Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Dense motion propagation from sparse samples

Smith, Rhodri, Dasari, P., Lindsay, C., King, M. and Wells, K. 2019. Dense motion propagation from sparse samples. Physics in Medicine and Biology 64 (20) , 205023. 10.1088/1361-6560/ab41a0

Full text not available from this repository.


There are many applications for which sparse, or partial sampling of dynamic image data can be used for articulating or estimating motion within the medical imaging area. In this new work, we propose a generalized framework for dense motion propagation from sparse samples which represents an example of transfer learning and manifold alignment, allowing the transfer of knowledge across imaging sources of different domains which exhibit different features. Many such examples exist in medical imaging, from mapping 2D ultrasound or fluoroscopy to 3D or 4D data or monitoring dynamic dose delivery from partial imaging data in radiotherapy. To illustrate this approach we animate, or articulate, a high resolution static MR image with 4D free breathing respiratory motion derived from low resolution sparse planar samples of motion. In this work we demonstrate that sparse sampling of dynamic MRI may be used as a viable approach to successfully build models of free- breathing respiratory motion by constrained articulation. Such models demonstrate high contrast, and high temporal and spatial resolution that have so far been hitherto unavailable with conventional imaging methods. The articulation is based on using a propagation model, in the eigen domain, to estimate complete 4D motion vector fields from sparsely sampled free-breathing dynamic MRI data. We demonstrate that this approach can provide equivalent motion vector fields compared to fully sampled 4D dynamic data, whilst preserving the corresponding high resolution/high contrast inherent in the original static volume. Validation is performed on three 4D MRI datasets using eight extracted slices from a fast 4D acquisition (0.7 s per volume). The estimated deformation fields from sparse sampling are compared to the fully sampled equivalents, resulting in an rms error of the order of 2 mm across the entire image volume. We also present exemplar 4D high contrast, high resolution articulated volunteer datasets using this methodology. This approach facilitates greater freedom in the acquisition of free breathing respiratory motion sequences which may be used to inform motion modelling methods in a range of imaging modalities and demonstrates that sparse sampling of free breathing data may be used within a manifold alignment and transfer learning paradigm to estimate fully sampled motion. The method may also be applied to other examples of sparse sampling to produce dense motion propagation.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Publisher: IOP Publishing
ISSN: 0031-9155
Date of Acceptance: 5 September 2019
Last Modified: 16 Dec 2019 11:30

Actions (repository staff only)

Edit Item Edit Item