An Ontology Framework for Pile Integrity Evaluation Based on Analytical Methodology

Kun Meng\(^1\), Chunyi Cui\(^1\), Haijiang Li\(^2\)

\(^1\) Department of Civil Engineering, Dalian Maritime University, Dalian, 116026, China
\(^2\) Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, Wales CF24 3AA, UK

Corresponding author: Chunyi Cui (cuichunyi@dlmu.edu.cn).

This work is supported by the National Natural Science Foundation of China (Grant No. 51878109, 51778107 and 51578100), the Fundamental Research Funds for the Central Universities (Grant No. 3132019601), and China Scholarship Council (CSC No.201806570004).

ABSTRACT Traditional methodology for pile integrity evaluation usually adopts fuzzy qualitative indicators and the engineering experience of technicians to roughly estimate the integrity category of a pile, which includes many uncertainties and heavily subjective factors. Therefore, based on an analytical model for the vibration of pile and an ontology-based approach, this paper describes the development of an integrated evaluation system that can make reasonable evaluations of pile integrity where specific measured reflective wave curves are provided. First, a semi-analytical solution for the velocity response of pile with defects at the pile head was derived by analytical methodology, and then the intrinsic relationships between the quantitative indicators of pile defects and the characteristic parameters of velocity response curves were obtained according to the propagation law of elastic wave and the numerical fitting method. On this basis, a prototypical ontology-based evaluation system, ontology of pile integrity evaluation (OntoPIE), with a new ontology framework of leverage knowledge modelling was developed to create an easy-to-use tool for quantitative identification of pile defects and qualitative evaluation of pile integrity by combining ontology and semantic web rule language (SWRL) rules. A case study was also conducted to show how the developed framework can be used to demonstrate its practicability and scientific feasibility. The accuracy of the framework will be verified by comparing the quantitative indicators of pile defects inferred by OntoPIE with the preset defect indicators through designed examples.

INDEX TERMS Numerical fitting, ontology, pile integrity, quantitative analysis of pile defects, semi-analytical solution.

I. INTRODUCTION

Pile foundation is a basic form that can adapt to complex geological conditions and is widely used in high-rise buildings, bridges, ports, and other important structures; piles are critical for ensuring the safe operation of these constructions. Therefore, it is of great practical engineering significance to evaluate the integrity of pile reasonably, accurately and quickly. At present, the most commonly adopted method for testing pile defects is the low-strain reflected wave method, the basic theory of which has attracted widespread attention in the field of dynamic mechanical characteristics of pile. Novak and Aboul-Ella [1] proposed a plain-strain model of soil to consider the coupling effect of the pile-soil system, which was adopted to create a frequency-domain solution for the vertical vibration response of pile. Nogami and Konagai [2] extended this solution to the time domain by simplifying the plane-strain model of soil into a general Voigt model. Based on this simplified soil model, Gao et al. [3] investigated the longitudinal vibration theory of variable cross-section pile by generalizing defects. Liu [4] proposed a simplified mechanical model of pile with multiple defects in inhomogeneous soil to simulate the general actual condition of low-strain integrity testing. Wang et al. [5] investigated the effect of the degree of the variable section on the time-domain response of velocity at the pile head. Considering the damping of pile, Wang et al. [6] and Zheng et al. [7] developed a semi-analytical solution for the velocity response of solid pile and pipe pile, respectively, with variable impedance. Gao et al. [8] and Cui et al. [9] identified the longitudinal vibration characteristic of solid pile and pipe pile, respectively, with defects in inhomogeneous soil by considering the wave propagation effect of the soil surrounding the pile. Based on the wave...
propagation theory proposed by Biot, Wang et al. [10] investigated the effect of the degree, length, and depth of the pile defect in saturated soil on the semi-analytical solution of velocity response at the pile head.

Previous theoretical research generally investigated the dynamic response of pile with a preset defect, which cannot be adopted for pile integrity evaluation while the specific reflected wave curves are given[11]. The traditional methodology for pile integrity evaluation usually adopts fuzzy qualitative indicators and the engineering experience of technicians to roughly estimate the integrity category of pile based on the measured velocity of reflected wave curves, which includes many uncertainties and heavily subjective factors. Xu et al.[12] and Wang et al. [13] qualitatively evaluated the integrity of pile by using a back propagation (BP) neural network trained with the power spectrum characteristic and wave curve, respectively, of the low-strain signal of the pile. Using the finite element method to acquire dynamic signal samples of pile with defects, Liu et al. [14] investigated the quantitative identification of the defect by combining wavelet analysis and a BP neural network. These methods can reduce the impact of subjective factors on pile integrity evaluation through sample training. However, the intrinsic relationships between the quantitative indicators of defects and the characteristic parameters of reflected wave curves are not clear. Also, there is no easy-to-use unified frame platform for technicians.

Ontology, as a new semantic web technology, has been extensively employed for knowledge sharing and exchange across different domains [15–17]. The core features of ontology include semantic structure, machine processing capability, and reasoning function and provide an important methodology to facilitate a holistic approach to modeling multiple domain knowledge. Specifically, Yurchyshyna and Zarli [18] presented an ontology-based approach for the formalization and semantic organization of conformance requirements in construction and building codes. Zhang et al. [19] proposed an ontology framework to represent the ground source heat pump system. Mohammad et al. [20] established an ontology-based framework for risk assessment of unpredictable traffic conditions. Du et al. [21] developed an information integration framework by combining ontology and hierarchical clustering to analyse the effect of surface subsidence on the safety of underground tunnels. Hou et al. [22] developed an ontology-based approach for structural design considering low embodied energy and carbon.

Based on an extensive review of the literature, it is of great practical engineering significance to develop an ontology-based framework to evaluate the integrity of pile. In this paper, the semi-analytical solution for the velocity response at the pile head is derived from the model of a fictitious saturated soil pile [23] proposed by the author. Then, the intrinsic relationships between quantitative indicators of defects and characteristic parameters of reflected wave curves are achieved by combining analytical and numerical fitting methods. On this basis, a specific ontology-based evaluation system, named the ontology of pile integrity evaluation (OntoPIE), was developed for quantitative identification and qualitative evaluation of pile with defects. The process of the evaluation system for pile integrity based on analytical methodology and ontology is shown in Figure 1. A case study is also performed to verify that this framework can evaluate the integrity of pile reasonably, accurately and quickly.

![Flowchart of the pile integrity evaluation system.](image1)

FIGURE 1. Flowchart of the pile integrity evaluation system.

II. ANALYTICAL METHODOLOGY

A. A semi-analytical solution for the velocity response of pile with defects

The mechanical model of a fictitious saturated soil pile is shown in Figure 1. The pile-soil system is divided into \(m \) layers that are numbered \(1, 2, \ldots, k-1, k, k+1, \ldots, m-1 \) and \(m \) from rigid base to surface. The depth of the upper interface and thickness of the \(k \)th soil layer are \(l_k \) and \(h_k \), respectively. The thickness of the soil beneath the pile and the length of the pile are \(H^W \) and \(H \), respectively. The radius of the \(k \)th layer is \(r_k \). The harmonic excitation at the pile head is \(P e^{i\omega t} \), where \(P \) and \(\omega \) are the amplitude and angular frequency of excitation, respectively; \(i = \sqrt{-1} \). The shear stress at the interface between the \(k \)th saturated soil layer and pile is \(T_\varepsilon e^{i\omega t} \), where \(T_\varepsilon \) is the amplitude of the shear stress. The assumptions of this analytical model refer to relevant research by Cui et al. [24].

![Simplified mechanical model](image2)

FIGURE 2. Simplified mechanical model.

Based on Biot’s dynamic wave propagation theory [25] and Novak’s plane-strain model [26], the expression of the
governing equations for the \(k \)th saturated soil layer are as follows:
\[
G_i^* \left(\frac{\partial^2}{\partial z^2} + \frac{1}{r} \frac{\partial}{\partial r} \right) u_i = \rho_i \frac{\partial^2}{\partial t^2} u_i + \rho_i^* \frac{\partial^2}{\partial t^2} w_i + \alpha_i^* \frac{\partial}{\partial t} v_i = 0
\]
where \(u_i \) and \(w_i \) denote the longitudinal displacement of the soil skeleton and fluid relative to the soil skeleton, respectively, of the \(k \)th soil layer; \(m_i = \rho_i^* |N_i; \rho_i, \rho_i^* \); and \(\alpha_i^* \) are density, saturated soil density, porosity, elastic modulus, and the viscous coupling coefficient of the soil skeleton and fluid, respectively, of the \(k \)th soil layer. \(G_i^* = G_i (1 + 2 \xi_i i) \), where \(G_i \) is the shear modulus, \(\alpha_i \) the shear modulus, \(\xi_i \) denotes the hysteretic damping ratio, \(i = \sqrt{-1} \) is the imaginary unit.

The governing equation for the \(k \)th pile segment is given in Eq. (3):
\[
E^p \frac{\partial^2}{\partial z^2} u^p_k + \rho^p \frac{\partial^2}{\partial t^2} u^p_k + \frac{2 \pi \tau_j}{A_k} \xi \Phi e^{i\omega t} = 0
\]
where \(u^p_k \) denotes the longitudinal displacement of the \(k \)th pile segment; \(E^p \) and \(\rho^p \) are the elastic modulus and density, respectively, of the \(k \)th pile segment; \(\xi \) is the shear modulus, \(\tau_j \) the strain constant of the \(j \)th soil layer beneath the pile; \(\omega \) is the angular frequency; \(\Phi \) is the soil layer number; \(A_k \) and \(M_j \) are the compressibility and fluid modulus of the pile and soil layer, respectively; \(\rho_j^p = \rho_j \); \(\rho_j \) denotes the density of the \(j \)th saturated soil beneath the pile.

By considering the boundary conditions, the solution of the longitudinal displacement of the soil skeleton can be expressed as:
\[
\tilde{u}_i = A_k K_0 (\alpha_i r)
\]
where \(\alpha_i = \frac{\rho_j^p \omega^2}{G_i} - \frac{(\rho_j^p)^2 \omega^4}{G_i^* (\xi_i + i \beta_i \omega)} \) and \(A_k \) is an undetermined coefficient; \(K_0 (\alpha_i r) \) is the modified Bessel function of the second kind of zero order.

Furthermore, the longitudinal vibration displacement of the \(k \)th pile segment can be obtained by solving the governing equation of the pile and considering the coupling conditions at the pile-soil interface:
\[
\tilde{u}_i^p = C_k e^{\alpha z} + D_k e^{-\alpha z}
\]
where \(\alpha = \frac{\rho_j^p \omega^2}{E^p} + \frac{G_i}{E^p} \frac{\pi \alpha_j}{A_k} K_0 (\alpha_j r) \) and \(C_k \) and \(D_k \) are undetermined coefficients.

Then, according to the recursion of the transfer function, the dynamic impedance function at the pile head can be expressed as:
\[
\chi_\mu^p = -E^p A_k^p \kappa_\mu \frac{\gamma_\mu - 1}{\gamma_\mu + 1}
\]
where \(\gamma_\mu = \frac{\kappa_\mu e^{-\alpha_{h\mu} - 1} \chi_\mu^p}{\kappa_\mu e^{-\alpha_{h\mu} - 1} + \gamma_\mu \chi_\mu^p} \).

The frequency response function of the velocity at the pile head can be expressed as:
\[
H_\mu (i \omega) = \frac{i \omega}{\gamma_\mu} - \frac{i \omega}{\gamma_\mu} \frac{\gamma_\mu + 1}{\gamma_\mu - 1}
\]

where \(H_\mu (i \omega) \) and \(H_\mu (i \omega) \) are the frequency response function for the longitudinal velocity and displacement, respectively.

According to the properties of Fourier transform and convolution theorems, while the excitation is a semi-sine wave, the semi-analytical solution of the velocity response at the pile head can be expressed as:
\[
v(t) = \text{IFT} \left[H_\mu \left(\frac{\pi T}{\pi^2 - T^2 \omega^2} (1 + e^{-i\omega t}) \right) \right]
\]
where \(T \) is the impulse width; \(v(t) \) is the vibration velocity at the pile head.

The comparison of the velocity response calculated by Eq. (8) and the measured data of an engineering example is shown in Figure 3 to verify the reliability and feasibility of this solution. It can be seen from the figure that the curve achieved by the present analytical methodology is consistent with the measured. Thus, the rationale of the semi-analytical solution developed in this paper is verified. The specific parameters of the engineering example refer to reference [8].

FIGURE 3. Comparing the theoretical curve with a measured curve

B. The intrinsic relationship between the evaluation indicators and characteristic parameters

The quantitative indicators of a pile defect include the depth, length and degree. A typical defective pile’s velocity response curve calculated by Eq. (8) is expressed in Figure 4. According to Figure 4, the depth and length of a defect can be easily expressed as Eq. (9) and Eq. (10).

\[
\text{Depth} = \frac{H_{\mu} - \bar{h}}{1 - \bar{h}}
\]
\[
\text{Length} = \frac{H_{\mu} - \bar{h}}{1 - \bar{h}}
\]
Assuming that the vibration velocity of the elastic wave at the interface of the defective and normal segment is v_D, the vibration velocity of the reflected wave and transmitted wave at the upper interface can be expressed as:

$$v_r^u = v_D\alpha^u, \quad v_t^u = v_D\beta^u,$$ \hspace{1cm} (11)

where v_r^u and v_t^u denote the vibration velocity of the reflected wave and transmitted wave at the upper interface, respectively; $\alpha^u = \frac{1-Z_D/Z}{1+Z_D/Z}$ and $\beta^u = \frac{2}{1+Z_D/Z}$ denote the reflection and transmission coefficient, respectively, at the upper interface; $Z = \rho A$ and $Z_D = \rho_D A_D$ denote the acoustic impedance of the normal and defective segment, respectively, of a pile shaft; $c = \sqrt{E/\rho}$; $c_D = \sqrt{E_D/\rho_D}$; E, ρ, and A are the elastic modulus, density, and cross-sectional area, respectively, of a normal segment; E_D, ρ_D, and A_D are the elastic modulus, density, and cross-sectional area, respectively, of a defective segment.

Using the numerical fitting method (as shown in Figure 6) and based on the data in Table 1, the relationship between V^{ab} and l is:

$$V^{ab} = \frac{\alpha^u}{\beta^u \alpha^b \beta^b} \left(1.17 - 3.35l + 22.82l^2 \right)$$ \hspace{1cm} (14)

Table 2 shows the comparison between the semi-analytical solution of V^{ab} calculated with Eq.(8) and the fitting results of V^{ab} calculated with Eq.(14) for the diverse parameters of the defect. It can be seen from Table 2 that the numerical fitting results are consistent with the analytical solution. Therefore, the accuracy of Eq. (14) is confirmed.
The degree of the defect is expressed as \(\text{Degree} = \frac{Z_b}{Z} \), which can be derived from Eq. (14) as:

\[
\text{Degree} = \frac{-b - 2 - \sqrt{b^2 + 4b}}{2}
\]

where \(b = \frac{4(v_2 - v_1)}{(v_1 - v_2)(1.17 - 3.35l + 22.82l^2)} \).

So far, the intrinsic relationships between the quantitative indicators of the defect and characteristic parameters of the reflected wave curves have been obtained. Based on the relationship between the degree of the defect and integrity category of the pile given by Huang et al. [29] and shown in Table 3, the pile can be further qualitatively evaluated.

III. DESIGN AND DEVELOPMENT OF OntoPIE

A. The system framework of OntoPIE

The developed OntoPIE system consists of four modules: basic knowledge, an ontology management system, a rules editor, and a query interface, as shown in Figure 7. The basic knowledge is the most important part of the OntoPIE, where the basic data and the ontology model can be stored in the form of OWL files. The ontology management system is the core module of the OntoPIE that can connect and manage other modules together. In this paper, Protégé 5.2 is used to create the function and framework of OntoPIE. The rules editor can enhance the ontology’s reasoning ability by editing SWRL rules to conduct integrity evaluation. Also, technicians can use the query interface according to their specific demands to obtain related results that are referred from ontology by editing the semantic query-enhanced web rule language (SQWRL) rules[30].

![FIGURE 7. OntoPIE system framework](image)

B. The development of OntoPIE

In this work, the most widely used modeling methodology, Ontology Development 101 [17], is adopted, of which specific steps are shown in Figure 8. The process of ontology development for a pile integrity evaluation system can be further stated as follows.

Step1. The relevant domain and scope of the ontology are determined by enquiring basic questions and competency questions.

\[
\begin{array}{c}
\text{Step 1. Determine the domain and scope} \\
\text{Step 2. Define SWRL rules} \\
\text{Step 3. Create instances} \\
\text{Step 4. Define properties of the instance} \\
\end{array}
\]

![FIGURE 8. Eight-step methodology](image)

Step 2. The Building SMART IFC framework has become the standard for the exchange and sharing of building information, which improves the concept development of information ontology for the integrity evaluation of pile.

Step 3. The essential terms of the pile integrity evaluation system are established in the form of a glossary, which includes the degree, length, depth, and integrity category of the pile defects.

Step 4. The top-down establishment of the most general classes and subsequent specialization of the classes identified in Step 3 is conducted, as shown in Figure 9 (a).

![FIGURE 9. The development ontology in Protégé-OWL 5.2](image)

Step 5. There are mainly two types of properties to describe the relevant classes, object properties, and data properties, which define the relationships between classes and represent the characteristics of class instances, as shown in Figure 9 (b) and (c).

Step 6. The defining of instances in a class follows these steps: (a) creating an instance in a specified class; (b) defining the object property of the instance; and (c) defining the data property of the instance. In the development of the ontology, different types of pile, such as solid pile and pipe pile, are established as instances. The basic data of these instances, such as the length of the pile and characteristic parameters of the reflected wave curve, are input manually. Figure 10 shows an example of creating an instance. The definition of “Pipe pile” is aimed at the extensibility of OntoPIE. According to that, we can extend this framework to the integrity evaluation of pile pile in future work.

Step 7. SWRL rules for pile integrity evaluation are defined to enhance the reasoning capacity of the ontology, which include four atoms, that is, class atoms, individual property
The specific SWRL rule for the calculation of the defect length is shown as follows.

\[\text{Length} = H \left(\frac{(r_2 - r_1)}{(r_3 - r_0)} \right) \]

Equation

\[
\text{SWRL} \quad \text{Defect}_\text{length}(\text{DLength}) \quad ^\land \quad H(\text{DLength}, \text{Pile}_H) \quad ^\land \\
\quad t_2(\text{DLength}, \text{Pile}_t_2) \quad ^\land \quad tl(\text{DLength}, \text{Pile}_t_1) \quad ^\land \\
\quad t_3(\text{DLength}, \text{Pile}_t_3) \quad ^\land \quad t_0(\text{DLength}, \text{Pile}_t_0) \quad ^\land \quad \text{swrlb}: \text{subtract}(\text{Lt}_21, \text{Pile}_t_2, \text{Pile}_t_1) \quad ^\land \\
\quad \text{swrlb}: \text{subtract}(\text{Lt}_30, \text{Pile}_t_3, \text{Pile}_t_0) \quad ^\land \quad \text{swrlb}: \text{divide}(\text{L}, \text{Lt}_21, \text{Lt}_30) \quad ^\land \\
\quad \text{swrlb}: \text{multiply}(\text{D}_\text{Length}, \text{Pile}_H, \text{L}) \quad \rightarrow \\
\quad \text{Length}(\text{DLength}, \text{D}_\text{Length})
\]

Step 8. The enquiry function of the ontology is achieved by SQWRL, which is similar to SWRL rules. Technicians can query the quantitative defective indicators and integrity category of the pile by editing the SQWRL rules in the SQWRL Tab of the Protégé query interface. An example of a query for quantitative indicators of pile defects is shown as follows.

\[
\text{SQWRL} \quad \text{Defect}_\text{degree}(\text{Ddegree}) \quad ^\land \quad \text{Degree}(\text{Ddegree}, \text{D}_\text{Degree}) \quad ^\land \\
\quad \text{Defect}_\text{depth}(\text{Ddepth}) \quad ^\land \quad \text{Depth}(\text{Ddepth}, \text{D}_\text{Depth}) \quad ^\land \\
\quad \text{Defect}_\text{length}(\text{Dlength}) \quad ^\land \quad \text{Length}(\text{DLength}, \text{D}_\text{Length}) \quad \rightarrow \\
\quad \text{sqwrl:select}(\text{Ddepth}, \text{D}_\text{Degree}, \text{D}_\text{Depth}, \text{D}_\text{Length})
\]

FIGURE 10. Defining of instances

FIGURE 11. Completed consistency checking
C. Ontology validation
The ontology validation of semantic correctness, syntactic correctness, and rules validation is performed to meet the requirements of pile integrity evaluation and verify the developed ontology model.

Semantic validation
The semantic validation can be verified by comparing it with the correct model [32].

Syntactical validation
The syntactical validation of the developed OntoPIE is checked for complete consistency through Pellet reasoner that is compatible with Protégé-OWL 5.2; the results are shown in Figure 11.

Rules validation
The rules are verified by running the rules in the SWRLTab plug-in, as shown in Figure 12, to ensure the correctness of the SWRL rules and achieve the expected functions.

IV. CASE STUDY
A. Examples of defective pile

(b) Instance-b

(c) Instance-c

The reflected velocity wave curve of defective pile calculated by Eq (8) and the quantitative indicators of defects are shown in Figure 13.
B. The application of OntoPIE

The specific characteristic parameters of the reflected wave curve velocity obtained from the examples are inputted into OntoPIE to generate new facts through preset SWRL rules that are shown in Tables 4, 5, and 6.

Table 4. SWRL rules of quantitative defect indexes

<table>
<thead>
<tr>
<th>Rule</th>
<th>Calculating defect length of pile:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>(\text{Length} = \frac{H(\ell_2 - \ell_1)}{\ell_2 - \ell_1})</td>
</tr>
<tr>
<td>Defect length(DLength) (\times) has_Defect_refection(DLength, DR) (\times) has_Pile_toe_refection(DLength, PTL) (\times) Initial_signal(Initial_signal, IS) (\times) Initial_signal(Initial_signal, IS)</td>
<td></td>
</tr>
<tr>
<td>Rule 2</td>
<td>Calculating depth of pile:</td>
</tr>
<tr>
<td>Depth(Dlength) (\times) has_Defect_reflection(Dlength, DR) (\times) has_Defect_reflection(Dlength, DR)</td>
<td></td>
</tr>
<tr>
<td>Rule 3</td>
<td>Calculating the parameter of defect degree:</td>
</tr>
<tr>
<td>(b = \frac{1}{N} \sum_{i=1}^{N} (y_i - \bar{y}))</td>
<td></td>
</tr>
<tr>
<td>Defect degree(Ddegree) (\times) has_Defect_refection(Ddegree, DR) (\times) has_Defect_refection(Ddegree, DR)</td>
<td></td>
</tr>
</tbody>
</table>

Table 5. SWRL rules for qualitative evaluation of pile integrity

<table>
<thead>
<tr>
<th>Rule</th>
<th>Evaluation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>Integrity_category(IC) (\times) has_Defect_degree(IC, DD) (\times) Defect_degree(DD) (\times) Degree(DD, D_D) (\times) swrlb:greaterThanEqual(DD_D, 0.85) (\times) Category(IC, "II")</td>
</tr>
<tr>
<td>Rule 2</td>
<td>Integrity_category(IC) (\times) has_Defect_degree(IC, DD) (\times) Defect_degree(DD) (\times) Degree(DD, D_D) (\times) swrlb:lessThanEqual(DD_D, 0.84) (\times) swrlb:greaterThanEqual(DD_D, 0.60) (\times) Category(IC, "III")</td>
</tr>
</tbody>
</table>

Table 6. SWRL rules for defect types

<table>
<thead>
<tr>
<th>Rule</th>
<th>Defect types:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>Diameter necking</td>
</tr>
<tr>
<td>Rule 2</td>
<td>Diameter expanding</td>
</tr>
</tbody>
</table>

Figure 14 shows the results of running Instance-a in Figure 13. Then, technicians can query the quantitative indicators of defects and the integrity category of pile by inputting SQWRL rules.

The results of these instances after running the SQWRL rules in Table 7 are shown in Figure 15. Table 8 shows the comparison of the defect indicators between those designed and inferred by OntoPIE. It can be seen from Table 8 that the maximum tolerance is 5%, which can meet the accuracy requirements.

Table 7. The SQWRL rules for defect types

<table>
<thead>
<tr>
<th>Instance</th>
<th>Defect_degree(DD) (\times) Degree(DD, D_D) (\times) Defect_depth(Ddepth) (\times) Depth(Ddepth, D_D) (\times) Intensity_category(IC) (\times) Category(IC, "I")</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insta</td>
<td>Designed 3.8 1.3 90.2% Necking</td>
</tr>
<tr>
<td>nce</td>
<td>OntoPIE 3.79 1.31 90.8% Necking</td>
</tr>
<tr>
<td>a</td>
<td>Tolerance 0.3% 0.8% 0.7%</td>
</tr>
<tr>
<td>Insta</td>
<td>Designed 3.2 0.8 64% Necking</td>
</tr>
<tr>
<td>nce</td>
<td>OntoPIE 3.26 0.79 62.4% Necking</td>
</tr>
<tr>
<td>b</td>
<td>Tolerance 1.9% 1.2% 2.5%</td>
</tr>
<tr>
<td>Insta</td>
<td>Designed 4.8 1.1 36% Necking</td>
</tr>
<tr>
<td>nce</td>
<td>OntoPIE 4.56 1.07 34.8% Necking</td>
</tr>
<tr>
<td>c</td>
<td>Tolerance 5% 2.7% 3.3%</td>
</tr>
</tbody>
</table>

Table 8. Comparison of the defect indicators of those designed and inferred by OntoPIE

<table>
<thead>
<tr>
<th>Defect</th>
<th>Depth</th>
<th>Degree</th>
<th>Types</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed</td>
<td>3.8</td>
<td>1.3</td>
<td>90.2%</td>
<td>Necking</td>
</tr>
<tr>
<td>OntoPIE</td>
<td>3.79</td>
<td>1.31</td>
<td>90.8%</td>
<td>Necking</td>
</tr>
<tr>
<td>Tolerance</td>
<td>0.3%</td>
<td>0.8%</td>
<td>0.7%</td>
<td></td>
</tr>
<tr>
<td>Designed</td>
<td>3.2</td>
<td>0.8</td>
<td>64%</td>
<td>Necking</td>
</tr>
<tr>
<td>OntoPIE</td>
<td>3.26</td>
<td>0.79</td>
<td>62.4%</td>
<td>Necking</td>
</tr>
<tr>
<td>Tolerance</td>
<td>1.9%</td>
<td>1.2%</td>
<td>2.5%</td>
<td></td>
</tr>
<tr>
<td>Designed</td>
<td>4.8</td>
<td>1.1</td>
<td>36%</td>
<td>Necking</td>
</tr>
<tr>
<td>OntoPIE</td>
<td>4.56</td>
<td>1.07</td>
<td>34.8%</td>
<td>Necking</td>
</tr>
<tr>
<td>Tolerance</td>
<td>5%</td>
<td>2.7%</td>
<td>3.3%</td>
<td></td>
</tr>
</tbody>
</table>
VII. CONCLUSION

In this paper, based on a fictitious saturated soil pile model proposed by the author, the semi-analytical solution of the velocity response at the pile head is derived. The rationality of this solution is verified by comparing it with the measured data from an engineering example. Then, the intrinsic relationships between the quantitative indicators of defect and characteristic parameters of reflected wave curves are determined by combining analytical and numerical fitting methods. A specific ontology-based evaluation system, OntoPIE, was developed for quantitative identification and qualitative evaluation of pile with defects.
A case study was also performed to show how OntoPIE can be used. The specific characteristic parameters of the reflected wave curve velocity obtained from these cases are inputted into this framework to generate new facts through preset SWRL rules. The query results from inputting SQWRL rules are compared with designed defect indicators to validate the practicability and rationale of the developed framework.

The developed OntoPIE and corresponding ontology framework of leverage knowledge modeling for integration evaluation can also be extended to other evaluation systems (e.g. a bridge evaluation system). In future work, a more easy-to-use man-machine interactive interface (e.g. GUI) should be developed. Also, this framework should be extended to the holistic evaluation of the bearing capacity of pile group foundation to guide design.

REFERENCES

Cui Chunyi, Ph.D., Professor, doctoral supervisor, dean of the Department of civil engineering, Dalian Maritime University. In 2007, he obtained his Ph.D. in geotechnical engineering from Dalian University of technology, and entered the National Key Laboratory of offshore and coastal engineering of Dalian University of technology and the Key Laboratory of the Ministry of education of Beijing University of technology in 2009 and 2013 respectively to engage in in-service postdoctoral research. During 2012-2013, he worked in the University of Birmingham in cooperation with foreign researchers. His research interests include:
1. Dynamic failure mechanism of urban underground structure and lifeline engineering;
2. Disaster analysis and prevention of offshore and coastal engineering structures under extreme environmental loads (offshore wind turbines, offshore platforms);
3. Numerical and analytical methods of interaction between structure and foundation;
4. Nonlinear soil dynamics and geotechnical earthquake engineering analysis;
5. Intelligent information model is applied in transportation infrastructure.

HaiJiang Li (PhD, FBCS) is a Chair Professor in Smart Engineering. He is the Director of BIM for Smart Engineering Lab & Center, Engineering School, Cardiff University, UK. He is an associate editor for the journal of Automation in Construction, and Editor-in-chief for the Journal of Construction Innovation. For more than 20 years, Prof. Li has been working towards a new generation smart engineering computing platform, underpinned by High Performance Computing (HPC & Cloud Computing), inter-linked domain knowledge (Ontology Modelling), Artificial Intelligence algorithms and BIM (Building Information Modelling) based standardization across sectors throughout project life cycle, to support large scale engineering data / information / knowledge processing, smart engineering optimization and holistic decision making to help to achieve sustainable and resilient built environment.

Prof. Li's research mainly covers three areas:
(1) Fundamental life cycle BIM data, information and knowledge processing
(2) Large scale smart engineering computing, data analytics and optimization
(3) Knowledge based and artificial intelligence supported holistic decision making