Conformational flexibility within the small domain of human serine racemase

Chloe R. Koulouris, Benjamin D. Bax, John R. Atack and S. Mark Roe

Conformational flexibility within the small domain of human serine racemase

Chloe R. Koulouris,*a Benjamin D. Bax,*b John R. Attack*b and S. Mark Roe*c

aSussex Drug Discovery Centre, University of Sussex, Falmer, Brighton BN1 9QG, England, bMedicines Discovery Institute, School of Biosciences, University of Cardiff, Park Place, Cardiff CF10 3AT, Wales, and cDepartment of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, England.
*Correspondence e-mail: c.koulouris@sussex.ac.uk, baxb@cardiff.ac.uk, atackj@cardiff.ac.uk

Serine racemase (SR) is a pyridoxal 5'-phosphate (PLP)-containing enzyme that converts L-serine to D-serine, an endogenous co-agonist for the N-methyl-D-aspartate receptor (NMDAR) subtype of glutamate ion channels. SR regulates D-serine levels by the reversible racemization of L-serine to D-serine, as well as the catabolism of serine by C11/C12-elimination to produce pyruvate. The modulation of SR activity is therefore an attractive therapeutic approach to disorders associated with abnormal glutamatergic signalling since it allows an indirect modulation of NMDAR function. In the present study, a 1.89 Å resolution crystal structure of the human SR holoenzyme (including the PLP cofactor) with four subunits in the asymmetric unit is described. Comparison of this new structure with the crystal structure of human SR with malonate (PDB entry 3l6b) shows an interdomain cleft that is open in the holo structure but which disappears when the inhibitor malonate binds and is enclosed. This is owing to a shift of the small domain (residues 78–155) in human SR similar to that previously described for the rat enzyme. This domain movement is accompanied by changes within the twist of the central four-stranded β-sheet of the small domain, including changes in the φ–ψ angles of all three residues in the C-terminal β-strand (residues 149–151). In the malonate-bound structure, Ser84 (a catalytic residue) points its side chain at the malonate and is preceded by a six-residue β-strand (residues 78–83), but in the holoenzyme the β-strand is only four residues (78–81) and His82 has φ–ψ values in the α-helical region of the Ramachandran plot. These data therefore represent a crystallographic platform that enables the structure-guided design of small-molecule modulators for this important but to date undrugged target.

1. Introduction

N-Methyl-D-aspartate receptors (NMDARs) are a subtype of ionotropic glutamate receptors that are highly expressed in the central nervous system (CNS) and are involved in the excitatory synaptic transmission and synaptic plasticity that form the basis of many critical CNS functions (Traynelis et al., 2010). Glutamatergic and more specifically NMDAR dysfunction has been implicated in various CNS disorders, including Alzheimer’s disease (Zádori et al., 2014; Balu et al., 2019), amyotrophic lateral sclerosis (ALS; Paul & de Belleroche, 2014), neuropathic pain (Petrenko et al., 2003), schizophrenia (Howes et al., 2015) and major depressive disorder (Niciu et al., 2014). Most nonselective, direct NMDAR antagonists (such as ketamine) that have shown efficacy at relieving symptoms of neuropathic pain (Zhou et al., 2011) and treatment-resistant depression (TRD; Daly et al., 2019; Vasilescu et al., 2017) have undesirable side effects that restrict their clinical utility (Pomarol-Clotet et al., 2006; Niesters et al.,
The organization of the human SR–malonate complex is described as follows (Smith et al., 2010). The small domain (residues 55–151) contains a central four-stranded β-sheet (residues 149–151, 78–83, 101–108 and 124–128) and four α-helices (residues 55–66, 85–98, 111–121 and 131–147), and the large domain (residues 1–68 and 157–340) contains a seven-stranded twisted β-sheet surrounded by ten α-helices.

PLP-dependent enzymes can be categorized as fold types I–IV, according to the similarity of their secondary structure (Jansonius, 1998). SR belongs to the fold type II family, along with its closest homologue serine dehydratase (SDH). SDH is a mammalian enzyme that catalyses the dehydration of l-serine to pyruvate and ammonia, and shares 23% sequence identity with SR. Proteins in this group have two domains and each contains a β-sheet core surrounded by α-helices. Accordingly, the small domain of SDH consists of a central four-stranded β-sheet surrounded by four α-helices (Yamada et al., 2003; Sun et al., 2005), and corresponds to residues 55–151 of SR. In the original crystal structure paper, Smith and coworkers defined the small domain as residues 78–155, and did not include helix 3 (55–66) in the small domain because it precedes a mobile hinge region (residues 69–77) and is not involved in the rearrangement of the small domain (Smith et al., 2010). Further, their definition of a flexible loop region connecting both domains comprised of residues 68–77 and 145–149 (Smith et al., 2010) is somewhat problematic as residues 145–149 are defined as being within the small domain and are before the final β-strand of the central β-sheet.

In the present study, we have determined the structure of the holo form of human SR and used this in structural comparisons with the previously published human malonate-bound complex. We have used the more soluble Cys2Asp, Cys6Asp mutant (Smith et al., 2010; Section 2) as this construct improves the solubility during the purification process, while producing no significant structural changes at the N-terminus when compared with wild-type protein (PDBe entry 5x2l; Takahara et al., 2018). Moreover, we have sought to clarify the ambiguity regarding the domain-boundary definitions of SR, particularly in the context of ligand-induced small domain rearrangement. A more developed understanding of the conformational changes that occur upon malonate binding may further inform and enable strategies, such as structure-guided drug design, for the development of novel inhibitors of SR with more drug-like properties.

2. Materials and methods

2.1. Macromolecule production

The pET-24a vector containing a C-terminal polyhistidine (His6) tag and two cysteine-to-aspartate point mutations (Cys2Asp, Cys6Asp) to improve solubility during the purification process (Smith et al., 2010) and improve the overall yield (unpublished observations) was chemically transformed into Escherichia coli BL21 CodonPlus(DE3)-RIL cells, and
plated onto LB agar plates (50 μg ml\(^{-1}\) kanamycin and 35 μg ml\(^{-1}\) chloramphenicol) for overnight incubation at 37°C. Pre-cultures grown overnight in LB from a single colony at 37°C were used to inoculate 8 × 11 LB medium supplemented with 50 μg ml\(^{-1}\) kanamycin, 34 μg ml\(^{-1}\) chloramphenicol and 0.01% pyridoxine (the enzyme contains PLP as a cofactor). The cells were grown at 37°C to an optical density at 600 nm (OD\(_{600}\)) of 0.6, at which point gene expression was induced with 0.5 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and cell growth was continued for a further 16–18 h at 37°C.

The cells were harvested by centrifugation at 6500 g for 20 min at 4°C and stored at −80°C. The cell pellet was solubilized and lysed by sonication while on ice and the lysate was then clarified at 25 000 g for 20 min at 4°C and stored at −80°C.

The supernatant was loaded onto a TALON column for initial purification by immobilized-metal affinity chromatography via interaction of the SR His tag with the nickel-containing beads of the TALON resin. The protein-containing fractions (as determined by SDS–PAGE) were loaded onto a Superdex 200 (26/60) column equilibrated with buffer consisting of 20 mM Tris pH 8.0, 100 mM NaCl, 5 mM DTT, 50 μM PLP, 1 mM MgCl\(_2\), 10% glycerol. The SR-containing fractions (as determined by SDS–PAGE) were pooled and concentrated to 15 mg ml\(^{-1}\) before being flash-frozen in liquid nitrogen and stored at −80°C. The protein concentration was determined by UV spectrophotometry at 280 nm using a molar extinction coefficient of 29 910 M\(^{-1}\) cm\(^{-1}\) and a molecular weight of 37.4 kDa. The protein yield was approximately 0.65 mg ml\(^{-1}\) SR and 5 mM DTT in a 1:1 ratio and equilibrated at 20°C. Crystals appeared within 48 h and grew to full size (~50 μm) within seven days. The crystal used for the diffraction experiment was cryoprotected by sequential soaking in reservoir solution supplemented with 10%, 20% and 30% glycerol prior to data collection. Crystallization information is summarized in Table 2.

2.2. Crystallization

Human holo SR was crystallized by the sitting-drop vapour-diffusion method. A reservoir solution consisting of 15% PEG 3350, 100 mM bis-Tris pH 6.5, 250 mM MgCl\(_2\) was mixed with the protein solution (6.5 mg ml\(^{-1}\) SR and 5 mM DTT) in a 1:1 ratio and equilibrated at 20°C. Crystals appeared within 48 h and grew to full size (~50 μm) within seven days. The crystal used for the diffraction experiment was cryoprotected by sequential soaking in reservoir solution supplemented with 10%, 20% and 30% glycerol prior to data collection. Crystallization information is summarized in Table 2.

2.3. Data collection and processing

An X-ray data set was collected from a single cryocooled crystal on beamline I03 at the Diamond Light Source synchrotron (Table 3).

2.4. Structure solution and refinement

The structure was solved by molecular replacement using the crystal structure of the rat SR holoenzyme (Smith et al., 2010; the rat holoenzyme was used because structure solution occurred prior to the deposition of PDB entry 5x2l) and was refined with REFMAC5 (Murshudov et al., 2011) and phenix.refine (Adams et al., 2010) with iterative cycles of model building in Coot (Emsley et al., 2010). The final structure had reasonable geometry and R factors (Table 4) and the

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Macromolecule-production information.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNA source</td>
<td>pET-24a vector containing the human SR gene with two point mutations (Cys2Asp, Cys6Asp) and a C-terminal His(_6) tag kindly donated by Evotec for the purposes of this research</td>
</tr>
<tr>
<td>Cloning vector</td>
<td>pUC57</td>
</tr>
<tr>
<td>Expression vector</td>
<td>pET-24a</td>
</tr>
<tr>
<td>Expression host</td>
<td>E. coli BL21 CodonPlus(DE3)-RIL</td>
</tr>
<tr>
<td>Complete amino-acid sequence of the construct produced</td>
<td>[\text{MDAQ2Y}D\text{ISPADVERAHINIKOSLHLPVLT} \text{SSTIQNLQTRNLFFWCKELQWKTGSKFRK} \text{GALNAVRLSVPDLERKPKAHSVHSSG} \text{HQAQLTYAKKLEGIPAYIVVFQTAPDC} \text{KLAIQQYYGASIVYCEPSDESRENVKRV} \text{TTETEGIMVHPQEPAVIAAGTIALEV} \text{LNQVPFLDVALIVPVGGGLAGSAIVTK} \text{ALKPSVYVVAEPE6NADDCCQYSKLGLKLM} \text{MPNLYPTEPATQVKGSLNLMPNPIRRD} \text{LVD}} \text{DFTTVEDEIEKCATQLVWERMKLLI} \text{EPTAVGVVAALQSHQFTVSPVEPVKNICI} \text{VLSGGNQLTSSITWVQAERPSYQSV} \text{SVHHHHHH}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Crystallization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method</td>
<td>Sitting-drop vapour diffusion</td>
</tr>
<tr>
<td>Plate type</td>
<td>MRC Maxi 48-well</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293</td>
</tr>
<tr>
<td>Buffer composition of protein solution</td>
<td>20 mM Tris–HCl pH 8.0, 100 mM NaCl, 10% glycerol, 1 mM MgCl(_2), 0.5 mM ATP, 50 μM PLP, 5 mM DTT</td>
</tr>
<tr>
<td>Composition of reservoir solution</td>
<td>100 mM bis-Tris pH 6.5, 15% PEG 3350, 250 mM MgCl(_2)</td>
</tr>
<tr>
<td>Volume and ratio of drop</td>
<td>2 μl:1 μl</td>
</tr>
<tr>
<td>Volume of reservoir (μl)</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Data collection and processing.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffraction source</td>
<td>I03, Diamond Light Source</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.97625</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293</td>
</tr>
<tr>
<td>Detector</td>
<td>PILATUS3 6M, Dectris</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(_1)</td>
</tr>
<tr>
<td>a, b, c (Å)</td>
<td>48.20, 155.74, 85.58</td>
</tr>
<tr>
<td>α, β, γ (°)</td>
<td>90, 98.48, 90</td>
</tr>
<tr>
<td>Resolution range (Å)</td>
<td>42.73–1.89 (1.92–1.89)</td>
</tr>
<tr>
<td>No. of reflections</td>
<td>331938 (16869)</td>
</tr>
<tr>
<td>Completeness (%)</td>
<td>99.2 (99.7)</td>
</tr>
<tr>
<td>Multiplicity</td>
<td>99.2 (99.7)</td>
</tr>
<tr>
<td>Rmerge</td>
<td>0.061 (0.947)</td>
</tr>
<tr>
<td>R(_{\text{free}})</td>
<td>0.071 (1.086)</td>
</tr>
<tr>
<td>CC(_{1/2})</td>
<td>0.997 (0.543)</td>
</tr>
<tr>
<td>Overall B factor from Wilson plot (Å(^2))</td>
<td>36.3</td>
</tr>
</tbody>
</table>
four subunits in the asymmetric unit contained residues A4–A325, B4–B326, C3–C325 and D4–D325.

Towards the end of the refinement, difference maps clearly showed electron density for a second position for the β-strands in the central β-sheet of the small domain in the C subunit (the small domain of human SR is defined as residues 78–155). The small domain from the C subunit (residues C74–C152) was rigid-body fitted into the difference map in Coot, and the new position (and the original position) were refined with occupancies in steps of 0.1 (0.1/0.9, 0.2/0.8 etc.). Lower R factors (and R_{free}) suggested that the occupancy of the alternate ‘new’ position was approximately 0.3 (and that of the original position was 0.7). There is some variability in the position of the small domain relative to the large domain when all four subunits are compared (Supplementary Fig. S1).

Across the four chains in the asymmetric unit (A, B, C and D), the overall ordering of the residues was reasonable, with exceptions at the N-terminus (residues 1–3) and C-terminus (residues 326–340). The small domains (residues 78–151) appear to be more mobile, with higher temperature factors (σ^2) than the large domain. The small domain (residues 78–155) (Fig. 1A) connected by a flexible loop region (residues 66–77) at the N-terminus of the small domain (residues 78–155) (Fig. 1A) connected by a flexible loop region (residues 66–77) is complete and well defined in all chains, which is likely to be an effect of crystal packing. The Ramachandran plot reveals good stereochemistry and negligible steric hindrances between atoms of the polypeptide backbone, with 99.6% of residue angles falling within the allowed regions and 96% within favoured regions (Table 4).

2.5. Structure analysis

Secondary structures were calculated with the PDBSUM server (Laskowski et al., 2018), including HERA plots of secondary structure (Hutchinson & Thornton, 1990). The secondary structure of the A subunit from our 1.89 Å resolution holoenzyme structure (PDB entry 6shl), as calculated with the PDBSUM server, was manually checked against electron density in Coot (Emsley et al., 2010). This secondary structure was compared with that defined in the PDB headers of the 1.5 Å resolution human SR structure in complex with malonate (PDB entry 3I6b; Smith et al., 2010) and the 1.81 Å resolution crystal structure of wild-type SR (PDB entry 5x2l; Takahara et al., 2018). The PDBSUM server definitions of secondary structure for PDB entries 3I6b and 5x2l were also checked (see Supplementary Table S1 for definitions and comparisons of secondary-structure elements). This analysis defined the positions of the ten β-strands (β1–β10), 12 α-helices (α1–α12) and five β_{10}-helices in our structure (Supplementary Table S1). We note that although serine dehydratase belongs to the same overall fold type as SR, it lacks the N-terminal helix of SR and its C-terminal helix is an α-helix rather than the β_{10}-helix often seen in SR structures (Supplementary Table S1).

Secondary-structure definitions were inserted into the PDB headers before drawing structures with PyMOL (v.1.5.0.4; Schrödinger). The Kleywegt (Ramachandran) plots (Kleywegt & Jones, 1996) were drawn in Coot (Emsley et al., 2010). φ–ψ angles were calculated with the CCP4 program ANGLES (Winn et al., 2011) and are presented in Supplementary Table S2.

The small domain is defined as residues 78–155 and the large domain as residues 1–68 and 156–316. R.m.s. fits were calculated with LSQKAB (Winn et al., 2011) for all Cα atoms or subsets of Cα atoms between the A subunit of our new 1.89 Å resolution human SR structure and the previously determined structure in complex with malonate (PDB entry 3I6b) and holo structure in a different cell (PDB entry 5x2l) (see Supplementary Table S3). In the two holo structures the large and small domains are in roughly the same position, whereas in the complex with malonate the small domain is in a different position with respect to the large domain.

3. Results and discussion

3.1. Human SR holoenzyme structure

The crystal structure of the human SR holoenzyme was determined to a resolution of 1.89 Å in space group $P2_1$ and reveals the large domain (residues 1–68 and 156–316) and the small domain (residues 78–155) (Fig. 1a) connected by a flexible loop region (residues 66–77) at the N-terminus of the small domain. The PLP catalytic cofactor is covalently linked to Lys56 via a Schiff-base linkage between the side chain of the lysine and the carbonyl C atom of PLP. The C-terminal β-strand (residues 149–151) of the small domain can change its φ–ψ angles (twist) to allow domain movement. Our definition of the small domain (residues 78–155) agrees with that taken from Smith et al. (2010), whereas our definition of the large domain (residues 1–68 and 156–316) differs from theirs.
(residues 1–68 and 157–340) in that we do not include the C-terminal β_{10}-helix (residues 319–325) and subsequent disordered residues. The recently published holoenzyme crystal structure of wild-type human SR (PDB entry 5x2l; Takahara et al., 2018), which did not have the two N-terminal mutations Cys2Asp and CysC6Asp (see Section 2.1), has a very similar structure at the N-terminus. However, PDB entry 5x2l is shorter at the C-terminus (the last residue is 317) and does not have the C-terminal β_{10}-helix (see Supplementary Table S1 for a description of the secondary-structural elements used in this paper). Regardless of some local structural differences, the overall structures of PDB entries 6slh and 5x2l superpose well, with a Ca r.m.s.d. of 0.55 Å.

The C-terminal helix (residues 319–325) of PDB entry 6slh is located at the dimer interface and appears to have some degree of flexibility, which may reflect a role in dimerization and stabilization of the protein complex. Indeed, the C-terminal β_{10}-helices are in close proximity to each other in chains A/C and B/D, and the interfaces of each pair of helices are lined with hydrophobic residues (Leu319, Thr320, Ile323 and Val326) that indicate the presence of dimerizing hydrophobic interactions. It has been suggested that the activity of SR may be regulated by interactions of its C-terminal residues with a PDZ domain from GRIP (Baumgart et al., 2007).

In accordance with the characteristics of fold type II PLP-dependent enzymes, our SR holoenzyme structure reveals a small domain with a central β-sheet consisting of four parallel β-strands (residues 78–81, 101–108, 124–128 and 149–151) flanked by two α-helices on one side (residues 85–98 and 111–121) and one α-helix (residues 131–146) on the other side. The large domain has a six-stranded β-sheet core surrounded by α-helices, and this domain arrangement is conserved between the malonate complex (PDB entry 3l6b) and our holoenzyme structure. A magnesium ion resides in the divalent cation-binding site, where it is coordinated by three buried waters, two acidic side chains (Glu210 and Asp216) and the

Figure 1

Overall comparison of the new holo human SR structure with that of a malonate complex (PDB entry 3l6b). (a) One human SR monomer from the 1.89 Å resolution holo structure. Each subunit has a large domain (dark blue) and a small domain (cyan). The C-terminal β_{10}-helix is shown in grey. The essential cofactor PLP covalently bound to Lys56 is shown in sphere representation. (b) The human SR subunit from the structure with malonate (orange spheres) is shown with the small domain in pale green and the large domain in dark green. (c) Superposition of the large domains of the structures in (a) and (b). Note how most, but not all, of the small domain is shifted. (d) Close-up view of the malonate-binding site in a similar orientation to (b).
Figure 2
Superposition of the small domains of human SR structures. (a) The small domain (cyan) from the 1.89 Å resolution human SR structure contains secondary-structural elements labelled β-3, α-4, β-4, α-5, β-5, α-6 and β-6. Also shown are main-chain hydrogen bonds (dark blue), the C-terminal 3₁₀-helix (dark grey) and the 67–77 loop (dark grey). The Ser84 side chain (modelled in two rotamers) is shown in stick representation. (b) PLP attached to Lys56 drawn with MarvinSketch using the most likely tautomer at pH 7.0 (there are 14 possible tautomers between pH 4 and 10). (c) The human SR subunit from a structure with malonate (PDB entry 3l6b) is shown with the small domain in yellow and the large domain in light green. The Ser84 side chain is shown in stick representation pointing at malonate (orange sticks). Main-chain hydrogen bonds are shown in orange. (d) Chemical representation of the structure in (c). Dotted lines are possible hydrogen bonds (length of <3.3 Å). (e) Superposition of the small domains of the structures in (a) and (c). Note how most of the small domain is reasonably well superposed, but Ser84 and the α-4 helix are in different positions. (f) Ser84 is believed to protonate the substrate serine to convert it to d-serine.
main-chain carbonyl of Ala214, thus helping to stabilize protein folding and increase maximal activity (De Miranda et al., 2002; Bruno et al., 2017). While the domain structure and most secondary-structural elements are conserved between SR and SDH, SDH lacks the N-terminal α-helix and has a C-terminal α-helix, rather than the C-terminal 3_10-helix seen in some human SR structures (Supplementary Table S1).

3.2. The small domain is in an ‘open’ position in the holo structure

Comparing the structures of holo (Fig. 1a) and malonate-bound (Fig. 1b) human SR using a superposition based on residues from the large domains showed a relative large shift of most of the small domain (Fig. 1c). There is a striking difference between the accessibility of the active site in the two structures. In the malonate-bound form (Figs. 1b and 1d) the small domain is positioned tight against the large domain to form a ‘closed’ structure in which the catalytic site is inaccessible to solvent; notably, helices α5 and α6 shift towards PLP in the large domain by distances of about 5.5 and 8 Å, respectively. In the holoenzyme structure, the high degree of mobility of the small domain and flexible loop region is shown by the distance between the two domains, creating an ‘open’ position large enough to allow the binding of an amino acid, small molecule or compound.

When malonate is bound in the active site (Fig. 1d) it forms hydrogen bonds between its two carboxylic acid groups and the surrounding residues: the hydroxyl groups of Ser84 and Ser242, the amino groups of Ser84 and His87 and the side chain of Arg135 (Fig. 1d). The dual carboxylic acid nature of malonate allows it to induce a conformational shift linking the large domain and Ser84, the key catalytic site residue located in the small domain. In a proposed mechanism of L-serine isomerization, PLP and L-serine are linked by a protonated Schiff base, and PLP then deprotonates L-serine to form a planar intermediate. Ser84 is moved into position via a ligand-induced shift on the opposite side of the PLP ring plane to donate a proton from its hydroxyl group and thus invert the stereochemistry of L-serine to D-serine (Yoshimura, 2008; Goto et al., 2009).

The commonly accepted reaction mechanism of mammalian SR is based on data from bacterial enzymes and comparisons between human, rat and yeast orthologues (Goto et al., 2009; Smith et al., 2010). The major structural change between human holo and malonate-bound SR described here further supports the existence of an analogous mechanism for L-serine isomerization in the human enzyme. Moreover, the ‘open’ conformation of the human SR holoenzyme suggests that the active site and key catalytic residues are accessible to small molecules and compounds, and indicates that SR is structurally enabled for drug-discovery efforts and in silico screening.

3.3. Conformational flexibility with the small domain of human SR

A superposition of holo (Fig. 2a) and malonate-bound (Fig. 2c) human SR based on residues from the small domains (residues 78–155) show that not all residues within the small domain of human SR ‘move’ with the small domain. Notably, the α4 helix (residues 85–99) and residues at the C-terminal end of the domain (residues 153–155) do not move with the rest of the small domain but seem to remain relatively static with regard to the large domain (Fig. 1c). Thus, we have defined a small mobile subdomain (residues 78–81 and 101–148) which appears to be linked to the rest of SR by four

Figure 3
Conformational flexibility within the small domain of the human SR structure. (a) Main-chain atoms from the small domain of human SR, close to Ser84, are shown with N atoms in blue, O atoms in red, C atoms in cyan for the holo structure and yellow for the malonate-bound structure (PDB entry 3l6b), and main-chain hydrogen bonds as dashed blue or orange lines. The small domains are superposed as in Fig 2(c). The loop connecting the C-terminus of β3 to the N-terminus of α4 has a different conformation, and the α4 helix from the small domain is not well superposed. (For clarity, only the side chains of His82 and Ser84 are shown. Note how the carbonyl O atoms of His82, which are ringed, are pointing in different directions.) (b) A Kleywegt plot comparing the small domain of holo SR (subunit D) with that in a malonate-bound structure (PDB entry 3l6b). The plot shows arrows between the same residue in the two structures. Residues that have large differences in ψ–ψ angles are labelled (blue for holo ψ–ψ, orange for malonate ψ–ψ). The ψ–ψ angles in this region are presented in Supplementary Table S2.
flexible hinge regions (residues 68–77, 82–85, 99–101 and 149–151), which were defined based on further analysis of the small domain (Fig. 3). Our data show that the loop that contains Ser84 undergoes a dramatic change in conformation between the holo and ligand-bound structures (Fig. 3a), with two residues, His82 and Gly85, having very different conformations (Fig. 3b). A comparison of \(\varphi-\psi \) angles (Supplementary Table S2) demonstrates that not only are there dramatic changes in the \(\varphi-\psi \) angles of His82 and Gly85, but that there is a consistent change in the \(\varphi-\psi \) angles of the three residues in the final \(\beta \)-strand of the small domain (residues 149–151; Supplementary Table S2). This \(\beta \)-strand (residues 149–151), acting as a flexible hinge region, is relatively well superposed whether the superposition is based on the large domain (Fig. 1c) or the small domain (Fig. 2c). Furthermore, a significant change in the conformation of residues 82–85 (Fig. 3) indicates that this is an additional loop region, which may function to prevent any catalysis occurring until the substrate is fully captured in an enclosed active site.

4. Discussion

When large structural movements take place within a single globular structural domain (for example between the GDP- and GTP-bound forms of the small GTPase ARF; Goldberg, 1998), subdivision of the structural domain into subdomains that ‘move’ relative to each other in different states of the protein may become relevant. We have analysed secondary- and tertiary-structure elements in our human holoenzyme SR structure and in a malonate complex of SR (PDB entry 3i6b) to define ‘moving’ and ‘relatively static’ subdomains within the small domain of human serine racemase, and we show that only part of the small domain moves upon the binding of malonate. While the crystal structure presented here appears to have high global structural homology to previous SR structures (PDB entries 5x21 and 3i6b), our observations regarding the movement of the small domain subdomain and the presence of four flexible hinge regions differs from previous assertions in that the ligand binding induced movement of the entire small domain flanked by two loop regions (Smith et al., 2010). Structural knowledge of SR subdomain rearrangement is important for in silico drug design, pharmacophore modelling and screening, and provides additional information for determining how conformational changes of the hinge regions and subdomain alter binding in the active site.

Acknowledgements

We are especially grateful to Evotec, particularly Myron Smith, Michael Wood and David Hallett, for their provision of the expression construct and protein-production resources and advice. We also thank Diamond Light Source Ltd (Didcot, UK) for access to synchrotron radiation on beamline I03, the Wellcome Trust for support for X-ray diffraction facilities at the University of Sussex and Raj Gill for useful discussion.

Funding information

Funding for this research was provided by: University of Sussex (studentship to Chloe R. Koulouris).

References

