Spanwise cylinder wake hydrodynamics and fish behaviour

V. Muhawenimana¹, C. A. M. E. Wilson¹, P. Ouro¹, J. Cable²

¹School of Engineering, Cardiff University, Cardiff, CF24 3AA, UK
²School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK

Corresponding author: Valentine Muhawenimana (MuhawenimanaV@cardiff.ac.uk)

Key Points:

- The interaction of fish with spanwise vortices was examined by considering habitat use and swimming stability.
- Fish avoided areas of highest turbulent heterogeneity, while loss of stability peaked when turbulence length scale was 45-50% of fish length.
- Highest magnitudes of downward-acting Reynolds stresses and negative vorticity corresponded to the highest rate of spill occurrence.
Abstract

Flows generated near hydro-engineering structures are characterised by energetic three-dimensional flow structures that are markedly different from naturally occurring fish habitats. The current study evaluated the interaction of Nile tilapia (Oreochromis niloticus) with spanwise rollers in the turbulent wake of a cylinder in both the wake bubble and the vortex shedding further downstream. The flow field hydrodynamics were measured using an Acoustic Doppler Velocimeter for Reynolds number (Re_D) regimes ranging from 3,730 to 33,590, over a streamwise length of six diameters downstream of the cylinder, and revealed a pair of alternating vortices rotating about a spanwise axis, which were rendered asymmetric by the bed boundary proximity. Fish avoided areas where vorticity, turbulence intensity, turbulent kinetic energy, eddy size and Reynolds shear stress were highest. Events of stability loss, referred to as spills, were significantly correlated to the turbulence integral length scale relative to fish standard length, with the peak number of spills occurring when the eddy length approached 45 to 50% of the fish length. Spill events significantly depended on Re_D, Reynolds stress and vorticity, and varied according to fish length and weight. Amongst zones of similar Reynolds stress and vorticity magnitude, spills were most frequent when Reynolds shear stress was positive, downward-acting and eddies rotated clockwise, which highlights the importance of direction and orientation of flow structures in determining the hydrodynamic forces that affect fish swimming stability. Recommendations are made for the inclusion of these metrics in the design and refinement of hydro-engineering schemes.

1 Introduction

Modifications to river habitats through hydraulic structures have significantly affected aquatic species by creating unnatural flows. Fragmentation of riverine habitats is particularly problematic for fish species, disrupting short and long distance migrations (Katopodis and Williams 2012; Fuller et al. 2015) and creating extreme conditions that may impact fish habitat preferences, feeding, spawning, swimming ability and swimming kinematics (Murchie et al. 2008; Williams et al. 2012; Hockley et al. 2014). River restoration schemes attempt to restore the aquatic environment back to natural conditions, and fish passes facilitate movement of migratory species with varying efficiency (Larinier 2001; Noonan et al. 2012). Such restorations, however, only achieve semi-natural conditions and often create a wider range of flow heterogeneity in terms of velocities, turbulence and turbulent shear stresses, particularly problematic for smaller or weaker swimmers (Wang et al. 2010; Silva et al. 2011; Lacey et al. 2012; Wang et al. 2016).

Both field and laboratory studies indicate that altered and turbulent flows can be both beneficial and detrimental to fish (Pavlov et al. 2000; Webb, 1998; Enders et al. 2003; Liao 2007; Tritico and Cotel 2010) affecting their swimming behaviour, aggregation and migration (Pavlov et al. 2000; Liao 2007; Lacey et al. 2012). Fish can take advantage of turbulent flows to reduce energy expenditure (Webb, 1998; Enders et al. 2003; Liao et al. 2003). Fish also choose low momentum paths available in the wake of an object and synchronise their swimming trajectory by “Karman gaiting” between von-Kármán-type alternating vortex shedding, therefore exploiting the rotating motion of these rollers to propel themselves upstream (Liao et al. 2003). Fish use their lateral line to sense the velocity and pressure field properties in their environment, as well as vortices generated by the movement of other fish and those in the wake of an obstruction. Conversely, negative effects of turbulence on fish swimming ability manifest as highly turbulent flows create swimming instabilities, increase energy expenditure, and decrease swimming performance (Pavlov et al. 2000; Nikora et al. 2003; Lupandin 2005; Cotel et al. 2006; Liao et al. 2003; Webb...
1998; Enders et al. 2003; Plew et al., 2007; Tritico and Cotel 2010; Maia et al. 2015; Wang and Chanson, 2018). The conflicting findings of whether turbulence and large-scale vortices are beneficial or detrimental might be explained by the different intensity, periodicity, orientation and scale characteristics of the turbulent flows, which have varied across studies (Murchie et al. 2008; Lacey et al. 2012).

Losses in swimming stability in response to perturbations are important to evaluate because fish expend energy and time recovering from instabilities while navigating challenging flows at the cost of swimming speed; effects which vary depending on flow velocity, turbulence vorticity characteristics and fish length (Pavlov et al. 2000; Cada and Odeh 2001; Lupandin 2005; Tritico and Cotel 2010; Maia et al. 2015), as well as turbulence intensity and shear stresses (Cotel et al. 2006; Silva et al. 2011). Tritico and Cotel (2010) identified a relationship between turbulence eddy diameter and fish body length, where eddies over 75% of fish length destabilised the fish, confirming previous investigations into the effects of turbulence on the swimming ability of fish (Pavlov et al. 2000; Cada and Odeh 2001; Liao 2007). This ratio of turbulent length scale to fish length that destabilise the fish has also been identified as 66% (Lupandin 2005), and in the range of 50 to 100% (Webb and Cotel 2011). Vertical rollers are shed from vertically orientated objects, spanwise rollers are shed from objects with axes that span the cross-flow direction and streamwise rollers have axes of rotation parallel to the flow direction; all incite different adverse responses from fish (Tritico and Cotel 2010; Maia et al. 2015). Indeed, the orientation of flow obstructions and the axis of rotation of their wake eddies is vital since spanwise rollers have a greater impact on swimming stability and critical swimming speed than vertical rollers by requiring more recovery manoeuvres from the fish (Tritico and Cotel 2010).

Cylindrical shaped objects, often used in hydrodynamic research, are abundant in fluvial environments, including vegetation, woody debris, pipes, or bridge piers. They generate coherent and periodic turbulent flow structures against which fish swimming behaviour can be studied. Recent research focus on flow around horizontal cylinders has shown that these can exhibit different vortex shedding regimes compared to vertical cylinders (Lehmkuhl et al. 2013). In addition to the Reynolds number, the characteristics of the unsteady wake behind a horizontal cylinder depends on its proximity to the solid boundary and the approaching boundary layer thickness which affects the cylinder hydrodynamic and lift forces, the location of frontal stagnation points and shear separation layers, the extent of the recirculation bubble, and symmetry of the von-Kármán street (Price et al. 2002; Oner et al. 2008; Sarkar and Sarkar 2010).

Our understanding of the threshold of hydrodynamic conditions that lead to disruption of fish swimming kinematics is incomplete. Therefore, to further investigate the swimming stability and habitat usage of fish in altered turbulent flows, the current study tested fish swimming kinematics in the wake of a horizontal cylinder model. The cylinder wake’s hydrodynamic properties were measured, and fish of various length were tested under a wider range of cylinder Reynolds numbers.

2 Materials and Methods

2.1 Flume setup and test area

Experiments were performed in an open channel recirculating Armfield flume with glass walls (1000 cm length, 30 cm width, and 30 cm height) in the Cardiff School of Engineering Hydro-environmental Research Centre laboratory. The flume was set to a slope of 1/1000. An electromagnetic flowmeter (Euromag MUT1100) measured the water discharge (±0.3% Ls⁻¹). A
cylinder, 5 cm diameter (D) was placed transversally across the flume width and fixed to the flume walls using silicon adhesive, with its centre 5 cm from the flume bed. The ratio of the gap distance between the cylinder and the flume bed (G) relative to the cylinder diameter (G/D) was 0.5 and corresponding to a vertical distance whereby the proximity to the bed affects the vortex shedding mechanisms whilst not too confined to suppress the shedding phenomenon (Oner et al. 2008). Flow over and under the cylinder generated a turbulent wake that was used to test the fish swimming kinematics. Honeycomb flow diffusers bounded the test section, 5 cm upstream and 30 cm downstream of the cylinder, with the upstream flow diffuser located 380 cm from the upstream end of the flume (Fig. 1). A streamwise-averaged flow depth (H) of 15 cm, measured using a Vernier pointer gauge (± 0.1 mm) along the flume centreline, was maintained for all tests using a tailgate weir located downstream of the flume, resulting in cross-sectional averaged velocities and Reynolds numbers shown in Table 1. The local flow depth (H_L) was measured in streamwise increments of 5 cm to characterise the effects of the cylinder and shallowness of the flow, on the surface water profile. Flow discharges (Q) ranged from 3 to 27 Ls^{-1} and cross-sectional averaged velocities ranged from 6.67 to 60 cms^{-1} (Table 1). The wake of the cylinder was within Re ranges of the sub-critical regimes and was fully turbulent (Douglas et al. 2011). A Logitech HD web camera, C920 with a 720p-1080p resolution at 30 frames per second positioned on the glass side of the flume recorded a side elevation view of the fish swimming behaviour.

2.2 Fish swimming behaviour tests

Nile tilapia (Oreochromis niloticus, Silver strain; n=28; fork length (11.78±2.11 cm); standard length, herein referred to as L_fish (9.52±1.77 cm) and weight (31.6±17.5 g)) sourced from a commercial facility (FishGen Ltd), were maintained in aquaria facility in the Cardiff School of Biosciences at 25±0.5°C. This temperature was also maintained during acclimatisation of the fish in the flume and for all swimming tests. Individual swimming tests were conducted using a ramped step velocity test after each fish was acclimatised in an area downstream of the test section in the flume for 30 min, at the lowest discharge of 1.5 Ls^{-1}. The acclimatisation space was also delimited by honeycomb flow diffusers, which were lifted to allow fish to swim in the test section at the beginning of the velocity step test and behaviour observations. Discharges were increased from 3 to 27 Ls^{-1} in step increments of 3 Ls^{-1} and each velocity step was maintained for a test time of 10 min during which fish swimming kinematics were observed. Fish maintenance and behavioural tests were all approved by Cardiff University Animal Ethics Committee and conducted under Home Office licence PPL 303424.

Videos of the swimming behaviour were reviewed and habitat preference, as well as swimming behaviours were logged using JWWatcher V1.0 software to record the amount of time fish spent in each flow volume of the test section, the time or velocity step and the volume zone where spills occurred. The body centre was used to locate the fish. Flow volume zones were defined by dividing the test section into nine subsections of equal dimensions. Three sections (10 cm length) along the streamwise direction delimited the near, centre and far wakes, while three sections (5 cm height) in the vertical direction delimited the water column into bed, mid and top-water column volume zones (see Fig. 1). Spills, events of loss of balance, were defined by Tritico and Cotel (2010) as involuntary swimming behaviour where the fish’s head rotates more than 45° in yawing motion, followed by drifting downstream over a distance longer than half of its body length. Recovery manoeuvres from the spill follow as the fish realigns its body length to the longitudinal flow
direction. A measure of the rate of spill occurrence used in this study was the ratio of the number of spills over the amount of time spent in each flow volume, referred to as spill frequency (min⁻¹).

2.3 ADV velocity data acquisition

The hydrodynamic characteristics of the cylinder wake were measured using an Acoustic Doppler Velocimeter (ADV), a downward-looking Nortek Vectrino Plus (V.1.31+) at a sampling rate of 200 Hz. The flow was seeded with neutrally buoyant sphericel hallow glass silicate powder with 10 µm mean diameter and 1.1 ±0.05 g/cm³ density (Potters Industries Inc.). The Sound to Noise Ratio (SNR) and Correlation (COR) were maintained above 20 dB and 70% respectively by adding the seeding material to the water to ensure good quality data. Recorded velocities were in three dimensions of xyz coordinates, x longitudinal, y transverse and z vertical flow directions. The spatial resolution of the velocity sampling grid was such that along the flume centreline 15 points were measured equispaced by 2 cm in the x direction and 15 points, 0.5 cm apart in the z direction. A constant sampling time of 300 s was used for all data points. The geometry of the ADV probe did not permit velocity measurements within 2.5 cm distance from the edge of the cylinder, and in a distance greater than 8 cm from the flume bed, which meant that parts of the Mid water column and Top layer of the water column (see Fig. 1) were not included in the velocity measurements. The accuracy of an ADV probe has been compared to other velocity probes (e.g. Pitot tube) and found to be within 2%, based on integrating the velocity measurements over the water column (Leng and Chanson 2017).

2.4 ADV data filtering and post processing

The Velocity Signal Analyser (MAJVSA version V1.5.62) was used to filter and despike the ADV data using limits of 15 dB and 70% for SNR and COR respectively (Nortek, 2009). Further despiking used the Phase-Space Thresholding method by Goring and Nikora, (2002) (revised by Wahl, 2003) as well as a 12-point average spike replacement (Jesson et al. 2013). On average, the percentage of good samples after filtering and despiking was 80%. Turbulence characteristics calculated using MAJVSA included the turbulent kinetic energy \(TKE = 0.5(u'^2 + v'^2 + w'^2) \), longitudinal turbulence intensity \(TIl_u = \sqrt{\overline{u'^2}} \), and Reynolds shear stresses \(\tau_{uv} = -\rho \overline{u'v'} \) and \(\tau_{uw} = -\rho \overline{u'w'} \) for the spanwise and vertical components respectively. Note that overbar () denotes time-averaging.

A FORTRAN script was used to perform the autocorrelation function integration and calculation of the turbulence length scale (Pope 2000). The autocorrelation function \(\phi(t) \) is:

\[
\phi(t) = \frac{\overline{u'(t) \cdot u'(t+s)}}{u'(t)^2}
\]

Eq. 1

Where \(s \) is the lag time and \(u' \) denotes velocity fluctuation values. The longitudinal turbulent integral length scale \(L_u \) is given by:

\[
L_u = \overline{\bar{u}} \int_0^T \phi(t) dt
\]

Eq. 2

Where \(T \) is the time at which the autocorrelation function becomes firstly negative, i.e., \(\phi(T) = 0 \), and \(\overline{\bar{u}} \) is the mean streamwise velocity at the evaluated point. The 2-D vorticity field definition
based on the time-averaged velocity gradient about a given axis is used in this study (see Graf and
Yulistiyanto, 1998; Crowder and Diplas, 2002; Jamieson et al., 2013). It assumes that for a time-
averaged flow field, the mean velocity for a given point in space does not vary with time and
therefore, the associated time-averaged vorticity field must also be constant. The spanwise
component, i.e. in the direction of the cylinder’s axis, of the mean vorticity vector based on the
time-averaged streamwise \bar{u} and vertical velocities \bar{w} is given by:

$$\omega_y = \frac{\Delta \bar{w}}{\Delta x} - \frac{\Delta \bar{u}}{\Delta z}$$

where Δx and Δz are the distances between two consecutive measurement locations in the
streamwise and vertical directions respectively, and $\Delta \bar{u}$ and $\Delta \bar{w}$ are the variations of the velocity
values between those locations. Note that this definition is used as the measurement points closest
to the cylinder’s lee-side are 2 cm downstream and that closest to the flume’s bottom is at an
elevation of 0.5 cm. Strouhal number is defined by:

$$St = \frac{f \cdot D}{U_0}$$

where f is the dominant shedding frequency identified from the high spectral energy peaks
obtained from the Fast Fourier Transform (FFT), D is the cylinder diameter and U_0 is the cross-
sectional averaged velocity (Pope 2000). The recurrent generation of instantaneous turbulent
structures were identified from the computed FFT of the time series of all three velocity
components u, v and w at the sampling point $x=6D$, $z=0.53H$ in the cylinder wake.

2.4 Statistical analysis

Fish behaviour data in relation to hydrodynamic parameters were analysed in R statistics
software (3.5.0) (R Core Team, 2018) via RStudio (Version 1.1.447) (RStudio Team, 2016). Mean,
standard deviation and quartiles of each variable were summarised and Shapiro tests used to
evaluate the data distributions. Generalized Linear Mixed Models (GLMMs) using Fish ID to
account for repeated measures of fish were used to evaluate the number of spills in each zone as
explained by the fish characteristics (length and weight), the amount of time spent in each zone,
the longitudinal and vertical distance of the zone where the spill occurred, the Reynolds number
and flow velocity, and turbulence properties which are spatially-averaged for each zone $(\langle \bar{u} \rangle, \langle \bar{v} \rangle, \langle \bar{w} \rangle, \langle \bar{u}' \rangle, \langle \bar{v}' \rangle, \langle \bar{w}' \rangle, \langle TKE \rangle, \langle \omega_y \rangle, \langle \tau_{uv} \rangle, \langle \tau_{uw} \rangle, \text{ and } \langle L_u \rangle)$. Note the angle brackets ($\langle \cdot \rangle$) denote spatial-
averaging. Similar GLMMs were used to evaluate, the proportion of time and the frequency of
spills in each flow volume zones for each fish. The GLMM models used Lmer and Lme4 R
packages (Bates et al. 2015), and were refined by minimising the Akaike information criterion
(AIC).

3 Results

3.1 Turbulent Wake Dynamics

Swimming stability and microhabitat use of Nile tilapia was studied in the wake of a
horizontal cylinder in a step velocity test with nine Reynolds numbers ranging from $3,730 \leq Re_D$
≤ 33,590. Under these conditions, the cylinder flow is within the sub-critical regime in which the laminar shear layer breakdown off the walls of the cylinder generated coherent alternating von-Kármán vortex shedding with vortices with spanwise axes of rotation (Williamson, 1996). As the flow accelerated over and under the cylinder, clockwise and counter-clockwise rotating vortices formed off the upper and lower cylinder walls respectively.

Due to the presence of the cylinder and flow shallowness, surface standing waves were generated immediately downstream of the cylinder and were contained within a region of longitudinal distance 6D, throughout the test section (Fig. 1), while the upstream flow depth remained constant and was only slightly elevated at higher Reynolds numbers (see Fig. 2). The presence of surface waves resulted in a non-hydrostatic pressure field in the test section.

The normalised time-averaged hydrodynamics developed in the cylinder wake were similar for all Reynolds numbers and Figure 3 presents those corresponding to the Re$_D$ = 16,800 case. A wake bubble was generated immediately downstream of the cylinder, as depicted from the contours of \overline{u} in Figure 3a, which reduced in streamwise extent with increasing Reynolds number (data not shown). The impact of the small gap between the cylinder and flume bed induced large vertical velocities \overline{w} and turbulence intensities which, in turn, contributed to the asymmetric formation and shedding of the von Kármán type vortices in the cylinder wake. Indeed, across the range of Re$_D$ tested, the gap between the cylinder and the bed resulted in mean flow hydrodynamics featuring asymmetric vorticity field with predominantly clockwise vortices over the wake length as indicated by the large area occupied by negative vorticity which correlate well with the regions of highest Reynolds shear stress (Figs. 3e and 3f). The large-scale vortical structures dissipated with increasing downstream distance from the cylinder such that the near wake ($x/D < 2$) showed higher magnitudes of longitudinal (Fig. 3c), lateral and vertical turbulence intensities than the centre and far wakes (see Fig. 1 for notation).

At each discharge, spectral energy analysis showed that the frequency of the energy peaks related to the von Kármán type vortex shedding increased linearly with increasing Re$_D$ with frequencies ranging from 0.46 to 4.05 s$^{-1}$, and corresponding Strouhal numbers remaining remarkably constant irrespective of Re$_D$ with a mean value of 0.31 ± 0.02 (mean ± s.d.) (Table 1). Note that these St values are higher than those for unbounded cylinder flows (St = 0.21) due to the proximity of the bed, in addition to the effects of free-surface dynamics. Such wake development is asymmetric as the vortices are constrained by the proximity of the bed and thus bottom vortices can only be horizontally propagated in the streamwise direction. This complex flow pattern of energetic turbulent structures spaned across the entire flume’s width and occupied a large extent of the water column.

3.2 Fish behaviour

3.2.1 Distribution of habitat usage over the step velocity test

Habitat usage (percentage of time) did not vary significantly with cylinder Reynolds number throughout the step velocity test (GLMM, d.f.1, P>0.05) as the proportion of time fish spent in each flow volume zone (defined in Fig. 1) remained uniform with increasing Re$_D$ (Fig. 4). Spatially, however, the percentage of time spent increased with increasing longitudinal distance from the cylinder (GLMM, d.f.1, P<0.001) and decreased with increasing vertical distance, as fish stayed closer to the flume bed instead of swimming higher in the water column (GLMM, d.f.1, P<0.001). Hence, the most preferred zone, FB where fish spent 55% of time was furthest from the
cylinder and closest to the flume bed (Fig. 5a). Less than 2% of time was spent in each of the near wake zones, which are the most unstable regions with the highest magnitudes of turbulence intensity, turbulent kinetic energy, Reynolds shear stress and vorticity, as shown in Figure 3. The percentage of time spent in each zone increased with increasing \(L_u / L_{\text{fish}} \), indicating that the fish preferred zones where the turbulent length scale was much less than half their length. When \(L_u / L_{\text{fish}} \geq 0.4 \), the percentage of time starts to decrease, as fish begin to avoid zones where the turbulent length scale approached 50% of the fish length (Fig. 7a). Fish could station hold in zones of low turbulence intensity, with a preference for the range 0.3<\(T_{L_u} <0.4 \), a preference that was less evident with increasing \(T_{L_u} \). For all \(R_D \) steps, percentage time decreased with increasing turbulence intensity (\(T_{L_u} \)) as fish spent less time in zones of higher \(T_{L_u} \) (GLMM, d.f.1, P <0.001).

3.2.2 Distribution of spill occurrences over the test area

For all 28 fish tested, 317 spills were recorded in total and distributed in the flow volume zones as depicted in Figure 5b. The number of spills per fish was dependent on fish length and weight, since larger fish spilled less than small fish (GLMM, d.f.1, P=0.033). Higher values of turbulence integral length scale to standard fish length ratio (\(L_u / L_{\text{fish}} \)) corresponded to higher numbers of spills (Fig. 7a). Spanwise vortices with a length scale range of 0 \(\leq L_u / L_{\text{fish}} \leq 0.55 \) were present in the cylinder wake, and spills were observed across the whole range, with the number of spills generally increasing with \(L_u / L_{\text{fish}} \) ratio and the maximum spills occurring towards the upper limit of the range where \(L_u / L_{\text{fish}} =0.55 \) (Fig. 7a). Similarly, high numbers of spills were recorded in the near wake zones of highest vertical Reynolds shear stress (\(\tau_{uw} \)), and vorticity (\(\omega_y \)) (Figs. 4b and c). The number of spills gradually increased with increasing \(R_D \), reaching a maximum at \(R_D = 14,930 \) (\(U_0=30 \text{ cm/s} \)) and decreased slightly for the remaining \(R_D \) steps (Fig 7). For \(U_0<30 \text{ cm/s} \) the number of spills increased with each velocity step and was found to correlate with increasing cross-sectionally averaged velocity per volume zone (GLMM, d.f.1, P<0.001) and the higher the amount of time the fish spent in the zone, the higher the likelihood of spills occurring, which is evident in the FB and CB zones (GLMM, d.f.1, P<0.001; Fig. 6). For \(U_0>30 \text{ cm/s} \), the number of spills significantly depended on the velocity step \(U_0 \) (GLMM, d.f.1, P=0.004), the ratio of velocity/fish length (body-length per second, based on fish total length) (GLMM, d.f.1, P=0.005), the fish’s momentum (fish mass\(\times U \)) (GLMM, d.f.1, P=0.031), as well as the downstream distance from the cylinder (GLMM, d.f.1, P<0.001) (not shown here). The distribution of spills became less predictable at \(U_0 \) steps >30 cm/s as opposed to the near linear relationship of the number of spills with \(R_D \) for \(U_0 <30 \text{ cm/s} \) (\(R^2= 0.993 \)) (Fig. 6). Therefore, occurrence of spills depended on the fish’s length and weight, and was significantly affected by the \(R_D \), the Reynolds stresses and the vorticity (Figs. 6b and c).

3.2.3 Frequency of spill events over the step velocity test

Zones furthest from the cylinder, where the wake turbulence intensities had decayed were the preferred fish refuge due to the reduced likelihood of spills occurring (Fig. 5c). The frequency of spills (spills per min) decreased with increasing downstream distance from the cylinder (GLMM, d.f.1, P<0.001). The near wake zones, where the fish spent the least amount of time, featured the highest spill frequency. The proportion of time that fish spent in each zone increased with increasing downstream distance from the cylinder, and increased with proximity to the bed (Fig. 5a). Overall, the highest percentage of spills occurred in the far wake, followed by the near wake and the centre wake. The flow zones with the most spills were NM (24%) and FB (22%). In the NM zone, in particular, fish spilled the most but spent the least amount of time here, so they
spilled almost immediately after swimming into this area, and therefore tended to avoid this area. The FB zone was the preferred station holding zone for the fish as they spent over half their time there, resulting in a proportionately high number of spills but the lowest frequency of spills (Fig. 8).

The frequency of spills significantly varied with Re_D (Fig. 8) and vorticity (GLMM, d.f.1, P<0.05) and was significantly dependent on the fish’s length (P<0.001), as well as the momentum of the fish (mass*ū) (GLMM, d.f.1, P<0.001). Furthermore, the frequency of spills increased with increasing ratio of turbulence length scale to cylinder diameter (L_u/D) (data not shown) but increased with decreasing L_u/L_fish (GLMM, d.f.1, P<0.05). Zones of higher τ_uw also showed increased frequency of spills (P<0.001). Furthermore, the highest spatial variation of vorticity was in the NB and NM zones, with the remaining zones showing lesser standard deviation, highlighting the predominance of negative vorticity (clockwise eddies) in the NM zone, since only the NB zone contained positive vorticity (counter-clockwise rollers) (Fig. 9). This considerably affected the frequency of spills, which was highest in the NM and NB zones where vorticity standard deviation was greater than 2.78 (more than 60% of the cross-sectionally averaged vorticity) (Fig. 10). This result suggests that the near wake had less predictable flows due to the higher flow unsteadiness, leading to the lower preference of the fish to station hold in these zones and to the higher frequencies of spills observed.

The near wake, where highest fluctuations of vorticity above the mean were present (Fig. 9), was characterised by the highest spill frequencies (Fig. 10), suggesting that these flows were significantly unpredictable for the fish compared to the other zones. These near wake zones also had the highest instances of τ_uv and τ_uw from the shear layer breakdown from the cylinder. The horizontal orientation of the cylinder considered in this study created a vortex shedding regime in which the momentum exchange was most dominant in the vertical direction, i.e. XZ plane, with mean |τ_uv|≤ 1.5 Nm⁻² and |τ_uw|≤ 8Nm⁻² (| | indicate absolute value), making Reynolds shear stress in the XZ plane (normal to the cylinder’s axes) over five times stronger than those in the XY (horizontal) plane. Due to the ground proximity which rendered the wake vortex shedding asymmetric, the NM zone, where rollers were clockwise (negative) and τ_uw was downwards (positive), was among the least frequented zones, yet showed the highest number of spills and twice the frequency of spills of any other zone. In contrast, the NB zone of the lower shear layer was similarly frequented (Fig. 5a) and had similar magnitude of Reynolds shear stresses and vorticity, but these were negative i.e. opposite to those in the upper shear layer of NM due to the different vertical momentum exchange direction (Fig. 3). As a result, the NB zone showed significantly lower numbers of spills as well as a lower frequency of spills than the NM zone, which suggests that it is important whether positive or negative turbulent shear stresses and clockwise or counter-clockwise eddy vortices are acting on the fish, influencing the swimming stability of fish. A summary figure which illustrates the interactions of the fish and the spanwise vortex dynamics as well as the distribution of forces acting on the fish is given in Figure 11.

4 Discussion

The swimming stability and habitat usage of Nile tilapia fish in the turbulent wake of a horizontal cylinder were investigated to evaluate fish interaction with turbulence characteristics under Reynolds numbers (Re_D) ranging from 3,730 to 33,590. Fish habitat preference was significantly influenced by local velocity, turbulence intensity, turbulent kinetic energy, turbulence integral length scale, vorticity, and Reynolds shear stresses. For all Re_D steps, fish spent less time
in zones of higher turbulence intensity, to avoid the high swimming costs associated with elevated turbulence intensities (Pavlov et al. 2000; Odeh et al. 2002; Enders et al. 2003; Hockley et al. 2014). The change in spill occurrence after the intermediate Re_D of 14,930 (Fig. 6) is perhaps due to changes in the shape of eddies as turbulent shedding regimes vary with Re_D. In addition, Nile tilapia do respond positively to behavioural conditioning (Mesquita & Young, 2007) and therefore could have adjusted their spill responses through learned behaviour in the step velocity test, similar to behaviours of adjustment to turbulence observed by Maia et al. (2015). Fish were assumed to be within the critical swimming capabilities (Alsop et al. 1999), and showed no signs of fatigue in the swimming observations.

Although other researchers have found that habitat preference varies with flow cross-sectional averaged velocity (U_o) (Pavlov et al. 2000; Enders et al. 2003; Tritico and Cotel 2010), here, the percentage of time spent in each zone did not vary significantly with increasing Re_D, as also reported by Maia et al. (2015). This could be attributed to the relatively similar distribution of velocities and turbulence in all zones throughout the step test and the FB (Far Bed) zone remained the preferred region due to the lower magnitudes of τ_uw, τ_uv, and ω_y. Furthermore, the threshold for the distribution of habitat choice and occurrence of spills of L_u/L_fish being 50% (Fig. 7a) supports the idea of there being an ideal ratio of turbulence length scale to fish length as fish are predicted to prefer turbulent length scales that are either much smaller or much greater than their body length (Pavlov et al. 2000; Odeh et al. 2002; Lupandin 2005; Webb and Cotel 2011; Tritico and Cotel 2010; Wang et al. 2016). This is also in keeping with the turbulence length scale to fish length ratio threshold of 0.66 reported by Pavlov et al. (2000) and Lupandin (2005), although small variations of this threshold might be due to interspecies differences, individual fish shape and hydrodynamic measurements techniques and calculations of turbulent length scale (Liao 2007; Lacey et al. 2011). Similar to other studies, the high preference for zones furthest from the cylinder was due to the presence of lowest vorticity, Reynolds shear stresses (Silva et al. 2012; Hockley et al. 2014) and turbulent kinetic energy (Smith et al. 2006).

Tritico and Cotel (2010) demonstrated that the axis of rotation of the dominating vortices, vertical axis for vertical cylinders, and spanwise axis for horizontal spanwise cylinders yields different effects on swimming stability as spanwise rollers resulted in more spills than vertical rollers, for eddies over 75% of the fish length. The Kármán gaiting swimming behaviour described by Liao et al. (2003) was not observed in the current study, as fish were unable to take advantage of the von-Kármán street typically composed of vertical rollers, which are not present in horizontal cylinder flow. This is because the eddy’s plane of orientation (XZ plane) is perpendicular to the fish’s spine and axis of undulation, which is employed in swimming, along with fin oscillations to propel longitudinally and produce lateral movements of their body (XY plane) (Pavlov et al. 2000; Webb 2002; Webb 2004; Lauder and Madden 2007) and hence the main eddy torque and vorticity work against the fish by dominating the vertical (XZ) plane where motor control is most limited. This proposed reasoning is shown in Figure 11.

Reynolds shear stresses are of substantial physical importance in the fish’s environment as indicate the magnitude and distribution of turbulent momentum exchange, yet often omitted in fish swimming behaviour studies (Lacey et al. 2012). In fish pass studies, Reynolds shear stresses are the most significant flow characteristic influencing transit time and successful passage, particularly for small fish (Silva et al. 2011; Silva et al. 2012). Even though the Reynolds shear stress values of the current experiment are lower than those in rivers (Lacey et al. 2012), current results clearly show that it is important to consider Reynolds shear stresses in fish-turbulence...
interaction studies (Fig. 11). The balance of hydrodynamic forces and the resultant torques and moments acting on the fish challenge its ability to maintain posture and swim unimpeded (Drucker and Lauder 1999; Pavlov et al. 2000; Odeh et al. 2002; Webb 2002; Lupandin 2005; Cotel et al. 2006; Liao 2007; Triticco and Cotel 2010; Webb and Cotel, 2010; Silva et al. 2012; Wang and Chanson 2018). However, considering the orientation plane of vortices and magnitude of hydrodynamic forces requires the inclusion of their direction, which this study has demonstrated to be essential.

The balance of hydrodynamic forces surrounding a swimming fish are intricate; the fish uses coordinated propulsive manoeuvres to overcome spanwise hydrodynamic forces (F_D), uplift forces (F_U) from the fluid dynamics and to compensate against its weight (W) as well as vertical or horizontal Reynolds shear stresses dependent on an obstacle’s orientation (Fig. 11). The unbalanced resultant forces create overturning moments that affect the fish’s locomotion (Drucker and Lauder 1999, 2000; Nauen and Lauder 2002; Webb 2002). Therefore, distribution, intensity, and direction of hydrodynamic forces exerted on the fish will aid propulsion, or hinder swimming kinematics; whether the force is towards or counter to the fish, works for or against the fish’s propulsive manoeuvres. The interdependence of vorticity and Reynolds shear stresses cannot be neglected, and as our results suggest, downward Reynolds shear stresses, and rollers with clockwise rotation destabilise the fish more often than those of similar extent but opposite sign, i.e. upward direction (Fig. 9).

Fish swimming kinematic studies might benefit from more emphasis on Reynolds stresses to better explain fish size dependent responses to turbulent flows. The locomotion of smaller fish likely becomes overwhelmed by resultant turbulent stresses which exceed their capability for stabilisation manoeuvres, leading to more frequent losses of stability than their larger counterparts (Pavlov et al. 2000; Cada and Odeh 2001; Lupandin 2005; Webb 2002). Variations of fish behaviour in turbulent flows due to individual physiological differences, in addition to size, life stage and species (e.g. Pavlov et al. 2000; Plew et al., 2007), could become clearer by specifying whether local Reynolds shear stresses and vorticity are positive or negative, i.e. considering the directionality of the momentum exchange and velocity gradients, in the characterisation of the hydrodynamics in environmental turbulent flows.

5 Conclusions

In summary, in order to evaluate the turbulence metrics that govern fish swimming behaviour, swimming kinematics and habitat preference of fish were investigated in the turbulent wake of a horizontal cylinder where the dominant plane of vortex shedding was the XZ plane. Habitat preference was determined by the turbulence intensity, turbulent kinetic energy, vorticity, Reynolds shear stress, and turbulent length scale relative to fish length as fish avoided areas of relatively high turbulence. Similarly, these parameters influenced the occurrence of spills in addition to the Reynolds number, and fish size and weight, with smaller fish being more perturbed than larger ones. The number of spills generally increased with L_U/L_{fish} ratio with the maximum spills occurring towards the upper limit where the eddy length was 45 to 50% of the fish length. The highest rate of spills occurred in the zones where the upper shear layer had highest magnitudes of negative (downward-acting) Reynolds shear stresses and negative vorticity (clockwise rotating vortices). Overall, spanwise rollers yield different effects on swimming stability compared to the vertical vortices found in vertical cylinder wakes, as the main eddy torque and vorticity work against the fish by dominating the plane where motor control is most limited.
Therefore, in addition to the size of eddies, the plane of dominant eddy rotation and the magnitude of Reynolds shear stresses, we highlight that the direction of eddy rotation and that of vertical turbulent momentum exchange are physical flow characteristics that impact fish swimming kinematics. These results further our understanding of fish swimming behaviour, and can inform design and refinement of fish-friendly structures including fish passes, hydropower turbines, as well as restorations of fluvial environments. In fish passes and altered environments, the prevention of flow dominated by spanwise rollers and downward turbulent shear stresses could benefit fish movement and passage, while usage of spanwise rollers downstream of hydropower schemes (e.g. Archmedis screw turbines) could benefit fish guidance efforts to deter fish from turbine blades and perilous flows.

Acknowledgments

We thank Amy Ellison for providing fish care, Rhiannon Hunt for statistical advice and two anonymous reviewers for their comments on an earlier version of this manuscript. Data are available via https://doi.org/10.5281/zenodo.3471636 (Muhawenimana et al., 2019).

References

Graf, W. H., & Yulistiyanto, B. (1998). Experiments on flow around a cylinder; the velocity and

Figure 1. Side view of the fish behaviour observation test section, located 3.8 m downstream of the flume inlet and subdivided into flow volume zones of equal dimensions, with length of 10 cm and 5 cm in the streamwise (x) and vertical (z) directions respectively. The origin of the x axis corresponds to the edge of the cylinder and the flume bed for the z axis. Flow volume zones are named: NB for the Near wake bed, NM for the Near wake Mid-water column, and NT for the Near wake Top water column. Similarly, CB, CM, CT, FB, FM, and FT refer to the Bed, Mid, and Top water column zones in the Centre and Far wakes of the cylinder. The spectral analysis sampling point located at x/D=6, z/H=0.53 is shown.

Figure 2. Longitudinal surface water profile as a function of the Reynolds number. The vertical dotted lines denote the cylinder edges, H is the streamwise-averaged flow depth and H_L is the local flow depth.
Figure 3. Time-averaged (a) streamwise velocity \overline{u}, (b) vertical velocity \overline{w}, (c) streamwise u' turbulence intensity (d) turbulent kinetic energy TKE, (e) principal Reynolds shear stress $-\rho u'w'$, and (f) spanwise vorticity ω_y for the $Re_D = 18,600$ case.
Figure 4. Percentage of time fish spent in each zone at different Re_D steps. ▲, □, and Δ markers indicate percentage time the fish spent in volume zones defined in Fig.1 where FB is the far bed volume, CB is the central bed volume and FM is the far middle-depth volume.

Figure 5. Distributions of percentage of (a) time spent, (b) spills and (c) spill frequency (min^{-1}) in each flow volume zone (outlined in Figure 1). The zones with the highest proportion of time, spills and frequency of spills are shaded in gray.
Figure 6. Mean number of spills relative to the cylinder Reynolds number and the cross-sectionally averaged velocity U_0 (ms$^{-1}$). The dashed line indicates the $Re_D = 14,930$ ($U_0 = 0.3$ms$^{-1}$) after which the number of spills remains relatively constant, before decreasing at the last velocity step.
Figure 7. Mean number of spills and mean proportion of time (%) the fish spent (mean ± s.d.) relative to the flow characteristics of (a) the ratio of turbulence length scale over fish length L_u/L_{fish} in 0.05 intervals, (b), zone averaged y-vorticity component $\langle \omega_y \rangle$ in $1s^{-1}$ intervals, and (c) vertical Reynolds shear stress τ_{uw} in $1Nm^{-2}$ intervals. Error bars represent the standard deviation.
Figure 8. Variation of frequency of spills (min\(^{-1}\)) per \(R_e_D\) and flow volume zones shows that the near wake zones (NB, NM, NT) had the highest ratio of spill occurrence over amount of time the fish spent in the zone, and this frequency changed with increasing \(R_e_D\). The Centre and Far wake zones (CB, CM, CT, FB, FM, FT) where fish preferred to station hold show little to no variation in frequency of spills over the range of \(R_e_D\).

Figure 9. Zone-averaged vorticity \(\langle \omega_y \rangle\) (mean± s.d.) distribution by flow volume zones for each \(R_e_D\). Positive vorticity indicates vortices rotating counter-clockwise, while negative values denote eddies rotating clockwise. Flow volume zones are outlined in Fig 1. Error bars represent the standard deviation.
Figure 10. Semi-log plot of average frequency of spills relative to the zone averaged y-vorticity $\langle \omega_y \rangle$ (mean±s.d.).

Figure 11. Schematic of the interaction between the alternating vortex shedding developed behind the horizontal cylinder and the fish including the force balance, where F_D is drag force, F_L is lift force, W is fish’s weight, L_u is the length scale of a given vortex, L_{fish} is the fish’s length and R
and M are the force vector and resulting moment, which causes a turning reaction when the fish becomes unbalanced, and $u'w'$ illustrates the Reynolds shear stress.

Table 1. Details of the velocity step test used for fish swimming behaviour with time increments (each 600 s) and flow rate (Q) with corresponding cross-sectional averaged velocity (U_0), Froude number (Fr) and cylinder Reynolds number (Re_D), vortex shedding peak frequency (f), and Strouhal number (St) at 25°C.

<table>
<thead>
<tr>
<th>Time [min]</th>
<th>Q [Ls$^{-1}$]</th>
<th>U_0 [cms$^{-1}$]</th>
<th>Fr</th>
<th>Re_D</th>
<th>f [s$^{-1}$]</th>
<th>St [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>3</td>
<td>06.67</td>
<td>0.05</td>
<td>3,730</td>
<td>0.46</td>
<td>0.34</td>
</tr>
<tr>
<td>10-20</td>
<td>6</td>
<td>13.33</td>
<td>0.11</td>
<td>7,470</td>
<td>0.85</td>
<td>0.32</td>
</tr>
<tr>
<td>20-30</td>
<td>9</td>
<td>20.00</td>
<td>0.16</td>
<td>11,200</td>
<td>1.21</td>
<td>0.30</td>
</tr>
<tr>
<td>30-40</td>
<td>12</td>
<td>26.67</td>
<td>0.22</td>
<td>14,930</td>
<td>1.61</td>
<td>0.30</td>
</tr>
<tr>
<td>40-50</td>
<td>15</td>
<td>33.33</td>
<td>0.27</td>
<td>18,660</td>
<td>2.00</td>
<td>0.30</td>
</tr>
<tr>
<td>50-60</td>
<td>18</td>
<td>40.00</td>
<td>0.33</td>
<td>22,400</td>
<td>2.62</td>
<td>0.32</td>
</tr>
<tr>
<td>60-70</td>
<td>21</td>
<td>46.67</td>
<td>0.38</td>
<td>26,130</td>
<td>3.04</td>
<td>0.32</td>
</tr>
<tr>
<td>70-80</td>
<td>24</td>
<td>53.33</td>
<td>0.44</td>
<td>29,860</td>
<td>3.05</td>
<td>0.28</td>
</tr>
<tr>
<td>80-90</td>
<td>27</td>
<td>60.00</td>
<td>0.49</td>
<td>33,590</td>
<td>4.05</td>
<td>0.33</td>
</tr>
</tbody>
</table>