Impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary

Qing Chena,c, Jianrong Zhua,b,*, Hanghang Lyua, Shunqi Panc, Shenliang Chena,b

a State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, PR China

b Shanghai Institute of Eco-Chongming, Shanghai, 200062, PR China

c Hydro-environmental Research Centre, School of Engineering, Cardiff University, Cardiff CF24 3AA, UK

Correspondence should be addressed to Jianrong Zhu

E-mail address: jrzhu@sklec.ecnu.edu.cn
Abstract

Saltwater intrusion in estuaries is mainly controlled by tides and river discharge, as well as by topography and other factors. The Changjiang estuary has been seen a significant change in its topography from the data obtained in 2007 and 2017. In this study, a well-validated 3D numerical model was used to simulate and analyze the residual water and salt transport, water diversion ratio (WDR) in bifurcated channels and water resources in the Changjiang Estuary in 2007 and 2017. The comparisons of the model results showed that due to the North Branch becoming much shallower and narrower over the period from 2007 to 2017, the overall salinity in the North Branch decreased and the intensity of saltwater spillover (SSO) from the North Branch into the South Branch weakened. In the North Channel, the simulated residual or net transection water flux (NTWF) and WDR decreased during spring tides, resulting in increased saltwater intrusion. During neap tides, the saltwater intrusion was weakened despite the decreased NTWF and WDR because the water depth at the river mouth became shallower. The changes of topography during that period also resulted in changes of DWR, NTWF, salt transport across the tidal flats and dykes in the North Passage, South Passage and the South Channel, as well as overall dynamic mechanism. The results indicated that the salinity at the water intakes of the three reservoirs in the estuary slightly decreased, indicating that the time that reservoirs can take water from the estuary become longer in dry seasons. In the scenario of complete silt-up of the North Branch, the saltwater intrusion was weakened in the South Branch because of the disappearance of the SSO, which was favorable for the utilization of freshwater resources, but enhanced in the North Channel, North and South Passages. The overall influence from the topographic change over the period is that the saltwater intrusion is weakened in the North Branch, and enhanced during spring tides and weakened during neap tides in the North
Channel, North and South Passages. Sediment accretion in the North Branch is favorable for utilization of freshwater resources.

Keywords: topography change; saltwater intrusion; freshwater resource; numerical model; Changjiang Estuary.
1. Introduction

Saltwater intrusion is a common phenomenon in estuaries where freshwater and saltwater converge. Saltwater intrusion can produce estuarine circulation (Pritchard, 1956) and affect stratification (Simpson et al., 1990), thereby influencing sediment transport, producing peak estuarine turbidities (Geyer, 1993), and degrading freshwater quality (Zhu et al., 2010). Estuarine saltwater intrusion is mainly controlled by tide and river runoff (Pritchard, 1956; Prandle, 1985; Shen et al., 2003), but it can also be affected by topography (Prandle, 2006), wind stress (Hansen and Rattray, 1966; Li et al., 2012), and vertical mixing (Ippen and Harleman, 1961; Simpson and Hunter, 1974; Prandle and Lane, 2015). Prandle (2006) presented the relation between the estuarine morphological development and the forcing parameters such as tide range and river flow with the data from 80 UK estuaries. It can be well explained from these theoretically derived relationships and indicated that estuarine topography evolution should be considered in the determination of saline intrusion length. Estuarine topographies reflected the influences of tidal amplitude and river flow, along with some representation of alluvium (Prandle and Lane, 2015). Topography change was caused by natural evolution over long time scales and anthropogenic activities, especially in recent decades (Shen et al., 2003; Zhu and Bao, 2016).

Changjiang, also known as the Yangtze River, is one of the largest rivers in the world. The river discharges large amounts of freshwater \(9.24 \times 10^{11} \text{ m}^3\) into the East China Sea each year (Shen et al., 2003). The seasonal variation of river discharge ranges from a maximum monthly mean of 49,850 m\(^3\) s\(^{-1}\) in July to a minimum of 11,180 m\(^3\) s\(^{-1}\) in January (Zhu et al., 2015). The estuary has a 90-km-wide river mouth and a nearly 640-km tidal limit. The Changjiang Estuary is characterized by multiple bifurcations (Fig. 1). The estuary is first divided into the South
Branch (South Branch) and the North Branch (North Branch) by Chongming Island. The lower
South Branch was then bifurcated into the South Channel (South Channel) and the North
Channel (North Channel) by Changxing Island and Hengsha Island. The South Channel was
again bifurcated into the South Passage and the North Passage by the Jiuduan Sandbank. In 2017,
the mean water depths in the North Branch, South Branch, North Channel, South Channel, and
North and South Passages were 4.27, 10.41, 8.34, 11.47, 7.22 and 5.75 m, respectively. Tides in
the Changjiang Estuary are semidiurnal, and fortnightly spring-neap signals and the most
energetic source of water movement, which are close to a mesoscale. The maximum spring tide
range was 3.38 m and the minimum neap tide range was 0.64 m at the Baozhen hydrological
station (Fig. 1b) (Zhu, et al., 2015). The maximum tidal current amplitudes reached
approximately 2.0 m/s at the river mouth during spring tide. The prevailing monsoon climate
resulted in a stronger northerly wind of 5.5 m/s during winter and a southeasterly wind of 5.0 m/s
during summer (Zhu, et al., 2015). The northerly wind produced a southward current along the
Jiangsu coast in winter, which resulted in a higher water level along the coast by the Ekman
transport. So the northerly wind caused a horizontal circulation around the Changjiang Estuary,
which flowed into the estuary in the North Channel and out of the estuary in the South Channel
(Wu et al., 2010; Li et al., 2012).

River discharge and tides are major control factors of saltwater intrusion in the Changjiang
Estuary (Li et al., 2010; Qiu et al., 2012; Shen et al., 2003; Wu et al., 2006; Zhu et al., 2010;) but
is also influenced by wind (Li et al., 2012), topography (Li, et al., 2014), anthropogenic activities
in the river basin and estuary (Lyu and Zhu, 2018a; Qiu and Zhu, 2013; Zhu, et al., 2006) and
sea-level rise (Qiu and Zhu, 2015). The North Branch is always found to be filled with highly
saline water due to a low river discharge and high tidal range. In addition, saltwater intrusion is
found to be the strongest in the South Passage and the weakest in the North Channel, mainly in a
landwards wedge-like manner, especially during neap tide, similar to those observed in other
partially mixed estuaries (Shen et al., 2003). During the dry seasons, when the river discharge is
low, the North Branch always contains highly saline water under strong tidal conditions and low
river discharge. Due to the bifurcation nature of the estuary, there is a particular type of saltwater
intrusion in Changjiang Estuary compared with the other estuaries in the world, which is known
as saltwater spillover (SSO) from the North Branch into the South Branch, and the SSO
commonly occurs during spring tides of the dry seasons (Shen et al., 2003; Wu et al., 2006; Wu
and Zhu, 2007; Wu et al., 2010; Zhu et al., 2016), which are defined as the period from
November to March (next year) when the river discharge is usually low. Only a small amount of
the saltwater returns to the North Branch because the shoals in its upper reaches surface during
ebb tides. The saline water from the SSO during spring tides is transported downstream by runoff
during the subsequent middle tides and neap tides. This pattern of saltwater intrusion poses a
significant threat to the security of freshwater resources stored in three reservoirs in the estuary:
Qingcaoshan Reservoir (QCSR), Chenhang Reservoir (CHR) and Dongfengxisha Reservoir
(DFXSR) (Table 1). The capacity The QCSR is the largest among them and is located in the
North Channel, along the northwestern coast of Changxing Island (shown in Fig. 1). The QCSR
supplies more than 70% of the freshwater for city Shanghai. But the QCSR is frequently
influenced by saltwater intrusion particularly during the dry seasons. The current regulations
prevent these reservoirs from taking water from the Changjiang when the salinity is more than
0.45 psu, to meet the standard for drinking water. For convenience of understanding the more
acronyms in this paper, the acronyms and their corresponding full names were listed in the
Appendix 1.
Table 1
The capacity, daily supply and their feeding population of three reservoirs.

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Capacity (×10^4 m^3)</th>
<th>Daily supply (×10^4 t/day)</th>
<th>Population (×10^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCSR</td>
<td>52400</td>
<td>500</td>
<td>1300</td>
</tr>
<tr>
<td>CHR</td>
<td>956</td>
<td>130</td>
<td>300</td>
</tr>
<tr>
<td>DFXSR</td>
<td>976</td>
<td>15</td>
<td>82</td>
</tr>
</tbody>
</table>

Previous studies on the impacts of topography change on saltwater intrusion in the Changjiang Estuary include the works of Chen and Zhu (2014a) and Lyu and Zhu, 2018a. Li et al. (2014) calculated the differences in saltwater intrusion in the northern outlet of the North Channel in the Changjiang Estuary using different topographic data. Zhu and Bao (2016) calculated the evolution of saltwater intrusion in the Changjiang Estuary in 1950s, 1970s and 2010s. Despite of those studies, the impacts of topography change on saltwater intrusion in the Changjiang Estuary in the recent years have received a little attention. The aim of this study is to bridge the knowledge gap and gain further understanding of the impacts of topography change on estuarine saltwater intrusion and provide a reference to explain similar phenomena in other estuaries.

To study estuarine saltwater intrusion, theoretical method is commonly used to obtain analytic solutions from simplified partial differential equations, i.e., the linear momentum equation of a dynamic balance between horizontal pressure gradient and vertical turbulent viscosity stress, equations for conservation of water and salt in steady state. There are many theoretical studies on the relation between the saltwater intrusion and stratification and vertical mixing in estuaries. For example, Ippen and Harleman (1961) demonstrated that vertical mixing could be related to energy considerations and defined a stratification number that is a ratio of energy dissipation to gain potential energy. Afterwards, Ippen (1966) modified the stratification number.
number of the available tidal energy (effective in mixing) to that required to mix river and
seawater within the saline intrusion length, which is proportional to the square of the water depth.
In the same year, Hansen and Rattray (1966) discussed the correlation between the vertical
variations in mean velocity and salinity and the role of this correlation in maintaining the
steady-state salinity distribution in estuaries where turbulent mixing results primarily from tidal
currents. It indicated the variation of water depth would have significant impact on salinity
vertical mixing in an estuary. Moreover, some theoretical studies showed that the variation of
water depth would also affected the estuarine horizontal mixing. Ippen (1966) proposed the
length of an arrested saline wedge based on residual velocity profiles for a stratified estuary,
which is a function of water depth, residual velocity, difference in density between bed and
surface, and a parameter that varies with river conditions. Prandle and Lane (2015) deduced an
explicit expression for saline intrusion length, which shows the river mouth depth is proportional
to the saline intrusion length. They also addressed the question of how tidally dominated
estuaries would adapt to increases in mean sea level. It was concluded that a mean sea-level rise
would have a significant impact in shallow microtidal estuaries.

Review of previous studies suggested that, the estuarine topography change would have a
great influence on saltwater intrusion in the horizontal and vertical directions. Whilst the referred
theoretical studies could quantify the change of saltwater intrusion in the single-channel estuaries,
given that the Changjiang Estuary is a multi-bifurcated channel with complex topography and
there exists the complicated SSO, it makes it much more difficult to obtain an analytic solution
to reflect the real temporal and spatial variations in saltwater intrusion. Nonlinear interactions
between the river discharge, tide, wind stress and topography should be included in investigating
the complicated patterns of saltwater intrusion in the estuary. It therefore becomes necessary to
employ and advanced 3D numerical model with the capability of solving the primitive equations in this study to simulate the impacts of topography changes from 2007 to 2017 on saltwater intrusion and water resources and capture the variation of hydrodynamics from natural forcing and human activities during this period.

In the following sections, the topography changes from 2007 to 2017, and numerical model set up and validation are described, followed by the analysis and comparisons of the water and salt transport, water diversion ratio (WDR), and saltwater intrusion in the estuary. The saltwater intrusion is also predicted under in the scenario that the North Branch is completely silt-up and the conclusions are presented finally.
Fig. 1. The measured topographies of the Changjiang Estuary in 2007 (a) and 2017 (b), in
which: A, B and C are ship measurement sites; Buoys 1-3 are buoy measurement locations; Red
dots are locations of water intakes of three reservoirs; sec1-sec6 and P1-P3 are cross-sectional
longitudinal sections for saltwater intrusion analysis; and W is the location of the weather
station.

2. Methods

2.1 Topographic data

In this study, the topographic data as shown in Fig. 1, was sourced from the State Key
Laboratory of Estuarine and Coastal Research, surveyed in 2007 and 2017 which reflect the
changes in topography over that period.

2.2 Model Setup

To investigate the impacts of topography change on saltwater intrusion in the Changjiang
Estuary over period from 2007 to 2017, a well calibrated 3D numerical model was used. The
numerical model was based on ECOM-si (Blumberg 1994) and later improved by Chen et al.
(2001) and Zhu (2003) for studying hydrodynamics and substance transport. The HSIMT-TVD
(high-order spatial interpolation at the middle temporal level coupled with a total variation
diminishing scheme limiter) of the advection scheme was developed to significantly reduce the
numerical diffusions with third-order accuracy (Wu and Zhu, 2010). The Mellor-Yamada 2.5
order turbulence closure module (Mellor and Yamada, 1982) with stability parameters from
Kantha and Clayson (1994) was included. The model used a sigma coordinate system in the
vertical direction and a curvilinear non-orthogonal grid in the horizontal direction (Chen et al.,
2004). A wet/dry scheme was included to describe the intertidal area with a critical depth of 0.2
m (Zheng et al., 2003; Zheng et al., 2004).

The computational domain of the model for this study covers the Changjiang Estuary and
its adjacent sea (Fig. 2), from 117.5°E to 124.9°E and from 33.7°N to 27.5°N. The model grid was composed of 337 × 225 curvilinear cells horizontally and 10 uniform ς levels vertically. The minimal grid resolution reaches nearly 100 m in the bifurcation of the South Branch and North Branch to better simulate the SSO (Fig. 2). The resolution was relaxed to ~ 10 km near the open boundary.

Fig. 2. Numerical model grid (a) and the detailed model grid around the Changjiang Estuary in 2007 (b) and 2017 (c)

Along the open sea boundary of the model, the tide was specified with the 16 astronomical tidal constituents (M₂, S₂, N₂, K₂, K₁, O₁, P₁, Q₁, MU₂, NU₂, T₂, L₂, 2N₂, J₁, M₁, and OO₁), derived from the NaoTide dataset (https://www.miz.nao.ac.jp/staffs/nao99/). Monthly mean river discharge recorded at the Datong hydrologic station from 1950 to 2016 (Changjiang Water Resources Commission) was used in the model as the river boundary condition. Wind data, with
a resolution of $0.25^\circ \times 0.25^\circ$, were adopted based on the semi-monthly mean of 10 years (2007-2017) from the NCEP (National Centers for Environmental Prediction) with a resolution of $0.25^\circ \times 0.25^\circ$ (https://www.ncep.noaa.gov).

For this study, two numerical experiments were conducted using the topographies measured in 2007 and 2017. However, the topography change trends of the past decade showed that the North Branch was heavily deposited and the channel became narrow (Fig. 1 (a, b)). Therefore, an additional numerical experiment was conducted which made the North Branch complete silt-up on the basis of 2017 experiment. In this numerical experiment, the grids and topographies were same with the 2017 experiment but all wet grids in the North Branch were transformed into dry grids. Because the tide was just the oscillation of ocean waters under the influence of the attractive gravitational forces of the moon and the sun (Simm et al., 1996). So the differences of astronomical tides during dry season in different years were small. To make sure the tidal condition identical in three experiments, we selected the same simulation time. All model simulations covered the period from December 1, 2016 to February 28, 2017 which was the typical dry season. Because the model need 1-2 months to adjust the hydrodynamic and salinity to be stable. Therefore the model results in February were used to analyze and compare the impacts of the topography change over the past decade and the North Branch complete silt-up on residual water and salt transport, WDR, and saltwater intrusion. The monthly averaged river discharge since 1950 was 13600 m³/s, 11100 m³/s and 12000 m³/s in December, January and February (dry season), and 36000 m³/s, 45000 m³/s and 40000 m³/s in June, July and August (flood season), respectively. The river discharge in dry season is much lower than in flood season. The integrated time step was set to 30 s for all test cases.

To describe the water and salt transport, the residual unit width water flux (RUWF) and the
residual unit width salt flux (RUSF) are defined as follows.

\[\bar{Q} = \int_{h_1}^{h_2} \bar{V} d\sigma \]

(1)

\[RUWF = \frac{1}{T} \int_0^T \bar{Q} dt \]

(2)

\[RUSF = \frac{1}{T} \int_0^T \bar{Q} s dt \]

(3)

where \(\bar{Q} \) is the instantaneous rate of water transport per unit width through a water column, \(\bar{V} \) is the current vector, \(h_1, h_2 \) is the lower and upper bound depth of a layer, and \(\sigma \) is the depth of layer bound. \(T \) is the time period (which equals one or several tidal cycles; in this study, it equals six semidiurnal tidal cycles) and is used as an averaging time window to remove the tidal signals, and \(s \) is salinity.

Additionally, the residual transection water flux (NTWF) is determined to calculate the WDR between channels (transection locations labeled in Fig. 1) as follows.

\[NTWF = \frac{1}{T} \int_0^T \int_{H(x,y)}^\zeta \int_0^L \bar{V}_n(x,y,z,t) dldzt \]

(4)

where \(T \) is the same as above, \(\zeta \) is the elevation, \(L \) is the width of the transect, and \(\bar{V}_n(x,y,z,t) \) is the velocity component that is vertical to the transect.

Similarly, the residual (net) transection salt flux (NTSF) is determined as follows.

\[NTSF = \frac{1}{T} \int_0^T \int_{H(x,y)}^\zeta \int_0^L s \bar{V}_n(x,y,z,t) dldzt \]

(5)

where \(s \) is salinity.

2.3 Model Validation

The model has been extensively calibrated, validated and applied in a number of previous studies in the Changjiang Estuary, which have shown that the model can reproduce the
observed water level, current and salinity with high simulation accuracy (Li et al. 2012; Lyu and Zhu, 2018b; Qiu, et al., 2015; Wu and Zhu 2010). In this study, we used the measured data taken in the South Passage from 9th to 19th March 2018 (three ship sites and three buoy sites shown in Fig. 1b) to further validate the model results.

The river discharge at the Datong Hydrological Station and wind data recorded by the weather station located on the east of the Chongming Island (indicate by W in Fig. 1) were adopted during the measured period to run the model. Three skill assessment indicators were used to quantify the current and salinity validation: the correlation coefficient (CC), root mean square error (RMSE), and skill score (SS). As follows,

$$\text{CC} = \frac{\sum (X_{\text{mod}} - \bar{X}_{\text{mod}})(X_{\text{obs}} - \bar{X}_{\text{obs}})}{\sqrt{\sum (X_{\text{mod}} - \bar{X}_{\text{mod}})^2 \sum (X_{\text{obs}} - \bar{X}_{\text{obs}})^2}}$$

(6)

$$\text{RMSE} = \sqrt{\frac{\sum (X_{\text{mod}} - X_{\text{obs}})^2}{N}}$$

(7)

$$\text{SS} = 1 - \frac{\sum |X_{\text{mod}} - X_{\text{obs}}|^2}{\sum (|X_{\text{mod}} - X_{\text{obs}}| + |X_{\text{obs}} - X_{\text{obs}}|)^2}$$

(8)

where X_{mod} is the modeled data, X_{obs} is the observed data, and \bar{X} is the mean value. SS is a statistical metric developed by Wilmott (1981) to describe the degree to which the observed deviations from the observed mean correspond to the predicted derivations from the observed mean. Perfect agreement between the model results and observations yields an SS of 1.0, whereas complete disagreement yields a value of 0. Temporal variations in the observed and modeled water velocities and salinities at ship-measured site B in the middle tide after neap tide and buoy-measured Buoy 2 were selected and shown in Fig. 3 and 4, respectively.

The assessment indicator scores of water velocity were summarized in Table 2. The values of CC at the six sites ranged from 0.63 to 0.93 in the surface layer and from 0.51 to 0.84 in the bottom layer; the RMSE ranged from 0.23 to 0.35 cm/s in the surface layer and from 0.10 to
0.21 m/s in the bottom layer; and the SS ranged from 0.79 to 0.93 in the surface layer and from 0.71 to 0.90 in the bottom layer. The mean water velocity values of CC, RMSE and SS at the surface and bottom layers at six sites were 0.77, 0.23 cm/s and 0.86, respectively.

The assessment indicator salinity scores were summarized in Table 3. The CC at the six sites ranged from 0.71 to 0.92 in the surface layer and from 0.66 to 0.90 in the bottom layer; the RMSE ranged from 0.36 to 2.49 in the surface layer and from 0.29 to 2.14 in the bottom layer; and the SS ranged from 0.80 to 0.96 in the surface layer and from 0.80 to 0.95 in the bottom layer. The mean salinity values of CC, RMSE and SS at the surface and bottom layers at the six sites were 0.83, 1.60 and 0.90, respectively. The assessment indicators indicated that the level of model performance reached a high standard.

Table 2

Values of CC, RMSE, and SS of the modeled and observed flow velocity at the surface and bottom layers at the measurement sites.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sites</th>
<th>RMSE (m/s)</th>
<th>CC</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>A</td>
<td>0.35</td>
<td>0.63</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.23</td>
<td>0.93</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.34</td>
<td>0.75</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Buoy 1</td>
<td>0.34</td>
<td>0.73</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Buoy 2</td>
<td>0.27</td>
<td>0.88</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Buoy 3</td>
<td>0.24</td>
<td>0.86</td>
<td>0.92</td>
</tr>
<tr>
<td>Bottom</td>
<td>A</td>
<td>0.21</td>
<td>0.51</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.21</td>
<td>0.75</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.18</td>
<td>0.73</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>Buoy 1</td>
<td>0.11</td>
<td>0.78</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Buoy 2</td>
<td>0.12</td>
<td>0.84</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>Buoy 3</td>
<td>0.10</td>
<td>0.80</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Table 3

Values of CC, RMSE, and SS of the modeled and observed salinity at the surface and bottom layers at the measurement sites.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Sites</th>
<th>RMSE</th>
<th>CC</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>A</td>
<td>1.88</td>
<td>0.73</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.49</td>
<td>0.85</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>2.24</td>
<td>0.71</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Buoy 1</td>
<td>2.33</td>
<td>0.87</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>Buoy 2</td>
<td>1.73</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Buoy 3</td>
<td>0.36</td>
<td>0.83</td>
<td>0.89</td>
</tr>
<tr>
<td>Bottom</td>
<td>A</td>
<td>2.14</td>
<td>0.66</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.57</td>
<td>0.92</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>1.30</td>
<td>0.86</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Buoy 1</td>
<td>1.31</td>
<td>0.87</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>Buoy 2</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>Buoy 3</td>
<td>0.29</td>
<td>0.90</td>
<td>0.95</td>
</tr>
</tbody>
</table>
Fig. 3. Comparisons of modeled (line) and measured (dots) flow velocity/direction and salinity during neap tides at the surface layer (left panel) and bottom layer (right panel) at site B in March 2018.

Fig. 4. Comparisons of modeled (line) and measured (dots) flow velocity/direction and salinity at the surface layer at site Buoy 2 in March 2018.

3. Results and Discussion
3.1 Topography change from 2007 to 2017

During the period from 2007 to 2017, some major reclamation projects were conducted in the Changjiang Estuary, including the reclamation projects in the Eastern Hengsha Shoal, the Qingcaosha Reservoir (shown in Fig. 1b) for the demands of land and water. These projects considerably changed the local topography and further changed the topography in the entire estuary by altering the hydrodynamic processes (Lyu and Zhu, 2018a; Zhu and Bao, 2016). Due to these anthropogenic activities, the Changjiang Estuary has undergone dramatic topography change from 2007 to 2017. Fig. 1 showed the estuarine topographies for 2007 and 2017, while the topography change in the recent decade was shown in Fig. 5. The topography was found markedly changed in some places. The topography in the lower reaches of the North Branch was deposited approximately by 2 - 4 m overall. The area in the lower reaches of the North Branch and near Chongming Island has turned into land from the tidal flat, which made it narrower and shallower. In the South Branch, the area south of Chongming Island silted severely, and the maximum value reached a thickness of 6 m, while the middle of the channel deepened. In the North Channel, the depth north of the middle and lower QCSR was heavily deposited. In contrast, the depth deepened greatly south of Chongming Island and north of the middle QCSR, in the middle of the channel and east end of the QCSR. Near the mouth of the North Channel, the depth silted overall except the area north of Hengsha Island. The area east of the reclamation project of Eastern Hengsha Shoal silted 2-4 m. In the South Channel, the depth in the upper reaches deepened by 2-4 m. The depth became shallow north of the North Passage and became deep in the main channel in a range of approximately 2 m. The depth variation in the South Passage was smaller compared with other channels in a range of approximately 1 m. And the net volume change in the North Branch, South Branch, North Channel, South Channel, North and South
Passages were -1.73×10^8, 3.24×10^8, 9.34×10^7, 2.90×10^8, -3.19×10^7 and 1.03×10^8 m3, respectively (The negative indicates deposition). However, although the net volume changes in the North Channel indicated erosion as a whole, it was mainly eroded in the upper reaches. The lower reaches were significant deposition and net volume change in the lower reaches was -7.80×10^7 m3.

Fig. 5. Topographic changes between 2007 and 2017 indicated by water depth changes measured in 2007 in 2017 (-ve = deposition and +ve= erosion).

3.2 RUWF, RUSF, Saltwater Intrusion and WDR in 2007

Fig. 6a shows that the surface RUWF flowed seaward in the South Branch, North and South Passages during the spring tide, but the RUWF flowed into the estuary in the North Branch due to its funnel shape and tidal Stokes transport (Qiu and Zhu, 2015). This indicated that the river runoff flows into the sea mainly through the North Channel, North and South Passages. In the upper reaches of the North Branch, the NTWF and WDR were -300.1 m3/s and
-2.6% (Table 4), respectively, where the negative sign indicated that the water was transported from the North Branch into the South Branch. Most of the river runoff (72.8%) flowed into the sea through the North Channel compared with the South Channel (Table 5). Similarly, the South Passage was the main channel (54.3%) for the river runoff into the sea compared with the North Passage (Table 6). The RUWF flowed northward east of Chongming Island due to tidal pumping transport and tidal Stokes transport (Qiu and Zhu, 2015). Additionally, the RUWF in the South Branch was seaward in both the surface and bottom layers but smaller in the bottom layer due to bottom friction (Fig. 6b). Near the river mouth, the bottom RUWF was landward, which was believed to be induced by a strong salinity front (Pritchard, 1956). The RUWF flowed seaward in the surface layer and landward bottom layers east of the Eastern Hengsha Shoal. As shown in Fig. 6(c, d), the distribution of RUSF was similar to that of RUWF. Due to high salinity around the outside of the river mouth, the magnitude of the RUSF was much larger in that area. On the northern side of the North Passage, the RUSF flowed landward, which brought high salinity into the North Channel and the area east of Chongming Island. The North Branch was occupied by the highly saline water, and the SSO was simulated, which was caused by the RUWF and RUSF flowed into the South Branch from the North Branch in the upper reaches (Fig. 6). The less saline water northeastward extended east of Chongming Island, which corresponded to the RUSF. Obviously, the saltwater intrusion in the bottom was stronger. Among each outlet in the Changjiang Estuary, the saltwater intrusion was the weakest in the North Channel and strongest in the South Passage.

During neap tide (Fig. 7), around the area outside of the river mouth, the RUWF and RUSF flowed southward because the northerly winter monsoon effect was dominant with the tide becoming weaker (Wu et al., 2014). The SSO, which occurred during spring tide, disappeared.
The NTWF became positive (93 m3/s), and the WDR was 0.7% (Table 4). Compared with the South Channel, the North Channel was the main channel for river discharge, which accounts for 66.7% (Table 5). Compared with the South Passage, more river runoff flowed into the sea from the North Passage, accounting for 86.6% (Table 6), which was due to blocking of the stronger salinity front in the South Passage. Near the river mouth, due to a strong horizontal salinity gradient, the RUWF and RUSF in the bottom layer flow landward obviously. The saltwater induced by the SSO during spring tide has arrived at the middle reaches of the South Branch. Because the tidal mixing become weaker in neap tide than in spring tide, there existed distinct saltwater wedges near the river mouth in neap tide, resulting in high stratification, i.e., the bottom salinity was greater than the surface salinity.

Table 4

<table>
<thead>
<tr>
<th>Year</th>
<th>NTWF (m3/s)</th>
<th>WDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring NB SB</td>
<td>Neap NB SB</td>
</tr>
<tr>
<td>2007</td>
<td>-300.1 11804.9 93.4 12779.8</td>
<td>-2.6 102.6 0.7 99.3</td>
</tr>
<tr>
<td>2017</td>
<td>-330.9 11842.4 199.1 12606.8</td>
<td>-2.9 102.9 1.6 98.4</td>
</tr>
<tr>
<td>△2017-2007</td>
<td>-30.8 37.5 105.7 -173.0</td>
<td>-0.3 0.3 0.9 -0.9</td>
</tr>
</tbody>
</table>
Table 5

NTWF and WDR in the North and South Channels (NC and SC) during spring and neap tides in 2007 and 2017

<table>
<thead>
<tr>
<th>Year</th>
<th>NTWF (m³/s)</th>
<th>WDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Neap</td>
</tr>
<tr>
<td></td>
<td>NC</td>
<td>SC</td>
</tr>
<tr>
<td>2007</td>
<td>8507.7</td>
<td>3180.4</td>
</tr>
<tr>
<td>2017</td>
<td>7655.1</td>
<td>4055.0</td>
</tr>
<tr>
<td>△2017-2007</td>
<td>-852.6</td>
<td>874.6</td>
</tr>
</tbody>
</table>

Table 6

NTWF and WDR in the North and South Passages (NP and SP) during spring and neap tides in 2007 and 2017.

<table>
<thead>
<tr>
<th>Year</th>
<th>NTWF (m³/s)</th>
<th>WDR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spring</td>
<td>Neap</td>
</tr>
<tr>
<td></td>
<td>NP</td>
<td>SP</td>
</tr>
<tr>
<td>2007</td>
<td>2707.3</td>
<td>2282.2</td>
</tr>
<tr>
<td>2017</td>
<td>3460.5</td>
<td>1750.9</td>
</tr>
<tr>
<td>△2017-2007</td>
<td>753.2</td>
<td>-531.3</td>
</tr>
</tbody>
</table>
Table 7

NTSF in the North and South Branches (NB and SB) during spring and neap tides in 2007 and 2017

<table>
<thead>
<tr>
<th>Year</th>
<th>NTSF (t/s)</th>
<th>Spring</th>
<th>Neap</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NB</td>
<td>SB</td>
</tr>
<tr>
<td>2007</td>
<td></td>
<td>-7.70</td>
<td>7.45</td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td>-6.10</td>
<td>5.81</td>
</tr>
<tr>
<td>△2017-2007</td>
<td>1.60</td>
<td>-1.64</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Fig. 6. Distributions of RUWF (a, b), RUSF (c, d) and salinity (e, f) in the surface (left panel) and bottom (right panel) layers during spring tides in 2007. (The red isohalines in (e, f) are 0.45, the standard salinity for drinking water).
Fig. 7. Distributions of RUWF (a, b), RUSF (c, d) and salinity (e, f) in the surface (left panel) and bottom (right panel) layers during neap tides in 2007.

3.2 RUWF, RUSF, Saltwater Intrusion and WDR in 2017

The differences in distributions of the RUWF, RUSF and salinity between 2017 and 2007 in the surface and bottom layers during spring tide were shown in Fig. 8. The differences of RUWF and RUSF in the North Branch were landward, which was the same direction as RUWF...
and RUSF in 2007, which meant that the saline transport from the sea to the North Branch increased in 2017. However, the salinity in the North Branch decreased overall as shown in Fig. 8(e, f). This was because the topography became narrower and shallower in the middle and lower reaches of the North Branch (as shown in Fig. 1 and Fig. 5), which resulted in a decrease in the tidal volume. This could also cause the increase in the North Branch water velocity, so that the RUWF and RUSF increased. The NTWF in the North Branch was -330.9 m3/s, which increased by 30.8 m3/s from the North Branch to the South Branch, but the NTSF decreased 1.6 t/s (Table 7). Therefore, the SSO became weaker overall in 2017 than in 2007. The salinity in the South Branch changed little. However, Fig.5 showed that major changes in topography were detected along the Southern Branch. It can be seen from Fig. 6(e, f) and Fig. 7(e, f) that the South Branch was almost occupied by freshwater because the South Branch is the main channel for river water discharging into the sea. Therefore, though major changes in topography were detected along the Southern Branch, the salinity was very low and its change was small. However, the topography changes in the South Branch could influence the water diversion ration in the North and South Branch, which could further influence the saltwater intrusion near the river mouth where there existed salinity front. A small change of water diversion ration can cause obvious isohaline move. That is why all the changes in isohaline were noticed near the mouth and further seaward. The difference of RUWF and RUSF in the North Channel was strongly correlated with that of the topography. The RUWF and RUSF increased with the increase of water depth. Fig. 8(e, f) show that the salinity in the North Channel increased, especially in the area east of Chongming Island and Eastern Hengsha Shoal, with a maximum value of more than 4.0. The deposition in these areas was noticeable (Fig. 5), which blocked the freshwater discharge into the North Channel. The WDR in the North Channel was 65.4% in
2017, which decreased by 7.4% compared with 2007 (Table 5), resulting in an overall increase
in salinity in the North Channel in 2017. Owing to the decrease in lower salinity water that
flowed over the area east of the Eastern Hengsha Shoal, the amount of lower saline water that
flowed cross the north dyke of the Deep Waterway to the south decreased under the action of
the north winter monsoon. Therefore, the salinity near the mouth of the North and South
Passages slightly increased.

During neap tide, the patterns of difference in the distributions of the RUWF, RUSF and
salinity between 2007 and 2017 in the surface and bottom layer were different from those
during spring tide, and the variations were the opposite in some areas (Fig. 9). In the North
Branch, the RUWF and RUSF showed little change with the weaker tide, while the WDR
increased in 2017, which caused the salinity in the North Branch to decrease overall. In the
South Branch, the difference in RUWF and RUSF was correlated with the difference in the
topography. Similar to that in the spring tide, the salinity east of Chongming Island and Eastern
Hengsha Shoal increased. However, the surface salinity near the 122.5°E area in the mouth of
the North Channel and the bottom salinity north of the Eastern Hengsha Shoal decreased by
more than 4.0 at its maximum. As shown in Fig. 9, the difference in the surface RUSF (Fig. 9c)
was the opposite of the surface RUSF (Fig. 7c) in 2007 near the 122.5°E area in the mouth of
the North Channel. This meant that the high salinity water from the north decreased. The
bottom salinity decreased because the saltwater wedge weakened. The salinity variation, \(s' \), at
each layer and its mean value in the water column can be estimated with a polynomial
expression given by Hansen and Rattray (1966),

\[
s' = \frac{H^2}{K_s} \left[\bar{u} \left(-\frac{7}{120} + \frac{1}{4} \zeta^2 + \frac{1}{8} \zeta^4 - \frac{1}{8} \zeta^3 + \frac{1}{4} \zeta^2 - \frac{3}{4} \zeta^4 - \frac{1}{2} \zeta^3 \right) + u_e \left(-\frac{1}{12} + \frac{1}{2} \zeta^2 - \frac{3}{4} \zeta^4 - \frac{2}{5} \zeta^5 \right) \right]
\]

(6)
where \(s \) indicates the width-averaged, tidally averaged salinity, which can be divided into depth-average (\(\bar{s} \)) and depth-varying (\(s' \)) parts. The subscript \(x \) denotes the along-channel partial derivative. \(K_s \) is the vertical eddy diffusivity; the dimensionless coordinate \(\zeta = z / H \), where \(z \) indicates water depth, with \(z = 0 \) as the surface layer and \(z = -H \) as the bottom layer, and \(H \) indicates topography. River discharge is given by \(u_E = g \beta \bar{s}_x H^3 / (48 K_M) \), where \(\beta \equiv 7.7 \times 10^{-4} / \text{PSU} \) and \(K_M \) indicates the vertical eddy viscosity. When \(z = 0 \) and \(z = -H \), formula (6) can be written as follows:

\[
\begin{align*}
\frac{H^2}{120 K_s} - \bar{s}_x (7 \bar{u} + 10 u_E) & \quad z = 0 \\
\frac{H^2}{15 K_s} - \bar{s}_x (\bar{u} + u_E) & \quad z = -H
\end{align*}
\]

It is clear that the increased \(H \) can augment the salinity variation \(s' \). Therefore, as the depth near the mouth of the North Channel was deposited all together (as shown in Fig. 5), the decreased \(H \) reduced the variation \(s' \) near the bottom, resulting in a weaker gravitational circulation that transported less oceanic saltwater into the estuary and decreased the bottom salinity. Additionally, although the WDR in the North and South Passages had little variation, namely, approximately 0.4%, the WDR in the South Channel increased by 3.2% in 2017, resulting in a slight decrease in salinity.
Fig. 8. Changes of RUWF (a, b), RUSF (c, d) and salinity (e, f) between 2017 and 2007 in the surface (left panel) and bottom (right panel) layers during spring tides.
Fig. 9. Changes of RUWF (a, b), RUSF (c, d) and salinity (e, f) between 2017 and 2007 in the surface (left panel) and bottom (right panel) layers during neap tides.

3.3 Variations in Vertical Salinity Distributions

The vertical distributions of salinity during spring tide along the North Branch profile (P1), South Branch-North Channel profile (P2) and South Branch-South Passage profile (P3) in 2007 and 2017 are shown in Fig. 10. It was obvious that the depth near the bifurcation of the North
and South Branches became shallower. The depth at the start point of P1 was approximately 7.2 m in 2007, but it became approximately 0.3 m in 2017. Although the depth at nearly 17.5 km increased from 11.5 to 15.2 m over the ten year period, the average depth from 40 to 80 km decreased from 7.3 to 6.62 m. Therefore, it would certainly decrease the tidal volume in the North Branch. In Fig. 10a, the isohaline was densely distributed between 0 and 20 km, and the bottom salinity was higher than the surface salinity. The isohaline distribution was sparser in 2017, and the isohaline of 20 moved downstream from 10 km to 20 km. Overall, the saltwater intrusion in the North Branch became weaker in 2017 than in 2007. The vertical salinity distributions along P2 in 2007 and 2017 are shown in Fig. 10b. The water depth in 2017 became shallow overall. In the upstream and midstream areas, the depth changed slightly, except for the area near 7 km, which decreased from 52.4 to 35.4 m. The average depth in the downstream, namely, from 80 km to the end of P2, decreased from 9.9 to 9.1 m. The salinity in the upstream region was less than 0.45, indicating that freshwater existed. The intensity of SSO weakened in 2017, which could be proven by the location of the bottom isohaline being 1 in 2007. Nearly all the isohalines in the downstream moved upstream by approximately 5 km in 2017 compared to 2007. Therefore, the saltwater intrusion along the North Channel was enhanced in 2017. The vertical salinity distributions along P3 in 2007 and 2017 are shown in Fig. 10(e, f). The variation in depth was great at a distance of approximately 5 km from the start point of P3, which decreased from 53.9 to 41.8 m. Compared with the isohaline distribution in 2007, the variation was very small. In 2017, the isohalines moved upstream by approximately 1 km compared with that in 2007. The saltwater intrusion increased slightly in 2017.

During neap tide, the salinity upstream of the North Branch decreased markedly. In 2007, isohaline 0.45 appeared (Fig. 11a). Similar to that in the spring tide, the isohalines moved...
downstream by approximately 5 km in 2017. The saltwater intrusion in the North Branch was also weakened in 2017. However, unlike during spring tide, the saltwater intrusion in the North Channel became weaker in 2017 than that in 2007 because the main character of the saltwater intrusion during neap tide was a salt wedge (Fig. 11b). Fig. 10c shows that the bottom salinity was much greater than the surface salinity regardless of being in the North Channel or South Passage. The average depth downstream was decreased from 9.9 m in 2007 to 9.1 m in 2017, resulting in a reduction in bottom salinity. Isohaline 1 moved downstream by approximately 8 km in 2017, and isohaline 5 retreated from 82 km in 2007 to 88 km in 2017. Relative to the North Channel, the depth in the South Passage showed little change. Because the WDR in the South Channel increased from 33.3% to 36.5% over the last ten years, the saltwater intrusion was weakened in 2017.

![Fig. 10. Distribution of salinity along profiles P1(a, b), P2 (c, d) and P3 (e, f) during spring tides in 2007 (left panel) and 2017 (right panel)
Fig. 11. Distribution of salinity along profiles P1(a, b), P2 (c, d) and P3 (e, f) during neap tides in 2007 (left panel) and 2017 (right panel)

3.4 Scenario of Complete Silt-up of the North Branch

Over hundred years ago, the North Branch was the main channel discharging the river water into the sea and sediments were gradually deposited, especially since the 1960s, due to large tidal flat reclamation (Shen et al., 2003). Comparing the topography change in 2017 and 2007, the deposition at the upper entrance of the North Branch was very severe (Fig. 5). It is generally acknowledged that the North Branch will completely silt-up in the future. So we suppose the scenario that the North Branch would vanish and simulate its impact on saltwater intrusion and freshwater resources.

The SSO disappeared in the scenario of the North Branch silt-up, resulting in a salinity decrease in the South Branch. On the other hand, the river discharge was reduced in the North Channel, North and South Passages because there was no water spillover from the North Branch into the South Branch, which accounted for 2.9% of the total river discharge during the
spring tide in 2017 (Table 3), resulting in enhanced saltwater intrusion (Fig. 12). The salinity decrease was at the upper reaches of the South Branch during spring tide and moved down to the middle and lower reaches of the South Branch. Salinities at the water intakes of the three reservoirs all decreased. The maximum salinity increase east of Chongming Island reached 2. Therefore, vanishing of the North Branch weakened the saltwater intrusion in the South Branch and enhanced it in the North Channel, North and South Passages.

Fig. 12. Changes in salinity between the scenario of complete silt-up in the North Branch and 2017 topography in the surface (left panel) and bottom (right panel) layers during spring tides (a, b) and neap tide (c, d).

3.5 Impacts on Water Resources
The saltwater intrusion frequently threatens the freshwater intake from the Changjiang Estuary during winter due to low river discharge. Confirming the results of past studies, the salinities at the DFXSR and CHR were completely influenced by the SSO, but the QCSR was mainly impacted by the SSO and the saltwater intrusion along the North Channel (Chen and Zhu, 2014; Li and Zhu, 2018; Lyu and Zhu, 2018b).

The temporal surface salinity variations and tidally averaged salinity in different tidal patterns (spring, middle tide after the spring tide (MTST), neap and middle tide after the neap tide (MTNT)) at the water intakes of the DFXSR, CHR and QCSR in 2007, in 2017 and in the scenario of vanishing of the North Branch are shown in Fig. 13 and Table 8, respectively. The temporal variations in the salinities showed that there were semidiurnal flood and ebb periods and semimonthly spring and neap period variations induced by tide. In 2007 and 2017, at the water intake of the DFXSR, the salinity was higher during the spring and MTST, and the salinity was lower during the neap and MTNT. The duration in which the salinity was lower than 0.45 was approximately half of the time in 2007 and 2017 in a complete neap-spring cycle, and the reservoir had enough time to take water from the Changjiang Estuary. In 2007, the tidally averaged salinity at the water intake of the DFXSR during spring tide, MTST, neap tide and MTNT were 0.80, 0.97, 0.16 and 0.08, respectively. At the water intake of the CHR, the duration in which the salinity was lower than 0.45, was greater than two-thirds of the time. Additionally, it took approximately 2.0 days for the saline water induced from the SSO flowed downstream to move from the water intake of the DFXSR to the water intake of the CHR, which we determined by comparing the salinity peak phase difference at the water intakes of the CHR and DFXSR (Fig. 13). In 2007, the tidally averaged salinity at the water intake of CHR during spring tide, MTST, neap tide and MTNT were 0.09, 0.74, 0.31 and 0.02,
respectively, meaning that water resources were optimistic in the CHR except during MTST. In 2007, at the water intake of the QCSR, the duration in which the salinity was lower than 0.45 was approximately half of the time. The tidally averaged salinity at the water intake of the CHR during spring tide, MTST, neap tide and MTNT were 0.10, 0.50, 0.53 and 0.22, respectively, meaning that water resources were optimistic in the QCSR except during MTST and neap tide. The above simulated temporal variation processes in salinity at the water intakes of three reservoirs were reasonably close to the published studies (Zhu et al., 2013; Zhu and Wu, 2013; Chen et al., 2019).

As mentioned above, the SSO were somewhat weakened after the last ten years, which resulted in the salinity being slightly decreased overall at the water intakes of the DFXSR, CHR and QCSR (Fig. 13). Owing to the saltwater sources were mainly from the SSO, the salinity was decreased by 0.17 and 0.06 at the water intake of the DFXSR during spring tide and MTST, and there were no changes during neap tide or MTNT. The salinity was decreased by 0.07 and 0.16 at the water intake of the CHR during spring tide and MTST, and there was a slight increase of 0.02 during MTNT. The salinity decreased by 0.00, 0.09, 0.04 and 0.02 at the water intakes of the QCSR during spring tide, MTST, neap tide, and MTNT, respectively, which meant that the change in topography in the past ten years was favorable for the water resources of the three reservoirs in the Changjiang Estuary.

In the scenario of vanishing of the North Branch, the salinity approached 0 at the water intakes of the DFXSR and CHR and significantly decreased at the water intake of the QCSR due to vanishing of the SSO. The scenario of complete silt-up in the North Branch was greatly favorable for the utilization of freshwater resources in the Changjiang Estuary.
Fig. 13. Time series of computed water levels at the water intake of the QCSR (a), surface salinity at the water intakes of the DFXSR (b), CHR (c) and QCSR (d) from January 29 to February 19. (Black lines: 2007 topography; red lines: 2017 topography; blue line: complete silt-up in the North Branch; green dashed line: the standard salinity of drinking water).

Table 8

Averaged salinity over four tidal patterns at the water intakes of the DFXSR, CHR and QCSR in 2007 and 2017, the scenario of complete silt-up in the North Branch and in 2017.

<table>
<thead>
<tr>
<th></th>
<th>Spring</th>
<th>MTST</th>
<th>Neap</th>
<th>MTNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFXSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>0.80</td>
<td>0.97</td>
<td>0.16</td>
<td>0.08</td>
</tr>
<tr>
<td>2017</td>
<td>0.63</td>
<td>0.91</td>
<td>0.16</td>
<td>0.08</td>
</tr>
</tbody>
</table>
4. Conclusions

A well-validated 3D numerical model was used to simulate the impacts of topography change on saltwater intrusion over the past decade in the Changjiang Estuary. The residual water and salt transport, WDR and water resources with the topographies measured in 2007 and 2017 in the Changjiang Estuary were analyzed. During the period from 2007 to 2017, the reclamation projects and the changing climate resulted in a considerable change in topography in the estuary. The model was validated with the data measured in the South Passage in March 2018 and the results showed that the model produced satisfactorily the hydrodynamics and saltwater intrusion in the Changjiang Estuary.
The RUWF, RUSF, WDR and salinity distribution in 2007 and 2017 and the impacts of topography change in the last ten years were simulated and analyzed. Due to the topography change in the past ten years, the salinity decreased overall regardless of spring tide or neap tide in the North Branch, which was caused by the much shallower and narrower channel, resulting in a weaker SSO. In the North Channel, the salinity increased during spring tide, and the saltwater wedge weakened during neap tide due to a decrease in depth near the river mouth. The salinity increased slightly near the mouth of the North and South Passages during spring tide and decreased slightly in the upper reaches of the North and South Passages during neap tide. The changes in the saltwater intrusions in each channel were dynamically interpreted with the changes in RUWF, RUSF and WDR.

For the three reservoirs, there was about half time in a spring-neap period to take freshwater from the Changjiang Estuary into the reservoirs in the dry season of 2007 and 2017 under mean river discharge. Because the saltwater intrusion in the North Branch and the SSO were weakened over the last ten years, the salinity at the water intakes of the DFXSR, CHR and QCSR decreased slightly, which was favorable for the fresh resources of the three reservoirs in the Changjiang Estuary.

In the scenario of complete silt-up in the North Branch, the SSO disappeared, and saltwater weakened in the South Branch, which was significantly favorable for the utilization of freshwater resources and enhances the North Channel, North and South Passages.

On the whole, influenced by the topography change in recent decade, saltwater intrusion weakened in the North Branch, enhanced in the North Channel, North and South Passages during spring tide and weakened during neap tide. Moreover, the results showed that the deposition or even complete silt-up in the North Branch was favorable for utilization of freshwater resources.
Acknowledgements

This work was partly supported by the National Natural Science Foundation of China (41676083), Shanghai Institute of Eco-Chongming and China Scholarship Council (CSC). The insightful suggestions from the anonymous reviewers are also acknowledged.

Appendix 1: A list of acronyms and their corresponding full names in the paper

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSO</td>
<td>Saltwater spillover</td>
</tr>
<tr>
<td>DFXSR</td>
<td>Dongfengxisha Reservoir</td>
</tr>
<tr>
<td>CHR</td>
<td>Chenhang Reservoir</td>
</tr>
<tr>
<td>QCSR</td>
<td>Qingcaosha Reservoir</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Centers for Environmental Prediction</td>
</tr>
<tr>
<td>RUWF</td>
<td>Residual unit width water flux</td>
</tr>
<tr>
<td>RUSF</td>
<td>Residual unit width salt flux</td>
</tr>
<tr>
<td>NTSF</td>
<td>Net transection salt flux</td>
</tr>
<tr>
<td>NTWF</td>
<td>Net transection water flux</td>
</tr>
<tr>
<td>WDR</td>
<td>Water diversion ratio</td>
</tr>
<tr>
<td>CC</td>
<td>Correlation coefficient</td>
</tr>
<tr>
<td>RMSE</td>
<td>Root mean square error</td>
</tr>
<tr>
<td>SS</td>
<td>Skill score</td>
</tr>
<tr>
<td>MTNT</td>
<td>Middle tide after the neap tide</td>
</tr>
<tr>
<td>MTST</td>
<td>Middle tide after the spring tide</td>
</tr>
</tbody>
</table>
References

Zhu, J.R., Gu, Y.L., Wu, H., 2013. Determination of the period not suitable for taking domestic...
