Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Dynamic accretion beneath a slow-spreading ridge segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core complex

Dick, H. J. B., MacLeod, C. J., Blum, P., Abe, N., Blackman, D. K., Bowles, J. A., Cheadle, M. J., Cho, K., Ciazela, J., Deans, J. R., Edgcomb, V. P., Ferrando, C., France, L., Ghosh, B., Ildefonse, B., John, B., Kendrick, M. A., Koepke, J., Leong, J. A. M., Liu, C., Ma, Q., Morishita, T., Morris, A., Natland, J. H., Nozaka, T., Pluemper, O., Sanfilippo, A., Sylvan, J. B., Tivey, M. A., Tribuzio, R. and Viegas, G. 2019. Dynamic accretion beneath a slow-spreading ridge segment: IODP Hole 1473A and the Atlantis Bank Oceanic Core complex. Journal of Geophysical Research. Solid Earth 124 (12) , pp. 12631-12659. 10.1029/2018JB016858

[img]
Preview
PDF - Published Version
Download (1MB) | Preview

Abstract

809 deep IODP Hole U1473A at Atlantis Bank, SWIR, is 2.2 km from 1,508‐m Hole 735B and 1.4 from 158‐m Hole 1105A. With mapping, it provides the first 3‐D view of the upper levels of a 660‐km2 lower crustal batholith. It is laterally and vertically zoned, representing a complex interplay of cyclic intrusion, and ongoing deformation, with kilometer‐scale upward and lateral migration of interstial melt. Transform wall dives over the gabbro‐peridotite contact found only evolved gabbro intruded directly into the mantle near the transform. There was no high‐level melt lens, rather the gabbros crystallized at depth, and then emplaced into the zone of diking by diapiric rise of a crystal mush followed by crystal‐plastic deformation and faulting. The residues to mass balance the crust to a parent melt composition lie at depth below the center of the massif—likely near the crust‐mantle boundary. Thus, basalts erupted to the seafloor from >1,550 mbsf. By contrast, the Mid‐Atlantic Ridge lower crust drilled at 23°N and at Atlantis Massif experienced little high‐temperature deformation and limited late‐stage melt transport. They contain primitive cumulates and represent direct intrusion, storage, and crystallization of parental MORB in thinner crust below the dike‐gabbro transition. The strong asymmetric spreading of the SWIR to the south was due to fault capture, with the northern rift valley wall faults cutoff by a detachment fault that extended across most of the zone of intrusion. This caused rapid migration of the plate boundary to the north, while the large majority of the lower crust to spread south unroofing Atlantis Bank and uplifting it into the rift mountains.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Earth and Ocean Sciences
Publisher: American Geophysical Union (AGU)
ISSN: 2169-9313
Date of First Compliant Deposit: 23 January 2020
Date of Acceptance: 28 October 2019
Last Modified: 25 Sep 2020 08:17
URI: http://orca-mwe.cf.ac.uk/id/eprint/128965

Citation Data

Cited 7 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics