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Abstract

A novel shape model of multi-scale topological features is proposed which consid-

ers those features relating to connected components and holes. This is achieved

by considering the persistent homology of a pair of sublevel set functions cor-

responding to a pair of distance functions defined on the ambient space. The

model is applicable to both single and multiple component shapes and, to the

authors knowledge, is the first shape model to consider multi-scale topological

features of multiple component shapes. It is demonstrated, both qualitatively

and quantitatively, that the proposed model models useful multi-scale topologi-

cal features and outperforms a commonly used benchmark models with respect

to the task of multiple component shape retrieval.

Keywords: Multiple Component Shapes, Topology, Multi-Scale, Persistent

Homology

Email address: corcoranp@cardiff.ac.uk (Padraig Corcoran)

Preprint submitted to Journal of Visual Communication and Image RepresentationOctober 18, 2019



1. INTRODUCTION

Shape modelling is a fundamental research problem with many applications

including modelling the shape of a human skull toward performing facial recon-

struction [1], modelling the shape of the right proximal femur toward predicting

the risk factor for incident hip fracture [2] and modelling the shape of objects

in a warehouse toward performing warehouse automation [3].

There exist some general shape models that can produce an arbitrarily large

number of descriptors, and the two main instances are Fourier descriptors and

moments. Each of these have spawned many alternative developments, e.g. El-

liptic Fourier descriptors [4], UNL-Fourier descriptors [5] for the former, and ge-

ometric moments, Zernike moments, Legendre moments, Chebyshev moments,

etc. [6, 7] for the latter. On the other hand, there exist many specific shape

models which attempt to model only a specific feature of shape. Such features

include convexity [8], ellipticity, rectangularity, and triangularity [9]. In addi-

tion, there are also many shape representations that provide generic signatures.

While their interpretation is not as intuitive as the simple global descriptors

such as convexity, etc., they are convenient for matching although their repre-

sentation is often not compact. Examples include shape context [10], curvature

scale space [11], axis-based features [12], autoregressive model [13], chord length

distributions [14].

In this paper we propose a novel shape model which models multiscale topo-

logical features. Modelling topological features has many applications such as

modelling articulated objects in a manner which is invariant to changes in ob-

ject pose. Although scale is not a topological concept, different topological

features can appear and disappear at different scales and therefore a multi-scale

approach to modelling is required. To illustrate this requirement consider the

three shapes displayed in Figure 1. The shape in Figure 1(a) consists of two

larger scale connected components connected by a smaller scale path. On the

other hand, the shape in Figure 1(b) consists of a single larger scale connected

component. Therefore, from a multi-scale perspective the topological features
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(a) (b) (c)

Figure 1: Three single component shapes with distinct multi-scale topological features are

displayed in (a), (b) and (c).

of these shapes can be considered distinct. The shape in Figure 1(c) consists

of a single connected component which surrounds a larger scale region. There-

fore, from a multi-scale perspective the topological features of this shape can be

considered distinct from the previous two shapes. If a multi-scale perspective is

not considered then the above shape distinctions cannot be made, and instead

all shapes will be considered to have identical topological features. That is,

from a non multi-scale perspective all three shapes consist of a single connected

component.

Modelling multiple component shapes, which consist of one or more con-

nected components, is an emerging field of research with many applications

such as modelling textures consisting of multiple repeating elements [15]. The

shape model proposed in this paper is applicable to both single and multiple

component shapes. To illustrate the requirement for a multi-scale approach to

modelling topological features of multiple component shapes consider the three

shapes displayed in Figure 2. The shape in Figure 2(a) consists of two larger

scale connected components which slightly overlap to form a single connected

component. The shape in Figure 2(b) consists of two larger scale connected

components which are spatially close but do not overlap. Therefore, from a

multi-scale perspective the topological features of these shapes can be consid-

ered similar. The shape in Figure 2(c) consists of two larger scale path-connected

components which are spatially far apart. Therefore, from a multi-scale perspec-

tive the topological features of this shape can be considered distinct from the
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(a) (b) (c)

Figure 2: Three multiple component shapes with distinct multi-scale topological features are

displayed in (a), (b) and (c).

previous two shapes. If a multi-scale perspective is not considered the above

shape distinctions cannot be made. Instead the shapes in Figures 2(b) and

2(c) will be considered to have identical topological features while the shape in

Figure 2(a) will be considered to have distinct topological features.

There exist a number of classes of topological features one could consider

when attempting to model single and multiple component shapes such as the

Euler characteristic and Homotopy groups. However, these features do not pro-

vide any means of modelling multi-scale topological features. The shape model

proposed in this paper employs a set of topological features known as persis-

tent homology which does provide a means of modelling multi-scale topological

features [16]. A consequence of this fact is that the proposed shape model is

capable of making the multi-scale distinctions between the shapes illustrated in

Figures 1 and 2.

Before computing the persistent homology of a given shape one must first

compute a filtration which is a sequence of representations of the shape indexed

by a scale parameter. Given a filtration the corresponding persistent homology

determines the topological features which exist in the filtration plus the corre-

sponding scales at which each appeared and subsequently disappeared. This

information is most commonly represented as a persistence diagram which is

a multiset of points in the plane where each point (i, j) indicates that a par-

ticular topological feature appeared and subsequently disappeared at scales i

and j respectively. The shape model proposed in this paper employs a novel
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approach to constructing a pair of filtrations such that the corresponding per-

sistent homology models useful multi-scale topological features. The model is

distinct from existing shape models which employ persistent homology in the

sense that filtrations are defined with respect to a triangulation of the ambient

space. Using this approach features relating to distance in the ambient space,

such as the distance between two components, can be modelled.

The layout of the remainder of this paper is as follows. Section 2 reviews the

different classes of topological features one could consider when attempting to

model the topological features of shape. Existing shape models which consider

topological features are also reviewed in this section. Section 3 describes the

proposed shape model. Section 4 presents a qualitative and quantitative eval-

uation of the proposed model with respect to single and multiple component

shapes. Finally, section 5 draws conclusions from this work and presents some

possible directions for future work.

2. Related Works

As discussed in the introduction to this article, there exist a number of

classes of topological features one could consider when attempting to model

single and multiple component shapes. Note that, in mathematical literature

topological features are commonly referred to as topological invariants. The

Euler characteristic is a topological feature equaling the alternating sum of the

number of connected components and holes of different dimensions [17]. How-

ever this is a weak feature in the sense that it cannot discriminate between

shapes with very distinct topological features. Furthermore, the Euler charac-

teristic does not provide any means of modelling multi-scale topological features.

The Homotopy groups are topological features which model information relat-

ing to connected components and holes of different dimensions. However these

features do not provide any means of modelling multi-scale topological features.

Neither the Euler characteristic or the Homotopy groups are capable of making

the multi-scale distinctions between the shapes illustrated in Figures 1 and 2.
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The Homology groups also model information relating to connected com-

ponents and holes of different dimensions but in a slightly weaker sense than

the Homotopy groups. However, these features can be generalised to provide

a means of modelling multi-scale topological features. This generalisation is

known as persistent homology and is employed by the shape model proposed in

this paper. This model is capable of making the multi-scale distinctions between

the shapes illustrated in Figures 1 and 2.

In the remainder of this section we review existing shape models which at-

tempt to model topological features and focus particularly on those models

which employ persistent homology. The shape model proposed in this paper is

distinct from these in the sense that it defines filtrations on the ambient space

as opposed to the shape itself [18]. Furthermore, the proposed model is appli-

cable to both single and multiple component shapes. Although some existing

models have the potential to be applied to multiple component shapes, their

performance with respect to such shapes has not previously been considered.

Turner et al. [19] propose a shape model known as the persistent homol-

ogy transform. This model computes a set of persistence diagrams where each

corresponds to a filtration defined on the shape with respect to distance in a

specified direction. The authors demonstrate the utility of their model with re-

spect to modelling two dimensional shapes corresponding to generic objects and

three dimensional shapes corresponding to animal bones. Curry et al. [20] later

extended this model to determine the number of directions required to fully

model the topological features of a given shape. Di Fabio et al. [21] propose a

shape model capable of comparing shapes based on partial similarity that can

compare partially occluded shapes. This model computes a persistence diagram

corresponding to a filtration defined on the shape which considers the negative

distance from a central point. The authors demonstrate the utility of their model

with respect to modelling two and three dimensional shapes corresponding to

generic objects. Di Fabio et al. [22] propose a shape model which employs two

different filtrations defined on the shape. One filtration considers the distance

to a vector pointing in a principle direction and passing through the mean point.
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The other considers the distance to a plane orthogonal to this vector and passing

through the mean point. The authors propose three different transformations

of the persistence diagram to complex polynomials which allow similarly to be

computed efficiently. The authors demonstrate the utility of their model with

respect to modelling three dimensional shapes corresponding to generic objects.

Zeppelzauer et al. [23] propose a shape model for three dimensional surfaces by

first creating a depth map representation of the surface and then constructing

a filtration defined on the surface. Cerri et al. [24] propose a method for ap-

proximating the distance between persistence diagrams in the context of shape

analysis. The authors use three different filtrations considering distance to a

principle line, distance to a principle plane and distance to a central point.

3. Topological Shape Model

This section describes the proposed shape model which is based on persistent

homology and models multi-scale topological features. The model first computes

a pair of filtrations corresponding to positive and negative distance functions

which are in turn used to compute a pair of persistence diagrams. These per-

sistence diagrams model the multi-scale topological features of a given shape.

The layout of this section is as follows. Section 3.1 briefly introduces back-

ground material on filtrations and persistent homology. Section 3.2 presents

the formulation of the proposed shape model. Section 3.3 describes how the

proposed model is implemented in the context of two dimensional image shape

analysis.

3.1. Filtrations and Persistent Homology

This section briefly introduces background material on the filtrations and

persistent homology. A more detailed introduction to these topics can be found

in [25, 26].

An (abstract) simplicial complex K is a finite collection of sets such that

for each σ ∈ K all subsets of σ are also contained in K. Each element σ ∈ K
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is called a k-simplex where k = |σ| − 1 is the corresponding dimension of the

simplex. The faces of a simplex σ correspond to all simplices τ where τ ⊂ σ.

The dimension of a simplicial complex K is the largest dimension of any simplex

σ ∈ K. Given a simplicial complex K, the formal sum c defined by Equation 1

is called a p-chain where each σi ∈ K is a p-simplex and each λi is an element

of a given field. For the purposes of this work we consider the field Z2 [27].

c =
∑

λiσi (1)

The vector space of all p-chains is denoted Cp(K). The boundary map

∂p : Cp(K) → Cp−1(K) is the homomorphism defined by Equation 2 where

v̂i indicates the deletion of vi from the sequence. The boundary of a p-simplex

σ = [v0, . . . , vp] is equal to the sum of its (p− 1)-dimensional faces.

∂pσ =

p∑
i=0

(−1)i[v1, . . . , v̂i, . . . , vp] (2)

The kernel of ∂p is called the vector space of p-cycles and is denoted Zp(K).

The image of ∂p is called the vector space of p-boundaries and is denoted Bp(K).

The fact that ∂p+1∂p = 0 implies that Bp(K) ⊆ Zk(K). The quotient space

Hp(K) = Zp(K)/Bp(K) is called the p-homology group of K. Intuitively an

element of the p-homology group corresponds to a p-dimensional hole in K.

That is, an element of the 0-homology group corresponds to a path-connected

component in K while an element of the 1-homology group corresponds to a one

dimensional hole in K. The rank of Hp(K) is called the p-th Betti number and

is denoted βp(K).

Given a simplicial complex K containing m simplices, consider a function

f : K → R such that f(τ) ≤ f(σ) whenever τ is a face of σ. For all a ∈ R,

the sublevel set K(a) = f−1(−∞, a] is a subcomplex of K. The ordering of the

simplices of K with respect to the values of f induces a filtration on the set of

subcomplexes corresponding to sublevel sets defined in Equation 3.

∅ = K0 ⊂ · · · ⊂ Km−1 ⊂ Km = K (3)
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Given a filtration K0, . . . ,Km−1,Km of a simplicial complex K, for every

i ≤ j there exists an inclusion map from Ki to Kj and in turn an induced

homomorphism from Hp(Ki) to Hp(Kj) for each dimension p. An element of

the p-homology group is born at Ki+1 if it exists in Hp(Ki+1) but does not exist

in Hp(Ki). An element of the p-homology group dies at Ki+1 if it exists in

Hp(Ki) but does not exist in Hp(Ki+1). If an element of a p-homology group

never dies, its death is determined to be at a simplicial complex K∞.

An element of the p-homology group which is born at Ki and dies at Kj can

be represented as a point (i, j) in the space {(i, j) ∈ R2, i ≤ j} with correspond-

ing persistence value of j − i. If the filtration is indexed by a scale parameter,

the magnitude of j − i is a measure of the scale of the topological feature in

question. For a given simplicial complex K, the multiset of points correspond-

ing to a p-homology group is called a p-dimensional persistence diagram and is

denoted Persp(K) [28].

As discussed above, in this work we consider the problem of modelling two

dimensional shapes. In this context, one only needs to consider persistence

diagrams corresponding to the 0- and 1-homology groups; that is, Pers0(K)

and Pers1(K). All higher dimensional homology groups will equal the null set.

This is a consequence to the fact that a two dimensional shape can only contain

path-connected components and one dimensional holes; higher dimensional holes

cannot exist.

In many situations it is necessary to compute a distance between a pair

of persistence diagrams. A commonly employed distance is the q-Wasserstein

distance which is defined as follows. Let U and V be two persistence diagrams

for which we wish to compute the corresponding q-Wasserstein distance. To

make the persistence diagrams stable, each (i, i) on the diagonal is counted

with infinite multiplicity. The q-Wasserstein distance Wq(U ,V) is then defined

by Equation 4 where η ranges over all bijections and ‖u− v‖∞ = max{|u|, |v|}.

The task of computing Wq(U ,V) can be reduced to bipartite graph matching
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problem [29].

Wq(U ,V) =

[
inf

η:U→V

∑
u∈U
‖u− η(u)‖q∞

] 1
q

(4)

3.2. Shape Model Formulation

This section presents the formulation of the proposed shape model. Let

X be a compact subset in Rd for which we wish to model the corresponding

multi-scale topological features. In the case of two dimensional shape modelling

considered in this paper, the dimension d is equal to 2. The unsigned distance

function U : Rd → R with respect to X is defined by Equation 5.

U(y) = inf
x∈X
‖x− y‖ (5)

Let LUt = {x : U ≤ t} denote the corresponding sublevel set function and

Persp(L
U
t ) denote the persistence diagrams of a filtration which models this

function. If X is a finite set of points in Rd, such a filtration may be constructed

by considering the Čech complex which equals the nerve of the set of balls of

increasing radius centred at each point. Persp(L
U
t ) is a commonly employed

model of multi-scale topological features [30]. As will be illustrated in the

results section of this article, in many cases this model does not represent an

accurate model of multi-scale topological features.

In this paper, we propose to overcome the above limitation by considering

two distance functions S+ : Rd → R and S− : Rd → R. These functions are

defined in Equations 6 and 7 respectively where Xc denotes the complement of

X.

S+(y) = inf
x∈X
‖x− y‖ (6)

S−(y) = inf
x∈Xc

‖x− y‖ (7)

We refer to these functions as positive and negative distance functions respec-

tively. Note that, the positive distance function is equivalent to the unsigned
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distance function. Let LS
+

t = {x : S+ ≤ t} and LS
−

t = {x : S− ≤ t} denote

the sublevel set functions of S+ and S− respectively. In this work we model

multi-scale topological features of X by considering the persistence diagrams of

filtrations which model these functions. We denote these persistence diagrams

as Persp(L
S+

t ) and Persp(L
S−

t ) respectively.

The persistence diagrams Persp(L
S+

t ) and Persp(L
S−

t ) corresponding to the

shape of Figure 1(a) are displayed in Figures 3(a) and 3(b) respectively. The

persistence diagrams Persp(L
S+

t ) and Persp(L
S−

t ) corresponding to the shape

of Figure 1(b) are displayed in Figures 3(c) and 3(d) respectively. Note that

these persistence diagrams discriminate between the shapes in question. That

is, although the persistence diagrams Persp(L
S+

t ) corresponding to both shapes

are equal, the persistence diagrams Persp(L
S−

t ) corresponding to both shapes

are distinct. Specifically, Persp(L
S−

t ) in Figure 3(b) indicates the existence of

a single element of the 0-homology group and two elements of the 1-homology

group with significant persistence. On the other hand, Persp(L
S−

t ) in Figure

3(d) indicates the existence of a single element of the 0-homology group and a

single element of the 1-homology group with significant persistence. The two

elements of the 1-homology group with significant persistence in Figure 3(b)

are a consequence of the fact that shape in question consists of two larger scale

path-connected components connected by a smaller scale path.

3.3. Image Shape Model

In this section we describe how the proposed shape model is implemented

in the context of two dimensional images of shapes. We assume the images

in question are binary where pixel values of 0 and 1 correspond to foreground

object and background respectively. Three such images are displayed in Figure

1.

For a given binary image I, the following approach was employed to construct

filtrations which model the positive and negative distance functions. First a

simplicial complex representation K of the image is constructed as follows. For

each image pixel p ∈ I a corresponding 0-simplex is included in K. For each
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(a) (b)

(c) (d)

Figure 3: The persistence diagrams Persp(LS+

t ) and Persp(LS−
t ) corresponding to the shape

of Figure 1(a) are displayed in (a) and (b) respectively. The persistence diagrams Persp(LS+

t )

and Persp(LS−
t ) corresponding to the shape of Figure 1(b) are displayed in (c) and (d) re-

spectively. In each figure elements of Pers0(.) and Pers1(.) are represented using blue circles

and green triangles respectively. Elements of Pers0(.) that appear but do not disappear are

determined to disappear at a value of ∞ and are represented by a blue vertical arrow. Note

that, each persistence diagram Pers0(.) in this figure contains zero elements. Hence, the figure

contains zero blue circles.

(a) (b)

Figure 4: A binary image of size 6 × 6 and corresponding simplicial complex representation

K are displayed in (a) and (b) respectively. In (b) red dots represent 0-simplices, blue lines

represent 1-simplices and green triangles represent 2-simplices.
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Figure 5: The Euclidean distance transforms d+ : I → R and d− : I → R of the image I

displayed in Figure 4(a) are displayed in (a) and (b) respectively.

pair of 0-simplices which are vertically, horizontally or main diagonal adjacent

with respect to the corresponding image pixels, a corresponding 1-simplex is

included in K. For each triple of 0-simplices where all subsets of pairs are

vertically, horizontally or main diagonally adjacent, a corresponding 2-simplex

is included in K. A small binary image and corresponding simplicial complex

representation K are displayed in Figures 4(a) and 4(b) respectively.

Next, functions f+ : K → R and f− : K → R which induce filtrations mod-

elling the positive and negative distance functions respectively are computed.

Toward this goal the Euclidean distance transforms d+ : I → R and d− : I → R,

which are defined in Equations 8 and 9 respectively, are computed. Here ‖p−q‖

denotes the Euclidean distance between the centroids of pixels p and q, Fore(I)

denotes the set of foreground pixels of I, and Back(I) denotes the set of back-

ground pixels of I [31]. The Euclidean distance transforms d+ : I → R and

d− : I → R of the image I displayed in Figure 4(a) are displayed in Figures 5(a)

and 5(b) respectively.

d+(p) = min
q∈Fore(I)

‖p− q‖ (8)

d−(p) = min
q∈Back(I)

‖p− q‖ (9)

Given the distance transforms d+ : I → R and d− : I → R, the functions

f+ : K → R and f− : K → R are defined in Equations 10 and 11 respectively.
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(a) (b)

Figure 6: The 0 sublevel sets of f+ : K → R and f− : K → R corresponding to the simplicial

complex displayed in Figure 4(b) are displayed in (a) and (b) respectively.

These functions assign to each simplex in K the maximum of the functions d+

and d− respectively evaluated on the corresponding 0-simplex faces. These func-

tions induce filtrations which model the positive and negative distance functions

respectively. The 0 sublevel sets of f+ and f− corresponding to the simplicial

complex displayed in Figure 4(b) are displayed in Figures 6(a) and 6(b) respec-

tively.

f+(σ) = max
τ∈σ

d+(τ) (10)

f−(σ) = max
τ∈σ

d−(τ) (11)

Given the filtrations induced by the functions d+ and d− the correspond-

ing persistence diagrams are computed using the method of [28]. Briefly, this

method involves encoding each filtration as a matrix and performing a matrix

reduction. As discussed above, these persistence diagrams model the persistence

diagrams corresponding to the functions LS
+

t and LS
−

t respectively. That is, the

sublevel sets of the positive and negative distance functions respectively. These

persistence diagrams are denoted Persp(L
S+

t ) and Persp(L
S−

t ) respectively.

4. Results

In this section we demonstrate the ability of the proposed shape model to

accurately model multi-scale topological features of single and multiple compo-
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nent shapes. The remainder of this section is structured as follows. Section 4.1

describes the baseline models against which the proposed model is evaluated.

Sections 4.2 and 4.3 present an evaluation of the proposed model with respect

to single and multiple component shapes respectively.

4.1. Baseline Models

To evaluate the model we considered the following three baseline models.

The first baseline model corresponds to the persistent homology of a filtration

which models the sublevel sets of the unsigned distance function U(.) defined

in Equation 5; that is, Persp(L
U
t ). This is a commonly employed method to

constructing a filtration for a given data and therefore represents a suitable

baseline [30]. As discussed in section 3.2, the unsigned and positive distance

functions are equivalent.

The second baseline model corresponds to the model proposed by Di Fabio

et al. [22]. As described in section 2, this model employs two filtrations defined

on the shape boundary. The first filtration considers the distance to a vector

pointing in a principle direction and passing through the mean point. The

second filtration considers the distance to a plane orthogonal to this vector and

passing through the mean point. This model assumes the shape in question is

represented in terms of its boundary. All shapes used in this work are initially

represented as binary images. We therefore extracted the shape boundaries for

all shapes before applying the model. To illustrate this model consider the shape

in Figure 1(a) for which the corresponding boundary is represented in Figure

7(a). In this example the vector pointing in the principle direction is parallel to

the x-axis while the plane orthogonal to this vector is a vector parallel to the y-

axis. The persistence diagrams corresponding to the first and second filtrations

are displayed in Figures 7(b) and 7(c) respectively.

The third baseline model corresponds to the model proposed by Turner et

al. [19]. As described in section 2, this model computes a set of persistence dia-

grams where each corresponds to a filtration defined on the shape with respect

to distance in a specified direction. In this work we used two directions corre-
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(a) (b) (c)

Figure 7: The boundary corresponding to the shape of Figure 1(a) is displayed in (a). The

persistence diagrams corresponding to the first and second filtrations in the model by Di

Fabio et al. [22] are displayed in (b) and (c) respectively. Elements of the 0-dimensional

and 1-dimensional persistence diagrams are represented using blue circles and green triangles

respectively. Elements of these persistence diagrams that appear but do not disappear are

determined to disappear at a value of∞ and are represented by blue and green vertical arrows

respectively.

sponding to the first and second principal components. To illustrate this model

consider again the shape in Figure 1(a) for which the corresponding boundary

is represented in Figure 8(a). In this example the first principal component is

parallel to the x-axis while the second principal component is parallel to the y-

axis. The persistence diagrams corresponding to the first and second principal

components are displayed in Figures 8(b) and 8(c) respectively.

4.2. Single Component Shapes

In many cases the use of a filtration which models the sublevel sets of the

unsigned distance function does not accurately model the multi-scale topolog-

ical features. To illustrate this point with respect to single component shapes

consider the two shapes represented in Figures 1(a) and 1(b). As discussed

in the introduction to this article, from a multi-scale perspective the topolog-

ical features of these shapes can be considered to be distinct. The persistence

diagrams Persp(L
U
t ) for these shapes are displayed in Figures 9(a) and 9(b) re-

spectively. It is evident that the persistence diagrams corresponding to both

shapes are equal and therefore cannot discriminate between the shapes in ques-
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(a) (b) (c)

Figure 8: The boundary corresponding to the shape of Figure 1(a) is displayed in (a). The

persistence diagrams corresponding to the first and second principal components in the model

by Turner et al. [19] are displayed in (b) and (c) respectively. Elements of the 0-dimensional

and 1-dimensional persistence diagrams are represented using blue circles and green triangles

respectively. Elements of these persistence diagrams that appear but do not disappear are

determined to disappear at a value of∞ and are represented by blue and green vertical arrows

respectively.

tion. That is, the persistence diagrams indicate that in the case of both shapes

a single path-connected component appears at a distance of 0 to the data and

does not subsequently disappear. They also indicate that in the case of both

shapes no one-dimensional holes appear. This demonstrates that, in this case,

the persistence diagrams corresponding to an unsigned distance function U(.)

fail to accurately model multi-scale topological features.

The proposed model of multi-scale topological features overcomes the above

limitation by computing a pair of persistence diagrams Persp(L
S+

t ) and Persp(L
S−

t )

corresponding to the distance functions S+ and S− respectively. Relative to

persistence diagrams corresponding to the unsigned distance function U(.), this

pair models additional multi-scale topological features which facilitate more ac-

curate discrimination. The persistence diagrams Persp(L
S+

t ) and Persp(L
S−

t )

corresponding to the shapes of Figures 1(a) and 1(b) are displayed in Figure

3. As described in section 3.2, these persistence diagrams discriminate between

the shapes in question.

To evaluate the performance of the proposed shape model with respect to a

larger and more complex set of shapes we considered the MPEG-7 shape dataset
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(a) (b)

Figure 9: The persistence diagrams Persp(LU
t ) for the shapes in Figures 1(a) and 1(b) are

displayed in (a) and (b) respectively. In each figure elements of Pers0(LU
t ) and Pers1(LU

t ) are

represented using blue circles and green triangles respectively. Elements of Pers0(LU
t ) that

appear but do not disappear are determined to disappear at a value of∞ and are represented

by a blue vertical arrow.

[32]. This dataset consists of 70 distinct shape categories with 20 individuals

shapes per category to give a total of 1,400 shapes. Two sample shapes in this

data set are displayed in Figures 10(a) and 11(a). In order to reduce the compu-

tation time required to run experiments, we considered a subset of this dataset

corresponding to all 70 shape categories but only 10 individuals shapes per cat-

egory. The high computational complexity results from having to compute the

q-Wasserstein distance a large number of times. Toward making the proposed

and benchmark models robust to differences in object scale, we normalized the

size of each image such that the corresponding number of foreground object

pixels was approximately 4,000.

We evaluated the proposed and baseline models with respect to the task

of shape retrieval on the above dataset. For a given model, we selected the k

closest shapes to each shape in the dataset. The 2-Wasserstein distance was

used to measure distances. For example, Figures 10 and 11 display the 4 most

similar shapes to a given shape as determined by all models. The proposed and

baseline models of Di Fabio et al. [22] and Turner et al. [19] performed equally

well with respect to the retrieval example of Figure 10. On the other hand,

the baseline models of Di Fabio et al. [22] and Turner et al. [19] performed
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(a)

(b) 2.11-0.0-

54.92-22.38

(c) 4.06-0.0-

42.11-25.23

(d) 5.84-0.0-

40.79-40.75

(e) 6.01-0.0-

32.30-28.14

(f) 14.63-

0.0-163.35-

149.76

(g) 13.38-

0.0-164.84-

148.04

(h) 14.60-

0.0-166.17-

150.18

(i) 19.83-

0.0-152.20-

138.90

(j) 6.20-0.0-

28.81-16.66

(k) 6.01-0.0-

32.30-28.14

(l) 5.84-0.0-

40.79-40.75

(m) 9.54-0.0-

41.32-24.68

(n) 6.20-0.0-

28.81-16.66

(o) 6.01-0.0-

32.30-22.38

(p) 5.84-0.0-

40.79-25.23

(q) 9.54-0.0-

41.32-28.14

Figure 10: For the query shape in (a), the four most similar shapes as determined by the

proposed, unsigned distance, Di Fabio et al. [22] and Turner et al. [19] models are displayed

in rows two, three, four and five respectively. In each row shapes are ordered from most

to least similar from left to right. The caption under each shape gives the respective dash

separated distances to the query shape.

19



(a)

(b) 8.01-3.97-

53.06-34.78

(c) 24.17-8.80-

105.85-112.55

(d) 24.96-9.35-

90.23-110.58

(e) 25.25-9.35-

189.89-167.73

(f) 8.01-3.97-

53.06-34.78

(g) 30.58-7.52-

93.18-87.19

(h) 31.58-8.07-

116.05-155.66

(i) 30.48-8.41-

122.79-158.15

(j) 8.01-3.7-

53.06-34.78

(k) 26.32-9.31-

73.05-73.85

(l) 33.32-9.83-

75.83-74.32

(m) 25.37-9.05-

76.52-64.9

(n) 8.01-3.7-

53.06-34.78

(o) 25.37-9.05-

76.52-64.9

(p) 26.32-9.31-

73.05-73.85

(q) 41.90-11.84-

89.61-79.92

Figure 11: For the query shape in (a), the four most similar shapes as determined by the

proposed, unsigned distance, Di Fabio et al. [22] and Turner et al. [19] models are displayed

in rows two, three, four and five respectively. In each row shapes are ordered from most

to least similar from left to right. The caption under each shape gives the respective dash

separated distances to the query shape.
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slightly better than the proposed model with respect to the retrieval example

of Figure 11. For both retrieval examples the unsigned distance baseline model

performed the worst. For the example in Figure 10 this can be attributed to the

fact that this model fails to model the fact that the query shape corresponds to

two larger scale connected components connected by a smaller scale path. This

is a defining feature of the shape in question. Instead, the model determines a

large number of shapes as being identical, that is having distance value of zero,

to the query shape. A consequence of this is that an arbitrary subset of these

are determined to be the k closest shapes.

For values of k from 1 to 10, the corresponding precision and recall values for

the four models over the 700 shapes are displayed in Figure 12(a). These values

demonstrate that the model by Di Fabio et al. [22] outperformed all other mod-

els with respect to shape retrieval on this dataset. One explanation for this is

that using the principle direction to control filtration provides some additional

shape specification information that is helpful to the shape retrieval task. How-

ever, as we shall see in the next experiment in section 4.3, this dependence on

the principle direction can become counter-productive.

4.3. Multiple Component Shapes

To illustrate that the proposed shape model is applicable to multiple com-

ponent shapes consider the three shapes displayed in Figure 2. As discussed in

the introduction to this article, from a multi-scale perspective the topological

features of the shapes in Figures 2(a) and 2(b) can be considered similar while

those of the shape in Figure 2(c) can be considered distinct. The persistence

diagrams Persp(L
S+

t ) and Persp(L
S−

t ) corresponding to the three shapes of Fig-

ure 2 are displayed in Figure 13. Note that, two triangles exists at the location

(0,35) in the persistence diagrams of Figures 13(d) and 13(f). It is evident that

the persistence diagrams corresponding to these shapes accurately model the

corresponding multi-scale topological features. For example, the persistence di-

agrams Persp(L
S+

t ) of Figures 13(a) and 13(c) indicate that, from a multi-scale

perspective, the shapes in Figures 2(a) and 2(b) consist of a single significant
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(a) (b)

Figure 12: The precision and recall values for the single and multiple component retrieval

tasks are displayed in (a) and (b) respectively. Points for the proposed, unsigned distance,

Di Fabio et al. [22] and Turner et al. [19] models are represented by red, blue, green and

magenta points respectively.

path-connected component. That is, Figures 13(a) and 13(c) illustrate that for

both shapes Pers0(LS
+

t ) contains a single point with significant persistence. In

both cases this point is represented by a blue arrow in the corresponding fig-

ure. On the other hand, the persistence diagrams Persp(L
S+

t ) of Figure 13(e)

indicate that, from a multi-scale perspective, the shape in Figure 2(c) consists

of two significant path-connected components. These points are represented by

a blue circle and blue arrow in the corresponding figure.

We evaluated the proposed shape model on a multiple component version of

the MPEG-7 shape dataset which contains in total 3,621 shapes [32]. A subset

of 620 shapes in this dataset consists of 31 individual shapes plus 9 distorted, 5

rotated and 5 scaled versions of each shape. A small distortion of a shape, such

as a small affine transformation, can result in topological changes which would

be considered to be very distinct unless a multi-scale perspective is considered.

For example two connected components which are spatially close may form

a single connected component following the application of a small distortion

transformation. Figure 14 displays one of the individual shapes in the dataset
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(a) (b)

(c) (d)

(e) (f)

Figure 13: The persistence diagrams Persp(LS+

t ) and Persp(LS−
t ) corresponding to the shape

of Figure 2(a) are displayed in (a) and (b) respectively. The persistence diagrams Persp(LS+

t )

and Persp(LS−
t ) corresponding to the shape of Figure 2(b) are displayed in (c) and (d) re-

spectively. The persistence diagrams Persp(LS+

t ) and Persp(LS−
t ) corresponding to the shape

of Figure 2(c) are displayed in (e) and (f) respectively. In each figure elements of Pers0(.)

and Pers1(.) are represented using blue circles and green triangles respectively. Elements of

Pers0(.) that appear but do not disappear are determined to disappear at a value of ∞ and

are represented by a blue vertical arrow. Note that, two triangles exists at the location (0,35)

in the persistence diagrams of (d) and (f).
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(a) (b) (c) (d)

Figure 14: Distorted, rotated and scaled versions of the shape in (a) are displayed in (b), (c)

and (d) respectively.

plus a subset of the corresponding transformed versions.

Using the same methodology employed for single component shapes, we eval-

uated the proposed and baseline models with respect to the task of shape re-

trieval on the above dataset. For values of k from 1 to 20, the corresponding

precision and recall values for the four models over the 620 shapes are displayed

in Figure 12(b). These values demonstrate that the proposed model outper-

formed the baselines models respect to shape retrieval on this dataset. Figures

15 and 16 display the 4 most similar shapes to a given shape in the dataset as

determined by all models. It is evident that the proposed model outperforms

the baseline models with respect to these shapes. The authors believe that the

relatively poor performance of the Di Fabio et al. [22] and Turner et al. [19]

baseline models can in part be attributed to the fact that they are defined with

respect to the shape boundary and therefore struggle to differentiate between

the interior and exterior of a shape. The other cause for their relatively poor

performance is their reliance on principle directions. However, the estimation

of such directions can become unreliable for compact or rotationally symmetric

shapes, and in such situations becomes overly-sensitive to artifacts caused by

the digitization process or by noise [33]. We note that a significant number of

the shapes in the MPEG-7 dataset are compact and/or rotationally symmetric.

To further demonstrate the performance of the proposed shape model we

considered another subset of the above multiple component dataset correspond-
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(a)

(b) 5.7-3.2-85.2-74.8 (c) 6.7-3.0-154.6-251.7 (d) 7.0-3.1-86.4-73.2 (e) 7.4-3.7-84.0-71.5

(f) 7.6-2.8-29.1-38.1 (g) 7.8-2.8-74.1-68.5 (h) 8.5-2.9-79.2-66.9 (i) 6.7-3.0-154.6-251.7

(j) 7.6-2.8-29.1-38.1 (k) 27.5-17.1-71.3-79.0 (l) 7.8-2.8-74.1-68.5 (m) 27.8-17.6-75.1-90.4

(n) 7.6-2.8-29.1-38.1 (o) 8.5-2.9-79.2-66.9 (p) 7.6-3.2-77.2-66.9 (q) 35.8-20.8-95.0-68.5

Figure 15: For the query shape in (a), the four most similar shapes as determined by the

proposed, unsigned distance, Di Fabio et al. [22] and Turner et al. [19] models are displayed

in rows two, three, four and five respectively. In each row shapes are ordered from most

to least similar from left to right. The caption under each shape gives the respective dash

separated distances to the query shape.
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(a)

(b) 6.9-4.1-760.2-

1441.1

(c) 17.4-11.0-923.2-

141.1

(d) 19.9-12.2-885.2-

129.2

(e) 20.8-14.4-1040.6-

706.8

(f) 6.9-4.1-760.2-

1441.1

(g) 17.4-11.0-923.2-

141.1

(h) 19.9-12.2-885.2-

129.2

(i) 57.1-12.3-947.9-

2311.6

(j) 83.3-30.2-657.5-

88.2

(k) 21.4-14.0-739.5-

4102.9

(l) 6.9-4.1-760.2-

1441.1

(m) 97.7-36.6-769.7-

1464.5

(n) 28.7-20.4-1013.8-

128.8

(o) 19.9-12.2-885.2-

129.2

(p) 22.5-15.7-111.3-

134.9

(q) 81.2-48.7-1325.2-

141.7

Figure 16: For the query shape in (a), the four most similar shapes as determined by the

proposed, unsigned distance, Di Fabio et al. [22] and Turner et al. [19] models are displayed

in rows two, three, four and five respectively. In each row shapes are ordered from most

to least similar from left to right. The caption under each shape gives the respective dash

separated distances to the query shape.
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ing to the first 200 shapes in the dataset. Unlike the previous subset considered,

this subset is not formally structured and instead contains random shapes some

of which have a varying number of distorted versions. On this subset we per-

formed the task of retrieval using the same methodology described above. Figure

17 displays the three most similar shapes to four query shapes as determined

by the proposed model. It is evident that for the three query shapes in Fig-

ures 17(a), 17(e) and 17(i), the model retrieves shapes which are similar to the

query shape. However, for the query shape in Figure 17(m) the model does not

retrieve shapes which are similar to the query shape. This can be attributed to

the fact that although the query shape has distinctive features these features

are not topological in nature.

5. Conclusions

This paper proposes a novel shape model which is demonstrated to accu-

rately model multi-scale topological features. The proposed model is applicable

to both single and multiple component shapes and, to the authors knowledge,

is the first shape model to consider multi-scale topological features of multiple

component shapes.

The proposed model was evaluated both qualitatively and quantitatively

against three suitable baseline models using a number of datasets. This eval-

uation demonstrates that the proposed model fails to outperform one of the

baseline models with respect to the task of modelling single component shapes.

However, it outperforms both baseline models with respect to the task of mod-

elling multiple component shapes. The authors believe there exists scope to

develop a novel shape model which integrates the benefits of both the proposed

and baseline models.

Although in this paper we consider the specific problem of modelling two

dimensional shapes represented as binary images, the proposed model has the

potential to be applied to other problem instances. This includes modelling

three dimensional shapes represented as polygon meshes and modelling arbitrary
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(a) (b) 17.90 (c) 20.14 (d) 22.86

(e) (f) 28.88 (g) 31.60 (h) 31.87

(i) (j) 0.00 (k) 38.95 (l) 46.36

(m) (n) 18.71 (o) 23.83 (p) 24.12

Figure 17: The first column of each row contains a query shape. The three most similar shapes

from most to least similar as determined by the proposed model are displayed in the second,

third and fourth columns respectively. The caption under each shape gives the corresponding

distance to the query shape as determined by the proposed model rounded to two decimal

places.
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dimensional shapes represented as point clouds.

References
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