Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

A cryogenic silicon interferometer for gravitational-wave detection

Adhikari, R. X., Arai, K., Brooks, A. F., Wipf, C., Aguiar, O., Altin, P., Barr, B., Barsotti, L., Bassiri, R., Bell, A., Billingsley, G., Birney, R., Blair, D., Bonilla, E., Briggs, J., Brown, D. D., Byer, R., Cao, H., Constancio, M., Cooper, S., Corbitt, T., Coyne, D., Cumming, A., Daw, E., deRosa, R., Eddolls, G., Eichholz, J., Evans, M., Fejer, M., Ferreira, E. C., Freise, A., Frolov, V. V., Gras, S., Green, A., Grote, H., Gustafson, E., Hall, E. D., Hammond, G., Harms, J., Harry, G., Haughian, K., Heinert, D., Heintze, M., Hellman, F., Hennig, J., Hennig, M.., Hild, S., Hough, J., Johnson, W.., Kamai, B., Kapasi, D., Komori, K., Koptsov, D., Korobko, M., Korth, W. Z., Kuns, K., Lantz, B., Leavey, S., Magana-Sandoval, F., Mansell, G., Markosyan, A., Markowitz, A., Martin, I., Martin, R., Martynov, D., McClelland, D. E., McGhee, G., McRae, T., Mills, J., Mitrofanov, V., Molina-Ruiz, M., Mow-Lowry, C., Munch, J., Murray, P., Ng, S., Okada, M. A., Ottaway, D. J., Prokhorov, L., Quetschke, V., Reid, S., Reitze, D., Richardson, J., Robie, R., Romero-Shaw, I., Route, R., Rowan, S., Schnabel, R., Schneewind, M., Seifert, F.., Shaddock, D., Shapiro, B.., Shoemaker, D., Silva, A. S., Slagmolen, B., Smith, J., Smith, N., Steinlechner, J., Strain, K., Taira, D., Tait, S., Tanner, D., Tornasi, Z., Torrie, C., Van Veggel, M., Vanheijningen, J., Veitch, P., Wade, A., Wallace, G., Ward, R., Weiss, R., Wessels, P.., Willke, B., Yamamoto, H., Yap, M. J. and Zhao, C. 2020. A cryogenic silicon interferometer for gravitational-wave detection. Classical and Quantum Gravity 37 (16) , 165003. 10.1088/1361-6382/ab9143
Item availability restricted.

[img] PDF - Accepted Post-Print Version
Restricted to Repository staff only until 28 July 2021 due to copyright restrictions.

Download (6MB)

Abstract

The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Physics and Astronomy
Publisher: IOP Publishing
ISSN: 0264-9381
Date of First Compliant Deposit: 30 July 2020
Date of Acceptance: 7 May 2020
Last Modified: 03 Aug 2020 09:15
URI: http://orca-mwe.cf.ac.uk/id/eprint/133880

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics