a single or small number of genomes, gene prioritizing

methods based upon phenotypic similarity may be more appropri-

ate [24]. Continuing efforts to systematically phenotype model

organisms and to enrich the phenotype ontologies could further

improve the resulting phenotypic-linkage networks that are

constructed [25]. The integrated network toolkit is made available

at http://groups.mrcfgu.ox.ac.uk/webber-group/resources.

Methods

Inference of functional associations between genes from
diverse data types

To gain the most information about genes whose variants may

be relevant to disease and to explore the functional relations

between them, we collected large amounts of functional genomics

data on human genes and their mouse orthologs. We wanted the

data sets to inform us about the functional similarity of genes,

therefore we processed them such that they indicated gene–gene

links. For every data type except physical interactions, we derived

a score characterising gene pairs, such as the correlation coefficient

from expression profiles or semantic similarity from gene

annotations.

Semantic similarity
All gene annotation data (such as GO, KEGG, Reactome,

InterPro and mouse and human phenotype annotations) were

processed in the form of semantic similarity, which is a measure of

relatedness between two genes assessed by the similarity of their

annotations [10]. The terms used to annotate genes have an

information content (IC) defined as:

IC að Þ~{log2 p að Þ

where p(a) is the proportion of genes annotated with term a or its

descendent terms among all genes with an annotation.

We used Resnik’s [26] measure together with the GraSM

approach [27] to calculate the similarity of terms organized in a

hierarchical ontology, defining the semantic similarity between

any two terms t1 and t2 as the average IC of their disjunct common

ancestor terms (see Figure 1A):

simGraSM t1,t2ð Þ~IC
a[A

að Þ:

To measure the functional relatedness of two genes, we

compared their annotations with the maximum (max) and best

match average (bma) methods [28]. Let T1 denote the set of terms

annotated to gene g1and T2 denote the set of terms annotated to

gene g2, the semantic similarity of their annotations according to

the max approach is then given by:

simmax g1,g2ð Þ~ max
t1[T1,t2[T2

simGraSM t1,t2ð Þ

while the semantic similarity of their annotations according to the

bma approach is defined as:

simbma g1,g2ð Þ~
P

t1[T1
max

t2[T2
simGraSM t1,t2ð Þ

DT1 D z

P
t2[T2

max
t1[T1

simGraSM t1,t2ð Þ
DT2 D

2
:

Data sources
Gene expression. We inferred gene–gene linkages from co-

expression of genes. To measure the co-expression of genes, we

calculated the Pearson’s correlation coefficient of their expression

profiles, requiring at least ten tissues in which both genes were

expressed for the calculation of a correlation coefficient. We used

expression data from GNF2 [29], GSE3594 [30], MTAB-62 [31]

and further five sets [32–36], calculating the Pearson’s correlation

Figure 3. Clustering of genes hit by de novo nonsynonymous substitutions. (A) We have examined the network properties of whole sets of
genes with nonsynonymous mutations implicated by recent exome-sequencing studies in autism (ASD), severe intellectual disability (ID), epilepsy or
schizophrenia (S). We calculated the sum of link weights among genes from a set and compared this sum to that calculated for randomized gene sets
in order to assess the degree of functional clustering. (B and C) The implicated genes are significantly more strongly interconnected with each other
by means of functional genomics data than random gene sets of the same size, but controlling for coding sequence (CDS) length considerably affects
the p-values. The genes mutated in the same disease cluster most significantly in the integrated phenotypic-linkage network, while genes mutated in
healthy controls do not cluster.
doi:10.1371/journal.pcbi.1003815.g003

Unbiased Functional Clustering of Gene Variants

PLOS Computational Biology | www.ploscompbiol.org 4 August 2014 | Volume 10 | Issue 8 | e1003815

http://groups.mrcfgu.ox.ac.uk/webber-group/resources


coefficients within each, evaluating the inferred gene–gene links as

described below (see Figure 1B), selecting and re-scoring the links

that correlated with the semantic similarity of mouse phenotypes

and integrating these links as described below to create a

combined co-expression network. The resulting integrated net-

work outperformed networks derived from the individual co-

expression datasets both in terms of coverage and accuracy.

Physical interactions. Protein–protein interactions provided

a binary measure of functional linkage between genes, with all

derived gene pairs receiving the same score. We measured the

median semantic similarity of mouse phenotype annotations for all

the gene pairs derived from the same assay and used this median

value to score all the functional linkages in the given data set. We

used physical interaction data divided by assay types from

BioGRID [37] v3.1.72, IntAct [38] (downloaded on July 29,

2011), CORUM [39] (downloaded on May 5, 2011), DICS [40]

(downloaded on June 6, 2011) and Reactome [41] (downloaded on

May 5, 2011). We also derived indirect links based on shared

interaction partners and accorded with their own weights and

integrated these with the direct links to create a combined PPI

network.

Co-citation. Co-citation scores were extracted from

STRING [21] v8.3. We used the co-citation scores of mouse

orthologs of human genes.

Gene annotations. Gene annotations were obtained from

the Gene Ontology [42] (GO, downloaded on July 29, 2011),

using the annotations to human and mouse genes in the biological

process (BP), molecular function and cellular location categories,

with evidence codes IDA, IMP, TAS and IC. Pathway annotations

of mouse genes were obtained from KEGG [43] (downloaded on

March 30, 2011), pathway annotations of human genes were

downloaded from Reactome [41] (on March 23, 2011). Protein

domain annotations were obtained from InterPro [44] (down-

loaded on May 23, 2011). Mouse phenotype annotations were

obtained from the Mouse Genome Database [12] (downloaded on

August 24, 2011), human phenotype annotations were download-

ed from the Human Phenotype Ontology [11] (on August 8,

2012). The annotation terms in KEGG, Reactome and InterPro

are not organized in a deep ontology with many levels, therefore

we only used direct matches between these gene annotations with

the maximum (max) method in calculating semantic similarity

scores for gene pairs.

Evaluation of data sets
To estimate the reliability of the individual data sets, we

evaluated them by examining the semantic similarity between the

phenotypes associated with the unique mouse orthologs of the

genes they linked to each other. For each data set, we derived

gene–gene linkages (gene pairs) with data-specific scores charac-

terizing the strength of a linkage and ordered the gene pairs by

their score from largest to smallest. Next, we calculated and

plotted the median semantic similarity of mouse phenotype

annotations for bins of 1,000 gene pairs (see Figure 1B).

We tested if the data types linked together genes whose

knockouts influence the same phenotypes. When the strongest

linkages derived from a data set did not correspond to higher

semantic similarities of phenotypes than expected by chance, we

did not include the links from the given set in the integrated gene

network (Table S2).

Re-scoring and integration of data
We selected data sets that produced a positive correlation with the

semantic similarity of mouse phenotypes (Table S1) and fitted

regression curves in order to re-score the links so that any data-specific

scores characterising the gene pairs were replaced with the semantic

similarity of phenotypes that they corresponded to according to a

linear regression function (Figure 1B). Thus all gene pairs that had an

original data-specific score were re-scored, including those that did

not have phenotypic annotations.

By re-scoring the data types with a universal benchmark we

weighted them in proportion of their relative accuracy. When

multiple data sources suggested functional linkage between the

same two genes, we summed their link weights (Figure S11)

increasingly down-weighting less reliable data according to a

formula used by Marcotte and colleagues [15]:

WS~L0z
Xn

i~1

Li

D|i

where L represents a re-scored link weight from a single data set, L0

being the largest link weight among all the links between the given

two genes, i is the index of the remaining links ordered by their

weights for the gene pair and D is a free parameter. We optimized

the value of this parameter and used D = 5 in integrating data types

to create the final phenotypic-linkage network.

Controlling for coding-sequence length
In testing for functional enrichment in a set of genes, the degree

of functional association between the genes can be compared to

that calculated for randomized gene sets. As the degree of

functional association can be affected by confounding bias, it is

important to identify such bias affecting the studied gene set and

control for them. To control for coding-sequence (CDS) length

during the randomizations, we selected random genes the CDS

length of which matched the CDS length of the studied (mutated)

genes. For each of the studied genes in turn we assigned a list of

100 genes with the same or most similar CDS length, using the

longest CDS of each gene. Random gene sets were then assembled

by selecting one random gene from each of these lists.

Supporting Information

Figure S1 Correlation between semantic similarities
measured with different gene annotations. Gene pairs

were ordered by their semantic similarity scores based on either

the human Gene Ontology biological process (grey) or mouse

phenotype annotations to genes (black dots). The ordered pairs

were divided to bins of 1,000 and the median of the semantic

similarity scores measured with Human Phenotype Ontology

annotations has been calculated for each bin of gene pairs.

(PNG)

Figure S2 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in a gene network built on
the semantic similarity of mouse phenotypes. We

calculated the sum of link weights among genes annotated with

the same symptom and used it to represent the degree of clustering

of these sets of genes. The box plots show the distribution of the

sums of link weights for 100,000 sets of randomly selected genes

with the same node degrees as the seed genes. The sums of link

weights are presented as fold changes compared to the median of

the specific distribution, set to equal 1 for each term. For each

HPO phenotype, we randomly selected the same number of genes

as there were annotated with that symptom in the HPO. This

number is shown in parentheses; the red marks indicate the sum of

link weights among the actual genes annotated with the

corresponding HPO term.

(PNG)

Unbiased Functional Clustering of Gene Variants
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Figure S3 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in a gene network built on
the semantic similarity of Gene Ontology biological
process annotations. We calculated the sum of link weights

among genes annotated with the same symptom and used it to

represent the degree of clustering of these sets of genes. The box

plots show the distribution of the sums of link weights for 100,000

sets of randomly selected genes with the same node degrees as the

seed genes. The sums of link weights are presented as fold changes

compared to the median of the specific distribution, set to equal 1

for each term. For each HPO phenotype, we randomly selected

the same number of genes as there were annotated with that

symptom in the HPO. This number is shown in parentheses; the

red marks indicate the sum of link weights among the actual genes

annotated with the corresponding HPO term.

(PNG)

Figure S4 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in a gene network based on
protein–protein interactions. We calculated the sum of link

weights among genes annotated with the same symptom and used it

to represent the degree of clustering of these sets of genes. The box

plots show the distribution of the sums of link weights for 100,000

sets of randomly selected genes with the same node degrees as the

seed genes. The sums of link weights are presented as fold changes

compared to the median of the specific distribution, set to equal 1

for each term. For each HPO phenotype, we randomly selected the

same number of genes as there were annotated with that symptom

in the HPO. This number is shown in parentheses; the red marks

indicate the sum of link weights among the actual genes annotated

with the corresponding HPO term.

(PNG)

Figure S5 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in a gene network built on
the co-citation of mouse genes. We calculated the sum of link

weights among genes annotated with the same symptom and used

it to represent the degree of clustering of these sets of genes. The

box plots show the distribution of the sums of link weights for

100,000 sets of randomly selected genes with the same node

degrees as the seed genes. The sums of link weights are presented

as fold changes compared to the median of the specific

distribution, set to equal 1 for each term. For each HPO

phenotype, we randomly selected the same number of genes as

there were annotated with that symptom in the HPO. This

number is shown in parentheses; the red marks indicate the sum of

link weights among the actual genes annotated with the

corresponding HPO term.

(PNG)

Figure S6 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in an integrated co-expres-
sion network based on microarrays. We calculated the sum

of link weights among genes annotated with the same symptom

and used it to represent the degree of clustering of these sets of

genes. The box plots show the distribution of the sums of link

weights for 100,000 sets of randomly selected genes with the same

node degrees as the seed genes. The sums of link weights are

presented as fold changes compared to the median of the specific

distribution, set to equal 1 for each term. For each HPO

phenotype, we randomly selected the same number of genes as

there were annotated with that symptom in the HPO. This

number is shown in parentheses; the red marks indicate the sum of

link weights among the actual genes annotated with the

corresponding HPO term.

(PNG)

Figure S7 Clustering of genes for Human Phenotype
Ontology (HPO) phenotypes in the integrated phenotyp-
ic-linkage network. We calculated the sum of link weights

among genes annotated with the same symptom and used it to

represent the degree of clustering of these sets of genes. The box

plots show the distribution of the sums of link weights for 100,000

sets of randomly selected genes with the same node degrees as the

seed genes. The sums of link weights are presented as fold changes

compared to the median of the specific distribution, set to equal 1

for each term. For each HPO phenotype, we randomly selected

the same number of genes as there were annotated with that

symptom in the HPO. This number is shown in parentheses; the

red marks indicate the sum of link weights among the actual genes

annotated with the corresponding HPO term.

(PNG)

Figure S8 Node degrees of genes with de novo variants.
(A) ‘All EVS genes’ denotes all genes in the Exome Variant Server,

‘Siblings’ denotes genes with de novo mutations in non-autistic

siblings of ASD cases published by O’Roak et al. and Sanders et al.
The node degrees are significantly higher only in the O’Roak et al.,
de Ligt et al., Rauch et al. and Epi4k candidate gene sets. The node

degrees represent the number of connections of a gene in the

integrated phenotypic-linkage network. (B) Mutational burden does

not correlate with node degree in the Exome Variant Server

(Spearman’s r= 0.007; http://evs.gs.washington.edu/EVS). All

nonsynonymous mutations were considered across all human

chromosomes. (C) The same gene sets that have higher node

degrees show significantly increased sequence conservation (lower

Ka/Ks ratio), indicating that the degree bias could be due to a

functional signal in these gene sets. Ka/Ks is the ratio of the number

of nonsynonymous substitutions per nonsynonymous site (Ka) to the

number of synonymous substitutions per synonymous site (Ks),

based on one-to-one orthologs between human and mouse genes.

(TIF)

Figure S9 Interconnectedness of controls used in sim-
ulations. We calculated the number of links between 54

randomly selected control genes carrying damaging mutations in

unaffected siblings, as in Gulsuner et al., in the GeneMania physical

interaction data set (http://pages.genemania.org/data). We also

calculated the number of links between randomly selected genes

matched in CDS length to the genes mutated in the Gulsuner et al.
probands in the same network (Random genes). The box plots show

the distribution of the numbers of links for 10,000 sets of randomly

selected genes. The null distribution used in controlling for CDS

length has a larger spread, indicating that controlling for CDS

length in testing for clustering is more conservative.

(PNG)

Figure S10 Functional subclusters of genes implicated
in autism within the integrated gene network. Only the

strongest 166 links are shown among 115 genes. The terms represent

the most significantly enriched GO biological process annotations

among the genes forming the subclusters. Links based on the semantic

similarity of GO annotations were included in the integrated network,

but these enrichments are still useful in characterizing the subclusters

and illustrate that the subclusters fit well with recent insights into the

etiological variation underlying ASD [45].

(PNG)

Figure S11 Integration of different data types linking
genes. When multiple data sources suggested functional linkage

between the same two genes, we integrated the link weights into

one for each gene pair. The rounded rectangles represent genes.

(PNG)
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