Abstract: Lithiation of \(N'-(2\text{-bromoaryl})\)-\(N, N\)-dimethylureas with methylolithium and tert-butyllithium under nitrogen in dry THF at 0 °C gave doubly lithiated aryurea derivatives, which react with carbon monoxide at 0 °C to give isatins in good yields.

Key words: carbonylation, \(N, N\)-dimethylureas, isatins, intramolecular trapping, positron emission tomography

The carbonylation of organometallics has been reviewed.\(^2\) The nature of the reactions depends on the nature of the organometallics. Although organolithium reagents are frequently reacted with carbon dioxide for the formation of carboxylic acids, reactions with carbon monoxide are much more limited due to the extreme reactivity of the acyllithium intermediates. This reactivity leads to dimerisation, decomposition, reaction with further carbon monoxide or other reactions, giving rise to a range of compounds other than those expected for simple electrophilic trapping.\(^2\) A range of acyl anion equivalents has been developed to overcome this problem,\(^3\) but such reagents are not without drawbacks. In particular, they require additional steps to unmask the carbonyl functionality and they cannot be used for introducing isotopically labelled carbon monoxide. It has been shown that it is possible to trap acyllithiums derived from carbonylation of alkyllithium reagents \textit{in situ}, given that the reaction is carried out at very low temperature with a highly reactive electrophile.\(^4\) The conditions are, however, rather restrictive and the method has only rarely been used with aryllithiums.\(^5\) Therefore, it appeared that intramolecular trapping of acyllithiums might provide a more generally useful synthetic approach for carbonylation reactions of organolithium reagents.\(^6\)

As part of our continuing interest in lithiation reactions,\(^7\) we have also made use of intramolecular trapping of acyllithiums formed \textit{via} carbonylation reactions. For example, we have shown that carbonylation of doubly lithiated \(N\)-pivaloylanilines and \(N\)-pivaloylamino-pyridines affords \(3\text{-} \text{tert}-\text{butyl-3-hydroxy-2,3-dihydroindol-2-ones} \) and aza-\(3\text{-} \text{tert}-\text{butyl-3-hydroxy-2,3-dihydroindol-2-ones} \) (2), respectively, in good yields (Scheme 1).\(^8\)

Scheme 1

Unfortunately, the presence of a \textit{tert}-butyl group in compounds 2 greatly restricts the utility of those compounds.

Recently we have also obtained unexpected products from the carbonylation of 3-pivaloylaminquinazolin-4(3\(\text{H}\))-one.\(^9\) We have therefore sought to replace the
pivaloylamino group in the starting material with another group that would provide products of greater utility.

We tried the reaction of carbon monoxide and doubly lithiated N-tert-butoxycarbonylaniline, but although the reaction mixture turned a deep colour on introduction of carbon monoxide, as had been the case with doubly lithiated compounds of type 1, we were unable to isolate indole derivatives in more than trace amounts after work-up of the reaction mixture. We had more success with doubly lithiated N'-aryl-N,N-dimethylthioureas, which on carbonylation led to indigotins, but these products are also not very amenable to further modification. We therefore turned our attention to doubly lithiated N'-aryl-N,N-dimethylureas. We attempted direct lithiation of various N'-aryl-N,N-dimethylureas but could not routinely achieve selective ortho-lithiation under standard conditions. Fortunately, this difficulty was easily overcome by the use of N'-(2-bromoaryl)-N,N-dimethylureas. In a preliminary communication we reported that the carbonylation reaction of N'-(2-bromoaryl)-N,N-dimethylureas was useful for the production of isatins. We now report the full details of this work.

N'-(2-Bromoaryl)-N,N-dimethylureas (4) were prepared in a one-pot reaction involving 4-substituted 2-bromoanilines (3), triphosgene and dimethylamine. Triphogene is an alternative to phosgene, with the advantages that it is a solid, gives three equivalents of phosgene per mole in situ, is easy to handle and is much more pleasant to use than phosgene. The slow addition of a solution of 3 in THF to a stirred solution of triphosgene in THF at 0 °C produced the corresponding arylisocyanate in situ.

Reaction of the arylisocyanate with dimethylamine at 0 °C gave the corresponding N'-aryl-N,N-dimethylureas (4) (Scheme 2) in good yield (Table 1). It was found that the corresponding bis(2-bromo-aryl)urea was formed as a by-product in a yield of 4-8% as a result of reaction between 2-bromoaniline (3) and an arylisocyanate generated in situ.

```
3 4
i, 1/3 (Cl₃CO)₂CO, 0 °C
ii, Me₂NH, 0 °C
```

Scheme 2

As can be seen from Table 1, the yields of compounds 4 are good, proving that the procedure is general for a range of substituents, and this overcomes the poor availability and stability of appropriately substituted bromoaryl isocyanates. Therefore, it represents a useful one-pot procedure for the synthesis of N'-(2-bromoaryl)-N,N-dimethylureas (4).

N'-(2-Bromophenyl)-N,N-dimethylurea (4a) underwent successful lithiation on nitrogen to form the monolithio reagent 5 using methylthiolithium (1.1 equiv.), followed by bromine-lithium exchange using tert-butyllithium (2.2
equiv.) to give the dilithio reagent 6 at 0 °C (Scheme 3).

In order to verify the formation 6, the mixture was
treated with aqueous ammonium chloride solution to
give \(N,N\)-dimethyl-\(N'\)-phenylurea (7), Mp 135-136 °C
(lit.,\(^{14}\) 131-133 °C), which was isolated in 90% yield.

\[
\begin{align*}
4a & \xrightarrow{1.1 \text{MeLi, } 0 \degree C} 5 \\
 & \xrightarrow{2.2 \text{t-BuLi, } 0 \degree C} 6 \\
 & \xrightarrow{\text{aq. NH}_4\text{Cl, } 0 \degree C} 7 (90\%)
\end{align*}
\]

Scheme 3

Another sample of the dilithio reagent 6 was then ex-
posed to carbon monoxide (Scheme 4). The mixture
turned a blue colour and after work-up isatin (8) was
obtained in 66% yield. A series of experiments was
conducted in which the reaction conditions were varied
in an attempt to optimise the yield of 8 (Table 2). It was
found that on treatment of a solution of 4a in THF at 0
°C with MeLi (1.05 equiv.) and t-BuLi (2.1 equiv.), fol-
lowed by reaction of dilithio reagent 6 thus formed with
carbon monoxide for 30 minutes, isatin (8) was obtained
in 76% isolated yield.

\[
\begin{align*}
4a-e & \xrightarrow{i, 1.05 \text{MeLi, } 0 \degree C} 8-12
\end{align*}
\]

Table 2 Synthesis of isatin (8) under various reaction conditions

<table>
<thead>
<tr>
<th>Lithium reagent (mmol)</th>
<th>MeLi</th>
<th>t-BuLi</th>
<th>T (°C)(^a)</th>
<th>t (h)(^b)</th>
<th>Yield (%)(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>---</td>
<td>3.3</td>
<td>-78</td>
<td>1</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>2.4</td>
<td>-78</td>
<td>1</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>2.4</td>
<td>0</td>
<td>1</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>2.2</td>
<td>-78</td>
<td>1</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>2.2</td>
<td>0</td>
<td>1</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>2.2</td>
<td>-78</td>
<td>0.5</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>2.2</td>
<td>0</td>
<td>0.5</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>2.1</td>
<td>-78</td>
<td>0.5</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>1.05</td>
<td>2.1</td>
<td>0</td>
<td>0.5</td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Temperature of the cooling bath at which lithiation and carbonyla-
tion reactions were carried out.

\(^b\) Reaction time under carbon monoxide atmosphere.

\(^c\) Yield of isolated, purified product.

The likely mechanism, involving carbonylation followed
by cyclisation, is shown in Scheme 5.

\[
\begin{align*}
6 & \xrightarrow{\text{CO, } 0 \degree C} 8 \\
 & \xrightarrow{-\text{LiNMMe_2}} 8
\end{align*}
\]

scheme 5

Isatin is a useful synthetic intermediate. It reacts with
carbanions to give 3-substituted dioxindoles.\(^{15}\) There-
fore, the reaction was applied to a range of \(N'\)-(2-bromo-
aryl)-\(N,N\)-dimethylureas (4b-e) under identical reactions
conditions, without optimisation of the individual cases.
Indeed, these reactions afforded the corresponding sub-
stituted isatins 9-12 (Scheme 4) in good yields (Table 3).
As can be seen from Table 3, the yields are quite good and the reaction accommodates a range of substituents in the isatin moiety. Therefore, it represents a useful new procedure for the formation of isatins.

In conclusion, the procedure applied represents a useful new method for the synthesis of isatins. This work extends the applicability of our work on the tandem carbonylation-intramolecular trapping of acyllithiums and is more generally useful than the reactions of doubly lithiated N-pivaloylanilines and N-pivaloylamino-pyridines, isatins having no bulky tert-buty1 group and being much more amenable to modification. It should prove more attractive for synthesis of compounds of interest for positron emission tomography.18

Melting points were determined on an electothermal digital melting point apparatus and are reported uncorrected. IR spectra were recorded on a Perkin-Elmer 1725X spectrometer. 1H and 13C NMR spectra were recorded on a Bruker spectrometer operating at 400 MHz for 1H and 100 MHz for 13C measurement. Chemical shifts are reported in parts per million relative to tetramethylsilane. Assignments of signals are based on coupling patterns and expected chemical shift values and have not been rigorously confirmed. Signals with similar characteristics might be interchanged. For fluoro compounds, C-F doublets in the 13C NMR spectra are recorded as two lines, identified by the two apparent δ values at 100 MHz, as they appear in the spectral printout. Low-resolution mass spectra were recorded on a VG 12-253 spectrometer, electron impact (EI) at 70 eV and chemical ionisation (CI) by use of ammonia as ionising gas. Accurate mass data were obtained on a VG ZAB-E instrument. Elemental analyses were obtained from the laboratories of the University of Wales Cardiff. Column chromatography was carried out using Merck Kieselgel 60 (230-400 mesh). tert-Butyllithium and methyllithium were obtained from Aldrich Chemical Company and were estimated prior to use by the method of Watson and Eastham.19 THF was distilled from sodium benzenophene ketyl. Other chemicals were obtained from Aldrich Chemical Company and used without further purification. Solvents were purified by standard procedures.20,21

Synthesis of N’-(2-bromoaryl)-N,N-dimethylureas (4)

To a cooled (0 °C) stirred solution of triphosgene (2.36 g, 8.0 mmol) in dichloromethane or THF (30 mL) a solution of the appropriate 4-substituted 2-bromoaniline (3) (20.0 mmol) and triethylamine (4.44 g, 44.0 mmol) in THF (30 mL) was slowly added in a dropwise manner over 30 min. The reaction mixture was stirred at 0 °C for 2 h, after which a solution of dimethylamine in THF (12.0 ml, 2.0 M, 24.0 mmol) was added. The reaction mixture was stirred at 0 °C for an extra 1 h. The mixture was poured onto water (50 mL) and the organic layer was separated, washed with water (2 x 15 mL), dried (MgSO4) and the solvent was removed under reduced pressure. The crude product obtained was purified by column chromatography on silica gel (hexane-EtO, 1:2) give 4. The yields obtained are reported in Table 1.

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>Yield (%) a</th>
<th>Mp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>H</td>
<td>76</td>
<td>201-202, decomp. (lit., 186-187)</td>
</tr>
<tr>
<td>9</td>
<td>Me</td>
<td>72</td>
<td>186-187 (lit., 185-187)</td>
</tr>
<tr>
<td>10</td>
<td>Pr</td>
<td>71</td>
<td>140</td>
</tr>
<tr>
<td>11</td>
<td>Cl</td>
<td>77</td>
<td>250-252 (lit., 184-187)</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>79</td>
<td>223</td>
</tr>
</tbody>
</table>

a Yield of isolated, purified product.

Table 4

Synthesis of substituted isatins (8-12) according to Scheme 2

<table>
<thead>
<tr>
<th>Product</th>
<th>R</th>
<th>Yield (%) a</th>
<th>Mp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>H</td>
<td>76</td>
<td>201-202, decomp. (lit., 186-187)</td>
</tr>
<tr>
<td>9</td>
<td>Me</td>
<td>72</td>
<td>186-187 (lit., 185-187)</td>
</tr>
<tr>
<td>10</td>
<td>Pr</td>
<td>71</td>
<td>140</td>
</tr>
<tr>
<td>11</td>
<td>Cl</td>
<td>77</td>
<td>250-252 (lit., 184-187)</td>
</tr>
<tr>
<td>12</td>
<td>F</td>
<td>79</td>
<td>223</td>
</tr>
</tbody>
</table>

a Yield of isolated, purified product.
H, H5), 6.89 (s, exch., 1 H, NH), 3.06 [s, 6 H, N(CH3)2], 2.27 (s, CH3).

13C NMR (CDCl3): δ = 155.1 (s, C=O), 134.5 (s, C1), 133.4 (s, C4), 132.1 (d, C3), 129.0 (d, C5), 120.9 (d, C6), 112.9 (s, C2), 36.4 [q, N(CH3)2], 20.4 (q, CH3).

EI-MS: m/z (%) = 258 (M+81Br, 2), 256 (M79Br, 2), 177 (40), 132 (8), 104 (16), 77 (81), 72 (100), 42 (36).

Cl-MS: m/z (%) = 259 (M+81Br, 78), 257 (M79Br, 76), 179 (100), 133 (16), 108 (14), 72 (24), 46 (35), 44 (38).

HRMS: m/z calc for C10H17BrN2O (M+), found, 256.0205.

Anal. Caled for C10H17BrN2O: C, 47.0; H, 5.1; N, 10.5.

N-(2-Bromo-4-fluorophenyl)-N,N-dimethylurea (4e)
IR (KBr): 3290, 2985, 2495, 1690, 1575, 1520, 1480, 1415, 1375, 1290, 1250, 1185, 1050, 1020, 915, 705, 660, 610 cm-1.

1H NMR (CDCl3): δ = 8.16 (dd, J = 9.2, 5.9 Hz, 1 H, H6), 7.25 (dd, J = 7.9, 2.9 Hz, 1 H, H3), 7.03 (ddd, J = 9.2, 8.0, 2.9 Hz, 1 H, H5), 6.84 (s, exch., 1 H, NH), 3.07 [s, 6 H, N(CH3)2], 2.27 (s, CH3).

EI-MS: m/z (%) = 286 (M+81Br, 4), 284 (M79Br, 4), 226 (6), 224 (6), 206 (20), 205 (100), 190 (6), 91 (15), 72 (80), 44 (16).

CI-MS: m/z (%) = 287 (MH+81Br, 50), 285 (M79Br, 51), 207 (100), 205 (28), 136 (8), 72 (95).

HRMS: m/z calc for C10H17BrN2O (M+), found, 284.0468.

Anal. Caled for C10H17BrN2O: C, 47.0; H, 5.1; N, 10.5.

N'-(2-Bromo-4-chlorophenyl)-N,N-dimethylurea (4d)
IR (KBr): 3247, 2930, 1640, 1583, 1520, 1473, 1427, 1375, 1290, 1248, 1190, 1050, 1025, 905, 850, 705, 662, 610 cm-1.

1H NMR (CDCl3): δ = 8.08 (d, J = 8.5 Hz, 1 H, H6), 7.34 (d, J = 2.0 Hz, 1 H, H3), 7.14 (dd, J = 8.5, 2.0 Hz, 1 H, H5), 6.89 (s, exch., 1 H, NH), 3.06 [s, 6 H, N(CH3)2], 2.82 [septet, J = 7.0 Hz, 1 H, CH(CH3)2], 1.21 [d, J = 7.0 Hz, 6 H, CH2(CH3)].

13C NMR (CDCl3): δ = 155.1 (s, C=O), 144.5 (s, C4), 134.7 (s, C1), 129.6 (d, C3), 126.4 (d, C5), 121.1 (d, C6), 113.1 (s, C2), 36.4 [q, N(CH3)2], 33.3 [d, CH(CH3)2], 23.9 [q, CH2(CH3)].

EI-MS: m/z (%) = 286 (M+81Br, 4), 284 (M79Br, 4), 226 (6), 224 (6), 206 (20), 205 (100), 190 (6), 91 (15), 72 (80), 44 (16).

CI-MS: m/z (%) = 287 (MH+81Br, 50), 285 (M79Br, 51), 207 (100), 205 (28), 136 (8), 72 (95).

HRMS: m/z calc for C10H17BrN2O (M+), found, 284.0468.

Anal. Caled for C10H17BrN2O: C, 47.0; H, 5.1; N, 10.5.

Typical experimental procedure: formation of isatins (8-12) from N'-(2-bromoaryl)-N,N-dimethylureas (4)
To a cooled solution (0 °C) of the appropriate N'-(2-bromoaryl)-N,N-dimethylurea (4) (2.0 mmol) in dry THF (15 mL) under a nitrogen atmosphere was added a solution of methylmagnesium in ether (2.1 mL, 1.0 M, 2.1 mmol), in order to deprotonate the nitrogen. Bromine-lithium exchange was then effected by the addition of tert-butylithium in heptane (2.47 mL, 1.7 M, 4.2 mmol). The mixture was stirred at 0 °C for 1 h then exposed to carbon monoxide, which was introduced to the reaction vessel from a balloon fitted with a needle, via a septum. The dilithio reagent thus obtained was stirred under carbon monoxide for 30 min, after which, the mixture was diluted with ethyl acetate (10 mL) and then quenched with aqueous saturated ammonium chloride solution (10 mL). The organic layer was separated, dried (MgSO4), and evaporated under reduced pressure. The crude product obtained was purified by flash column chromatography on silica gel (hexane-ethylacetate, 1:1) to give the pure isatins (8-12). The yields obtained are recorded in Table 3.
Isatin (8)
IR (KBr): 3210, 1710, 1610, 1450, 1310, 1200, 1120, 950, 780, 620 cm⁻¹.
¹H NMR (DMSO-d₆): δ = 11.02 (s, exch., 1 H, NH), 7.58 (apparent dt, J = 7.8, 1.3 Hz, 1 H, H6), 7.50 (dd, J = 7.8, 1.3 Hz, 1 H, H7), 7.06 (apparent dt, J = 7.8, 1.3 Hz, 1 H, H5), 6.91 (d, J = 7.8 Hz, 1 H, 4-H).
¹³C NMR (DMSO-d₆): δ = 184.4 (s, C3), 159.4 (s, C2), 150.7 (s, C7a), 138.4 (d, C6), 124.7 (d, C4), 122.8 (d, C5), 117.8 (s, C3a), 112.2 (d, C7).
EI-MS: m/z (%) = 147 (M⁺, 22), 119 (84), 92 (100), 64 (47).
CI-MS: m/z (%) = 165 (M⁺ + NH₄⁺, 100), 148 (MH⁺, 13), 134 (43), 118 (90), 94 (22).
HRMS: m/z cale for C₁₁H₁₁NO₂ (M⁺), 147.0321; found, 147.0320.
Anal. Caled for C₁₁H₁₁NO₂: C, 65.31; H, 3.43; N, 9.52. Found: C, 65.2; H, 3.3; N, 9.7.

5-Methylisatin (9)
IR (KBr): 3322, 1750, 1622, 1527, 1433, 1226, 1151, 1150, 1044, 839, 752 cm⁻¹.
¹H NMR (DMSO-d₆): δ = 10.93 (s, exch., 1 H, NH), 7.37 (d, J = 8.0 Hz, 1 H, H6), 7.29 (s, 1 H, 4-H), 6.76 (d, J = 8.0 Hz, 1 H, H7), 2.24 (s, 2 H, CH₂).
¹³C NMR (DMSO-d₆): δ = 184.6 (s, C3), 159.5 (s, C2), 148.5 (s, C7a), 138.8 (d, C6), 132.0 (s, C5), 124.8 (d, C4), 117.8 (s, C3a), 112.0 (d, C7), 20.1 (q, CH₃).
EI-MS: m/z (%) = 161 (M⁺, 21), 133 (21), 104 (41), 78 (43), 51 (72), 43 (100).
CI-MS: m/z (%) = 179 (M⁺ + NH₄⁺, 100), 162 (MH⁺, 10), 150 (20), 148 (33), 132 (30), 108 (15).
HRMS: m/z cale for C₁₁H₁₁NO₂ (M⁺), 161.0478; found, 161.0477.
Anal. Caled for C₁₁H₁₁NO₂: C, 67.07; H, 4.38; N, 8.69. Found: C, 67.2; H, 4.5; N, 8.6.

5-iso-Propylisatin (10)
IR (KBr): 3351, 1752, 1620, 1522, 1431, 1149, 1046, 1041, 848, 770, 706 cm⁻¹.
¹H NMR (DMSO-d₆): δ = 10.95 (s, exch., 1 H, NH), 7.47 (dd, J = 8.0, 1.4 Hz, 1 H, H6), 7.37 (d, J = 1.4 Hz, 1 H, H4), 6.83 (d, J = 8.0 Hz, 1 H, H7), 2.86 [septet, J = 6.9 Hz, 1 H, CH(CH₃)₂], 1.16 [d, J = 6.9 Hz, 6 H, CH(CH₃)₂].
¹³C NMR (DMSO-d₆): δ = 184.6 (s, C3), 159.6 (s, C2), 148.9 (s, C7a), 143.2 (d, C6), 136.6 (s, C5), 122.3 (d, C4), 117.8 (s, C3a), 112.1 (d, C7), 32.7 [d, CH(CH₃)₂], 23.7 [q, CH(CH₃)₂].
EI-MS: m/z (%) = 189 (M⁺, 25), 161 (53), 146 (100), 91 (76), 63 (50), 41 (53), 39 (78).
CI-MS: m/z (%) = 207 (M⁺ + NH₄⁺, 100), 190 (MH⁺, 8), 176 (37), 160 (57), 136 (17), 77 (12).
HRMS: m/z cale for C₁₁H₁₆NO₂ (M⁺), 189.0789; found, 189.0790.
Anal. Caled for C₁₁H₁₆NO₂: C, 69.83; H, 5.86; N, 7.40. Found: C, 70.0; H, 5.7; N, 7.5.

5-Chloroisatin (11)
IR (KBr): 3190, 2950, 2390, 1780, 1710, 1610, 1430, 1240, 1205, 1132, 1041, 842, 770 cm⁻¹.
¹H NMR (DMSO-d₆): δ = 11.15 (s, exch., 1 H, NH), 7.60 (dd, J = 8.3, 1.3 Hz, 1 H, H6), 7.54 (d, J = 1.3 Hz, 1 H, H4), 6.91 (d, J = 8.3 Hz, 1 H, H7).
¹³C NMR (DMSO-d₆): δ = 183.4 (s, C3), 159.2 (s, C2), 149.2 (s, C7a), 137.3 (d, C6), 126.8 (s, C5), 124.2 (d, C4), 119.2 (s, C3a), 113.9 (d, C7).
EI-MS: m/z (%) = 183 (M⁺35Cl, 5), 181 (M⁺35Cl, 14), 155 (21), 153 (33), 125 (13), 91 (34), 84 (33), 49 (95), 43 (100).
CI-MS: m/z (%) = 199 (M⁺37Cl + NH₄⁺, 100), 182 (MH⁺35Cl, 10), 178 (18), 165 (22), 152 (50), 151 (65), 118 (53), 77 (79).
HRMS: m/z cale for C₁₆H₁₁ClNO₂ (M⁺), 182.9904; found, 182.9901.
Anal. Caled for C₁₆H₁₁ClNO₂: C, 52.92; H, 2.22; N, 7.71. Found: C, 52.9; H, 2.3; N, 7.9.

5-Fluorisatin (12)
IR (KBr): 3341, 1750, 1625, 1521, 1434, 1156, 1041, 845, 771 cm⁻¹.
¹H NMR (DMSO-d₆): δ = 11.02 (s, exch., 1 H, NH), 7.44 (m, 1 H, 6-H), 7.38 (dd, J = 7.2, 2.7 Hz, 1 H, H4), 6.91 (dd, J = 8.5, 4.0 Hz, 1 H, H7).
¹³C NMR (DMSO-d₆): δ = 183.9 (s, C3), 159.53, 159.31 (C5), 156.9 (s, C2), 147.0 (s, C7a), 124.66, 124.43 (C6), 118.56, 118.49 (C3a), 113.54, 113.47 (C7), 111.54, 111.30 (C4).
EI-MS: m/z (%) = 165 (M⁺, 40), 137 (100), 109 (53), 82 (42).
CI-MS: m/z (%): 183 (M⁺ + NH₄⁺, 100), 166 (MH⁺, 4), 151 (24), 136 (21), 76 (10).
HRMS: m/z cale for C₁₁H₁₁FNO₂ (M⁺), 165.0226; found, 165.0226.
Anal. Caled for C₁₁H₁₁FNO₂: C, 58.19; H, 2.44; N, 8.48. Found: C, 58.3; H, 2.5; N, 8.3.

Acknowledgments
We thank the EPSRC Mass Spectrometry Service, University of Wales Swansea, for recording mass spectra for us. We also thank the EPSRC, the Higher Education Funding Council for Wales.
References

(1) G. A. El-Hiti, Permanent address: Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt.

Carbonylation of Doubly Lithiated N'-Aryl-N,N-Dimethylureas: A Novel Approach to Isatins \textit{via} Intramolecular Trapping of Acyllithiums

K. Smith,* G. A. El-Hiti, A. C. Hawes

A Novel Approach to Isatins