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ABSTRACT
An e�cient algorithm for computing the terms appearing in the Gen eralized Kol-
mogorov Equation (GKE) written for the inde�nite plane channel ow is presented.
The algorithm, which features three distinct strategies for parall el computing, is
designed such that CPU and memory requirements are kept to a minimum, so that
high-Re wall-bounded ows can be a�orded.

Computational e�ciency is mainly achieved by leveraging the Parseval's theo-
rem for the two homogeneous directions available in the plane channel geometry. A
speed-up of 3-4 orders of magnitude, depending on the problem size, is reported in
comparison to a key implementation used in the literature. Vali dation of the code
is demonstrated by computing the residual of the GKE, and examp le results are
presented for channel ows at Re� = 200 and Re� = 1000, where for the �rst time
they are observed in the whole four-dimensional domain. It is shown that the space
and scale properties of the scale energy uxes change for increasing values of the
Reynolds number. Among all scale energy uxes, the wall-normal ux is found to
show the richest behaviour for increasing streamwise scale.

KEYWORDS
Turbulence, Channel Flow, Generalized Kolmogorov Equation, G KE, Scale
Energy, Direct Numerical Simulation



1. Introduction

Characterizing a turbulent ow from the energetic standpoint has always been an
important endeavor in turbulence research: laminar and turbulent  ow regimes pos-
sess di�erent energy requirements, and such distinction often becomes of paramount
importance in applications.

The seminal contributions by Richardson [1] and Kolmogorov [2] describedhow,
in the idealized setting of an homogeneous and isotropic ow, turbulentenergy is
distributed within a hierarchy of eddies, characterized by di�erent length scales; the
concept of energy cascade was introduced, which is understood as a ux of energy
across scales. Such a description also applies to inhomogeneous ows, but in this case
an additional spatial redistribution of energy occurs, giving rise to a spatial energy
ux. In the geometrically simple setting of an inde�nite plane chann el, where the
wall-parallel directions are statistically homogeneous, the spatial ux takes place in
the wall-normal direction only. Hence, in wall-turbulence two types of energy uxes
coexist: one is best described in the space of scales (eddy size),while the other is
naturally observed in physical space (wall distance).

In the last 30 years, also thanks to the comprehensive information available from
Direct Numerical Simulations (DNS) of turbulent wall ows in canonical geometries,
the structure of a wall-bounded ow in the wall-normal direction has been thoroughly
studied; the ow domain is subdivided into several regions where di�erent phenomena
contribute to the energy budget with di�erent relative importance . Such analysis is
nowadays the accepted way of describing energy exchanges in wall-bounded turbulent
ows [3, 4], although it does not provide yet an entirely satisfactory description; one
of the reasons lies in the missing link with the energy cascade concept.

A complementary approach capable to provide an uni�ed view of the energetics of a
turbulent ows is progressively gaining acceptance in the recent years. It hinges upon
a di�erential equation that, in its original form valid for homogeneous and isotropic
turbulence, can be traced back to Kolmogorov himself [2, 5]. The so-called Kolmogorov
equation, counterpart of the K�arm�an-Howarth equation for the correlation function, is
an exact transport equation for the second-order structure function, i.e. the variance of
velocity di�erences between two pointsx and x 0 in the uid domain. The Kolmogorov
equation has been generalized to inhomogeneous anisotropic ows by Hill [6,7], thus
paving the way towards a uni�ed description of energetically relevant phenomena in
both physical and scale spaces.

This extended form, known as the Generalized Kolmogorov Equation (GKE), has
been used in several papers to study the energetics of inhomogeneous ows in the
complete space of scales and positions. For the sake of brevity, we mention here only
few of them. A generalized form of the Kolmogorov equation was studied in Danaila
et al. [8] to address the inuence of the spatial inhomogeneity of the largescales on
the energy budget of a turbulent channel. In the same geometry and by using DNS
data, Marati et al. [9] used the GKE to systematically characterize for the �rst time
the spatial ux and energy cascade processes of the di�erent ow regions of wall-
turbulence. This approach was further developed by Cimarelli et al.[10, 11] who also
discussed turbulence modelling issues [12, 13]. The GKE terms have been computed
also in [14] by using particle image velocimetry measurements, and in[15] by using
DNS data, to study the most inhomogeneous and anisotropic region of the wake of
a grid-generated turbulence and of a square prism, respectively. The inhomogeneous
development of the scale-by-scale budgets in a turbulent round jetwas studied in
Burattini et al. [16], while [17] addressed the intermediate wake of two-dimensional
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wake generators. Finally, the Kolmogorov equation has been also studied inthermally-
driven turbulent ow together with its counterpart equation for the scalar �eld, the
so-called Yaglom equation, in Danaila et al. [18] and Gauding et al. [19]; Togni et
al. [20] for the �rst time employed the exact equations to study Rayleigh{B�enard
convection.

A seldom discussed but key feature of the GKE is the extent of its computational
requirements. The GKE is an equation for the second-order structure function, which
in the most general case depends upon 6 independent variables, the coordinates of the
two points x and x 0. This is the fundamental reason why computing the GKE terms
is so challenging. From an experimental point of view, it is di�cult to simultaneously
access the three-dimensional velocity and pressure �elds at two points while spanning
the whole ow domain. When such information is available, e.g. when processing a
DNS dataset, the size of the computational problem associated with the evaluation of
the GKE terms becomes huge, with obvious consequences in terms of both computing
time and memory requirements. Indeed, the number of operations required to compute
every term of the GKE is of the order of N t N 2 where N t is the number of ow
snapshots available for time average, andN is the total number of points used to
discretize the ow domain. Since N is in excess of one million even for a basic DNS
in a plane channel ow at low values of the Reynolds number, and quickly increases
as Re increases, one must be aware that computing the GKE terms may require way
more computational e�ort than creating the DNS database itself. The availability of
an e�cient and memory-friendly GKE computer code is essential to address high-Re
ows, which bring about computational problems of rapidly growing size.

A further di�culty posed by the GKE lies in the graphical represen tation of the 6-
dimensional compound space of scales and positions. Even for the simpli�ed case of the
plane channel, which possesses two homogeneous directions, the independent variables
are four (the separations in the three spatial directions, and the wall-normal position),
and dealing with variables de�ned in a 4-dimensional space remains quite complex.
Indeed, in the �rst paper where the terms of the GKE were actually computed for a
channel ow [9], further assumptions had to be made, and the GKE was integrated
over a square plane of edger in a wall-parallel plane, under the assumption of zero wall-
normal separation. The simpli�cations made in [9] reduced the independent variables
down to two (the square edger and the wall-normal coordinate). Over the years, the
analysis of the GKE was further developed and re�ned: Cimarelli et al. in [10] and,
more recently, in [11] extended the analysis to two di�erent 3-dimensional subspaces.
However, a complete representation of the full 4-dimensional space isstill lacking.

Aim of the present paper is to describe an implementation of a new codefor com-
puting the terms of the GKE equation. The code, that is made availableto the com-
munity with an open-source license, is tailored to the plane channelow, is designed
from scratch to be fast and e�cient, both in terms of CPU and memory requirements.
In fact, e�ciency is key if one plans to observe how energy dynamics is modi�ed as the
Reynolds number increases. The implementation is properly tested and validated by
using DNS databases producedad hoc; the budget residual is examined to assess both
the correctness of the implementation and the quality of the statistical convergence.
The main design choices that make our implementation so much faster thanthe exist-
ing one(s) are discussed and motivated, and computing times are measured to report a
speed-up that, for the problems tested, reached 4 orders of magnitudewith respect to
current implementations. Two channel ow cases atRe� = 200 and at Re� = 1000 are
used to present example results and to analyze the e�ects of the Reynolds number in
the multidimensional space of scales and positions; for the �rst time,the GKE terms
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are observed in the 4-dimensional space.
The structure of the paper is as follows. First in Sec.2 the second-order structure

function and the GKE in its specialised form tailored to a plane channel ow are
briey introduced. Then in Sec.3 the implementation of our code is described in detail,
together with the main design choices and the parallel strategies. Finally, in Sec.4 the
performance of the new implementation is discussed, and in Sec.4.3 for the �rst time
an analysis of the GKE in the complete 4-dimensional space is provided.
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Figure 1. De�nition of the structure function


�u 2

�
, variance of the velocity di�erence between the two points

x and x 0 with separation vector r , in the geometry of the plane channel.

2. The Generalized Kolmogorov equation

We consider an inde�nite plane channel ow, with a Cartesian coordinate system in
which x and z denote the homogeneous streamwise and spanwise directions respec-
tively, whereasy is the wall-normal direction. The corresponding velocity components
are ~u, ~w and ~v. The index notation x i , ~ui is also used, with i = 1 ; 3 identifying the
homogeneous directions andi = 2 the wall-normal one. The Reynolds decomposition
is used in such a way that upper- and lower-case symbols denote mean and uctuating
quantities, i.e. ~ui = Ui + ui and ~p = P + p. The two parallel walls are separated by a
gap of width 2h, and the Reynolds number for the problem is de�ned by usingh as
the reference length scale. If the friction velocityu� is used as the velocity scale, the
Reynolds number becomes the so-called friction Reynolds number:

Re� =
u� h
�

;

with � the kinematic viscosity of the uid.
Let x = X � r =2 and x 0 = X + r =2 be two points inside the uid domain, separated

by a separation vector r as exempli�ed in �g.1, and let X be the mid-point. The
quantity � u = u 0 � u is the di�erence between the two velocity vectors evaluated at
x 0 and x . The second-order structure function



�u 2

�
, hereafter also called scale energy,

is de�ned as the variance of the velocity di�erence:

h�u 2i = h�u i �u i i (1)

where repeated indices imply summation, and angular brackets denote ensemble av-
erage.

In general,


�u 2

�
is function of the separation vector r and the mid-point X , i.e.

function of 6 independent variables. An exact equation for


�u 2

�
was derived �rst by

Kolmogorov in [5] for isotropic turbulence, and has been later generalizedto inhomoge-
neous ows. We follow Cimarelli et al. [11] and write below the GKE in the specialized
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form valid for the inde�nite plane channel ow. This form of the GKE was previously
introduced in [9], and later re�ned with the addition of a couple missing terms. In
the case of the plane channel ow, the number of indipendent variables reduces to
4, as for the mid-point X only its wall-normal coordinate Y = X 2 matters. More-
over, the mean ow possesses only one non-zero component with the present choice of
coordinate system; this component only varies along the wall-normal coordinate, i.e.
h~u i = ( U(y); 0; 0). The GKE for plane channel ow thus reads:

@


�u 2�u i

�

@ri
+

@


�u 2�U

�

@rx
� 2�

@2


�u 2

�

@ri @ri
+

@


v� �u 2

�

@Y
+

2
�

@h�p�v i
@Y

�
�
2

@2


�u 2

�

@Y2
=

= � 2h�u�v i
�

dU
dy

� �

� 2h�uv � i �
�

dU
dy

�
� 4h� � i :

(2)

In this expression, the asterisk denotes the arithmetic average of avariable evaluated
at x and x 0, � is the kinematic viscosity and � = � (@ui =@xj ) (@ui =@xj ) is the pseudo-
dissipation rate of turbulent kinetic energy. The GKE contains source terms, written
at the r.h.s., which act as production or dissipation depending on their sign. Since the
l.h.s. can be written as divergence of uxes, the equation written in conservative form
becomes:

r r � � (Y;r ) +
@�(Y;r )

@Y
= � (Y;r ) : (3)

In Eq.(3), � and � are the ux in the space of scales and the ux in the physical
space, whereas� is the source term. The operatorr r is the gradient operator in the
r space. By comparing Eq.(3) with Eq.(2) one easily arrives at the de�nitions of the
uxes and of the source term. The scale-energy ux vector� is

� (Y;r ) =


�u 2� u

�
� 2� r r



�u 2�

+


�u 2�U

�
ex (4)

whereex is the unit vector in the streamwise direction. The spatial ux of scale energy
� is

� (Y;r ) =


v� �u 2�

+
2
�

h�p�v i�
�
2

@


�u 2

�

@Y
: (5)

In both uxes, viscous terms are recognized, which quantify viscoustransport of scale
energy, and turbulent terms, which quantify turbulent transport of scale energy. In
the latter, the second-order structure function is coupled with turbulent uctuations.
Moreover, one term in � accounts for pressure-velocity coupling, and another one in
� accounts for the coupling with the mean ow. Finally, the scale-energy source is

� (Y;r ) = � 2h�u�v i
�

dU
dy

� �

� 2h�uv � i �
�

dU
dy

�
� 4h� � i ; (6)

and the ow regions with � > 0 (production larger than dissipation) are those where
the scale energy is produced.

The GKE is a balance equation in conservative form for the second-order structure
function, a quantity that is considered [21] to represent the energyassociated to the
scales of motion up tor , and for that reason is here referred to simply as scale energy.
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Literally, the GKE provides an exact balance equation between second-and third-order
moments of a central quantity in turbulence studies, that is the velocity increment �u i
[22]. Furthermore, the GKE is also an exact equation for the rate of dissipation of
turbulent kinetic energy, and � associates with third-order moments of the velocity
increment at every scale and position. Only in this context, the second- and third-
order moments assume their physical interpretation of scale energy andscale-energy
uxes.

It is also worth pointing out that, in conservation laws, uxes are de�n ed up to an
arbitrary solenoidal �eld, as shown for example by Jim�enez [23]. In other words, the
uxes of scale energy as de�ned above are not uniquely de�ned, since they are obtained
from a manipulation of the governing equations which leads to a speci�cform of the
GKE. The present form is selected as it carries a direct correspondence with the more
familiar form of the single-point turbulent kinetic energy equation.
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Figure 2. Sketch of the grid points in the wall-normal direction: the i ndices i = 0 and i = ny identify the
grid points at the two walls, y = 0 and y = 2 h. The grid possesses two ghost nodes for i = � 1 and i = ny + 1.

3. Structure of the GKE computer code

In this section the implementation of an e�cient strategy for computin g the budget
of the Generalized Kolmogorov Equation tailored to the inde�nite plane channel ow,
i.e. Eq.(2), is discussed. The code only inherits a small set of design choices from the
accompanying DNS code, described in [24], mainly the programming language and
the type of spatial discretization. Hence, its organization, designed tominimize CPU
and memory requirements, carries a general interest. The source code, which is entirely
self-contained, is freely available via GitHub at this link. The source code is quite short
(about 100 lines for the core part) and having it at hand can be helpful to understand
the code structure described below.

Computing the budget of the GKE is typically a post-processing step which oper-
ates on a database previously created by a DNS code. Irrespective of thediscretization
strategy adopted in the DNS one can generally assume that the database is composed
of (or can be translated into) a number N t of temporal snapshots of velocity �elds.
Every snapshot obeys the set of boundary conditions of the di�erential problem (pe-
riodicity at the inow/outow, no-slip and no-penetration at the solid walls) and is
available with velocity values known in a collocated form at every point of a Cartesian
grid. In particular, we assume data are available on a �nite set of wall-normal positions,
denoted asyi , with � 1 � i � ny + 1. The two walls are located at y = 0 and y = 2h,
corresponding to i = 0 and i = ny . The values i = � 1 and i = ny + 1 denote ghost
nodes used to computey-derivatives at the walls (see �gure 2). The speci�c structure
of the databases produced and used in this paper is further discussed in Sec.4, where
results are presented.

The main characteristics of the code are: (i) all the GKE terms, i.e.� r x , � r y , � r z ,
� , � and



�u 2

�
, are rewritten in a form that involves multiple but simpler correl ations:

for the homogeneous directions, the Parseval theorem is then used to compute them
in Fourier space, with huge computational advantage (seex3.1); (ii) the GKE terms,
computed in a four-dimensional domain, depend on the two independent variables Y
and r y ; however, in computing them we switch to the equivalent variables Y1 and Y2,
de�ned as Y1 = Y � r y=2 and Y2 = Y + r y=2. This simpli�es taking advantage of their
symmetries (seex3.3) to further reduce the computational e�ort and the amount of
memory required by the code.
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3.1. Products instead of correlations

When homogeneous directions are available, as in the present case of the inde�nite
plane channel, the GKE terms can be rewritten in a di�erent form, which allows
computing them in a simpler and computationally e�cient way. As an exam ple, we
focus in the following on a speci�c term, i.e.h�u�v i appearing in the de�nition (6) of
the source� , but the same reasoning holds true in general for all terms appearing in
the de�nition of the GKE. With simple algebra the term h�u�v i can be rewritten as:

h�u�v i (r x ; r y ; r z; Y ) = �h uvi (r x ; r z; Y1; Y2) �h vui (r x ; r z; Y1; Y2)+

+ huvi (0; 0;Y1; Y1) + huvi (0; 0;Y2; Y2)
(7)

where for example

huvi (r x ; r z; Y1; Y2) = hu(x; Y1; z)v(x + r x ; Y2; z + r z)i :

and the notation emphasizes that we are concerned with the homogeneous directions
only.

Equation (7) above transformsh�u�v i into a sum of four correlations. As the present
problem enjoys two homogeneous directions, for which a representation in Fourier
space is always possible and indeed very popular in the DNS practice, correlations in
Fourier space can be advantageously computed by resorting to the Parsevaltheorem,
thus achieving the same computational e�ciency that lies at the root of t he pseudo-
spectral method for the DNS of incompressible channel ow.

The GKE terms are thus not computed directly, but assembled after computing in
Fourier space the required set of cross-correlations. If again the termhuvi (r x ; r z; Y1; Y2)
in Eq.(7) is taken as an example, this two-points correlation is de�ned as(omitting
for simplicity the temporal average):

huvi (r x ; r z; Y1; Y2) =
Z + 1

�1

Z + 1

�1
u(x; Y1; z)v(x + r x ; Y2; z + r z)dxdz (8)

and can be e�ciently computed with a single product in Fourier space via the Parseval
theorem. If û(Y1) and v̂(Y2) are the two-dimensional Fourier transforms ofu(x; z) and
v(x; z) respectively at planesY1 and Y2, the Parseval theorem provides the following
identity:

Z + 1

�1

Z + 1

�1
u(x; Y1; z)v(x + r x ; Y2; z + r z)dxdz = F � 1(û� (Y1)v̂(Y2)) (9)

where the � superscript denotes the complex conjugate, and the operatorF � 1 is the
inverse Fourier transform.

It must be mentioned that a few terms of Eq.(2) contain triple correlat ions; one
such example is

huuvi (r x ; r z; Y1; Y2) = hu(x; Y1; z)u(x; Y1; z)v(x + r x ; Y2; z + r z)i

related to the scale ux vector � . This term is computed as:

huuvi (r x ; r z; Y1; Y2) = F � 1(cuu� (Y1)v̂(Y2))
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Figure 3. Steps leading from the DNS database to the GKE terms. The core calculations take place in Step
2.

where cuu(Y1) denotes an in-plane convolution in the Fourier space that can be e�-
ciently computed as a product in the direct space:

cuu(Y1) = F (u(x; Y1; z)u(x; Y1; z)) :

3.2. General structure of the program

The algorithm computes the terms of the GKE by analysing a DNS database composed
of N t temporal snapshots.

It consists in three sequential steps (see �gure 3) that are sequentially carried out
to obtain the full set of GKE terms. In Step 1, all the required (e.g. mean) quantities
are preliminarily derived from the velocity �elds. Then, in Ste p 2 the GKE terms are
computed, by scanning the database once again and progressively averaging the con-
tributions of every snapshot. Computing terms that require wall-normal derivatives,
i.e. the viscous parts of the uxes� and � r y , is deferred to Step 3, exploiting commu-
tativity of derivative and average operators to increase e�ciency. On the contrary, the
viscous parts of � r x and � r z are separately computed for each snapshot and then aver-
aged at the end of Step 2. Indeed, during Step 2 the algorithm allows under-sampling
in the r x and r z directions, a feature that becomes progressively interesting asRe
increases. Since for maximum accuracy the derivatives of



�u 2

�
in the r x and r z direc-

tions are computed spectrally in the Fourier space, which would be unpractical when

�u 2

�
is known on a reduced grid, it is in general preferable to compute these uxes in

Step 2. Clearly, if undersampling is not used, computing the viscous parts of � r x and

10



� r z too can be deferred to Step 3, thus increasing further the overalle�ciency.
Hereafter the three steps of the algorithm are described in more detail.

3.2.1. Step 1

During Step 1, the instantaneous and mean quantities needed for the computations
of the GKE terms are derived from the velocity �elds. The pressure p, for example,
is often neither required nor computed by the DNS solver, when the Navier{Stokes
equations are solved in their velocity-vorticity form [3]. Hence Step 1 is where the
Poisson equation is solved to obtain the pressure �eld corresponding to each velocity
�eld. Similarly, if the database only contains the wall-normal components of velocity
and vorticity, this is where the full velocity �eld is explicit ely computed. Moreover,
while scanning the whole set ofN t temporal snapshots, the mean velocity pro�le U,
the mean shear dU=dy, the mean pressureP and the pseudo-dissipation� pro�les are
computed.

3.2.2. Step 2

Step 2 is the core of the algorithm, where most of the GKE terms are computed. Its
structure is illustrated by the owchart in �gure 4, where for simp licity the average over
the di�erent snapshots is omitted. Within this Step, the data str ucture �( Y1) resides
on disk and contains the full set of the GKE terms at position Y1, and the structure
�( Y1) is a memory array where � is stored. Finally,  (Y1; Y2) contains contribution to
the GKE terms from the pair ( Y1; Y2).

Step 2 is made by two main nested loops. At the outer level, the codeloops onY1; at
the inner level, onY2. Since all the GKE terms are either symmetric or anti-symmetric
with respect to an inversion of the wall-normal axis, one half of the channel is used to
increase the size of the statistical sample. Hence,Y1 scans through half the grid points
in the wall-normal direction, i.e. loops from y� 1 to yny =2, but for each (Y1; Y2) also the
terms from the pair (2h � Y1; 2h � Y2) are computed to contribute to the statistics,
with the sign of each term properly set according to the relevant symmetry. For each
Y1, the GKE terms are computed for Y2 ranging from Y1 to 2h � Y1. As shown below
in Sec.3.3, whenY2 < Y1 or Y2 > 2h � Y1 the GKE terms for the pair ( Y1; Y2) are
computed from available information by exploiting symmetries.

In the owchart of �gure 4, the indices i 1 and j 1 are used to select the wall-normal
position Y1, and the indices i 2 and j 2 to select Y2. The index i identi�es the pair
(Y1 = yi 1 ; Y2 = yi 2 ) at which the GKE terms are actually evaluated; the index j
identi�es the corresponding pair (Y1 = yj 1 ; Y2 = yj 2 ) at which those terms are actually
used. It is i = j when yi 1 < h , and i = ny � j when yi 1 > h .

The sequence of operations performed by Step 2 for each snapshot is as follows.
First, the entire snapshot is read and copied in memory. In the outer loop, for eachyj 1

the GKE terms for this position, i.e. �( j 1), already computed and stored on disk while
processing the previous velocity �eld, are read and copied into the memory array �.
Then, in-plane Fourier convolutions terms at yi 1 , as for examplecuu(yi 1 ), are computed
in physical space. Now, in the inner loop onj 2, for each pair (yi 1 ; yi 2 ) the contribution
 to the GKE terms at ( yj 1 ; yj 2 ) is computed; �rst, the in-plane Fourier convolutions at
yi 2 are evaluated in physical space; and then the required cross-plane correlations, as
for examplehuvi (r x ; r z; yi 1 ; yi 2 ), are computed in Fourier space; lastly, the correlations
are assembled and added to �. To double the size of the statistical sample, this set of
computations is performed twice: for i = j and i = ny � j
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Figure 4. Structure of the core part of Step 2. The outer loop on j 1 spans half the set of wall-normal positions
to double the statistical sample. The inner loop on j 2 exploits symmetries to minimize computing requirements.
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After the inner j 2 loop is complete, � is eventually written to disk as the updated
�( j 1). At the very end, i.e. when the last temporal snapshot is reached, before updating
data on disk the actual time average is obtained by dividing for the total number of
samples.

3.2.3. Step 3

Step 3 of the algorithm is the last one, and involves computing the wall-normal deriva-
tives of



�u 2

�
, which appear in the viscous parts of � r y and � : the viscous contributions

to � r y and � contain derivatives with respect to r y and Y respectively. The native
space where the GKE terms are computed involvesY1 and Y2 as independent vari-
ables, hence the following relations are used to convert derivatives between the two
pairs of coordinates:
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The Y1- and Y2-derivatives are discretized via �nite-di�erences, albeit not compact,
with a �ve-points computational stencil that for the sake of consistency mimics the one
employed in the DNS code used to produce the database. Symmetriesare invoked also
within this step when values of



�u 2

�
to �ll the stencil are needed in correspondence

of non-available wall-normal positions (Y1; Y2) (see Sec.3.3).

3.3. Exploiting symmetries

In Ref. [10] all the symmetries that characterize the terms of the GKEare compre-
hensively described. We take advantage of these symmetries to avoidcomputing the
GKE terms with Y2 < Y1, Y2 > 2h � Y1, or Y1 > h .

However, these terms may be needed when wall-normal derivatives near the Y1 and
Y2 boundaries have to be computed, and the stencil includes missingterms. These
terms can be recovered by resorting to their symmetric or anti-symmetric behavior
with respect to an inversion of both y (statistical symmetry) and r (analytical sym-
metry). Here we show how symmetries can be exploited to obtain the missing GKE
terms in the (Y1; Y2) planes with Y2 < Y1, or Y1 < h and Y2 > 2h � Y1, which is the
most general case.

We deal �rst with the case Y2 < Y1. As shown in the two rightmost panels of �gure
5, a GKE term at a given (r x ; r z; Y1; Y2) with Y2 < Y1 is related to an available one via
the inversion of the separation vectorr . For example, for the scale energy we have:



�u 2�

(r x ; r z; Y1; Y2) =


�u 2�

(� r x ; � r z; Y2; Y1):

Of course the sign of a speci�c term must be changed according to its symmetric or
anti-symmetric behaviour with respect to an inversion of r . These symmetries are
listed in Ref. [10].

In the case whereY1 < h and Y2 > 2h � Y1, as shown in �gure 5, the missing GKE
terms can be obtained by combining two symmetries. First the inversion of y is used,
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Figure 5. Graphical representation of the symmetries used to recover the GKE terms in the planes of the
4-dimensional domain ( r x ; r z ; Y1 ; Y2 ) with Y1 < h and Y2 > 2h � Y1 . The dashed line denotes the centreline
of the channel, i.e. Yi = h . From the left panel to the central one we use the inversion of y, whereas from the
central one to the left one the inversion of r .

arriving at an intermediate point, where the GKE terms are again not computed:
taking again



�u 2

�
as example:



�u 2�

(r x ; r z; Y1; Y2) =


�u 2�

(r x ; r z; 2h � Y1; 2h � Y2):

At this point, the term although still unavailable quali�es for the pr evious case. Hence,
as above the inversion of the separation vector can be used, arriving at available GKE
terms:



�u 2�

(r x ; r z; Y1; Y2) =


�u 2�

(� r x ; � r z; 2h � Y2; 2h � Y1):

Again, the signs of GKE terms must be properly changed by combining the two
steps. The sign of � r x , � r z and � changes, whereas the sign of �r y , � and



�u 2

�
is

preserved.

3.4. Undersampling and parallelization

In Step 2 the code allows for undersampling along ther x and r z directions, in order
to reduce the memory requirement that would otherwise become excessive at highRe.
Correlations are always computed on the full grid to exploit the Fourier representa-
tion, but when the structure  is assembled a smaller grid can optionally be used,
which modulates the spatial resolution. The code provides for the speci�cation of two
thresholds for each of the separationsr x and r z. When the separation is below the �rst
threshold, full resolution is retained; between the two thresholds a level of undersam-
pling can be chosen, and above the second threshold an higher level of undersampling
can be selected.

In terms of parallel computing, the code for the GKE analysis can be run serially,
as it is optimized for RAM and CPU and provides for arbitrary undersampling of
the data. Obviously, though, it is often convenient to exploit parallel computing. The
code is equipped with three distinct parallel strategies, whichcan be combined at will
depending upon the available computing hardware, the size of the database, and its
access pattern. Note that the present implementation does not addressparallelization
of the I/O operations.

First of all, a shared-memory (be it multi-core and/or multi-CPU) parall elization is
available: the user can select the number of threads to be spawned.This is particularly
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convenient on standard computing machines equipped with a low number of cores, for
which the scaling properties in reducing the computing time for the convolutions is
very good.

In addition, the possibility exists of a domain decomposition in the wall-normal
direction, so that the result space is subdivided into slices, and each slice is assigned
to a di�erent computing machine (distributed memory), inherit ing what is imple-
mented in the DNS solver [24]. This possibility rests upon the local character of the
�nite-di�erences discretization in the wall-normal direction. E ach machine carries out
independent calculations, so the parallel e�ciency is the highest, although the entire
velocity �eld must reside in the RAM of each process. Moreover, this strategy con-
tributes to improving I/O, by employing more than one motherboard / c ontroller /
hard disk at the same time.

Lastly, the key Step 2 of the algorithm can be carried out via independent jobs, each
of them dealing with only a fraction of the database. The jobs are fully independent
and this strategy too trivially achieves linear scaling. There is a caveat, however: to
achieve the best performance, the database must be stored in a distributed fashion. If
this is not the case, there is potential for input/output contention, an d the scalability
of this strategy largely depends on the speci�c storage hardware available. Another
minor drawback of this strategy is that between Step 2 and Step 3 an additional
merging operation is required to bring together the various partial statistics and to
carry out the �nal ensemble average.

Scaling results for the �rst strategy will be presented in the next Section. It is note-
worthy that the other two strategies have basically 100% e�ciency. Which combination
of parallel strategies is best largely depends on the speci�c situation, the problem size
and hardware availability.

In closing, we mention that by commenting out a single line of code the user can
easily switch between the version described above, where the entire snapshot is read
at once and resides in RAM, and an alternate version where, for a given snapshot
and a given i 1 plane, the i 2 planes are read one at a time. The �rst version obviously
achieves a smaller I/O load, at the price of a larger RAM occupation.
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4. Results

We describe in this Section a typical GKE analysis, with emphasis onthe computa-
tional performance of the code. We also provide some example results to highlight the
novel features made possible by an e�cient code, like the simultaneous access to the
four-dimensional space.

4.1. Computational details

Two DNS databases are created for an inde�nite turbulent plane channel ow at
Re� = 200 and Re� = 1000. The DNS code is described in [24], and is a classic
pseudo-spectral code with a compact, fourth-order �nite-di�erences discretization for
the wall-normal direction and Fourier discretization for the homogeneousdirections.

The case at Re� = 200 has L x = 4 �h and L z = 2 �h , with 384 Fourier modes
(256 before dealiasing) in the homogeneous directions, and 256 points in the wall-
normal direction. The size of the computational domain remains unchanged for the
case atRe� = 1000, while the number of modes increases to 1536, and the number of
wall-normal points to 500.

For the low-Re case, the database is made by 200 snapshots, collected at well sep-
arated times over the total duration of the simulation, i.e. about 25,000 viscous time
units. The database contains the wall-normal component of the velocity and vorticity
vectors, in the form of Fourier coe�cients for the expansion of the variables along the
homogeneous directions. The other velocity components as well as the pressure �eld
are computed during Step 1 of the GKE analysis, as previously described in Sec.3.2.
The total database size is about 79 GBytes. The higher-Re database is made by 35
snapshots only, but the size of the single �eld is larger, such that thetotal database
size increases to 276 GBytes.

The size of the GKE database is 112 GBytes for the low-Re case, where full reso-
lution is used. For the high-Re case, the two threshold values for both the streamwise
and spanwise separations are set at 200 and 500 in wall units. Full resolution is used
below the �rst threshold, one every four points is retained between the thresholds, and
one every eight points is retained above the second threshold. With these choices the
size of the GKE database becomes 209 GBytes atRe� = 1000.

4.2. Code performance

First, we report the outcome of a one-to-one comparison in terms of computational
requirements between our code and an existing implementation, used for example by
[11] to carry out one of the most computationally demanding GKE analysis reported
so far. The two codes have been re-compiled for the target machines,and tested on
the same database atRe� = 200, with (384,256,384) points (no undersampling). A
case with twice the number of points in every direction is also run to assess how
the performance of the present solver varies with problem size. Thecomputer where
performance metrics have been measured is equipped with four AMD 6376processors,
with 16 cores each for a total of 64 cores. Clock frequency is 2.3 GHz. The I/O
con�guration is one of the most unfavorable, with the snapshots residingon a remote
hard disk accessed via the slow NFS protocol, while output is written locally to a
Western Digital 3 TBytes hard drive rotating at 5400 rpm.

By using a single core of one CPU, i.e. in strictly scalar mode, the present code
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requires 239 minutes to complete the most expensive Step2 of the GKE analysis on a
single ow �eld of the Re� = 200 database, including both I/O and CPU time. The
same operation, attempted with the alternate code, takes too long for an actual mea-
sure. However, by extrapolating the time required to process a single Y1 � Y2 pair, the
speedup made possible by the new implementation turns out to be 3,289. Such speedup
by three order of magnitudes is indeed not inconsistent with the expected speed gain
when one resorts to the pseudo-spectral approach and two homogeneous directions are
available on this problem size. The same test is repeated on a problem with twice the
number of points in every spatial direction: the observed speedup becomes of 24,305
times, consistent with the increased size of the computational problem. In terms of
memory requirements, our code is quite optimized, at the price of anincreased I/O
load. It requires 2 GBytes of RAM for the smaller case, and 18.2 GBytes for the larger
case.

Figure 6 (left) further splits the computing requirements by discriminating the time
needed to carry out Step 2 and Step 3. Of course, one should bear in mind that Step
2 not only is the most CPU-intensive, but also needs to be executed for as many ow
�elds the database is made of, whereas Step 3 needs to be executed onlyonce. At
both problem sizes, the plot shows that the program is not I/O limited, despite our
architectural choice of increasing I/O load in order to alleviate memory requirements.
This is remarkable, in view of the fact that I/O is quite slow on our system, and has
received no optimization at all. Moreover, thanks to undersampling I/O is expected to
only marginally increase with problem size in real use cases. I/O becomes signi�cant
only for Step 3, but this is largely expected and of no major concern, as Step 3 is a
sort of post-processing step that runs only once. (Analogously, Step 1 isrun only once
at the pre-processing stage).

The right panel of �g. 6 plots how the computing requirements are alleviated by
the shared-memory parallel strategy. We report �gures for Step 2 only, but the I/O
contributions are included, and I/O is not expected to scale particularly well. Despite
I/O, one observes very good speedup also on the smaller problem size andwith rela-
tively large number of cores: a single �eld of theRe� = 200 database can be processed
by the 16 cores of a single CPU in about half an hour. This �gure becomes about
13 hours for the larger test problem. It should be recalled that the othertwo parallel
strategies mentioned earlier in Sec.3 possess ideal scaling properties, and that all the
three available strategies can be used together to shorten the computing time. The
availability of computing and storage hardware, as well as the problem size, dictate
the best overall strategy on a case-by-case basis.

4.3. GKE and turbulence physics

First, the GKE algorithm is validated by computing the residual of the budget equation
(2) in the whole 4-dimensional space, and by verifying that it is negligible everywhere
in comparison to the dissipation and production terms. In doing this we verify also
the statistical convergence of the data. The residual is computed withsame accuracy
of the GKE analysis; i.e. when computing the divergence of uxes, derivatives in the
homogeneous directions are performed spectrally, and those in wall-normal direction
with the same �nite-di�erences scheme used elsewhere. From a quantitative point of
view, the absolute maximum of the residual in the entire volume for the Re� = 200
database is 0:0104, which is negligible when compared to the maximum and minimum
of the production and dissipation terms, 1:24 and � 0:78 respectively. Figure 7 plots
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Figure 6. Computational performance of the present GKE implementati on. Left: wall-clock time required
for Step 2 and Step 3, computed in serial mode and for a single  ow �eld. Computing time is further divided in
CPU work (dark color) and input/output operations (bright c olor). Blue is the smaller case corresponding to
the Re� = 200 database; red is the larger case, with twice the number o f points in each spatial direction. Right:
total wall-clock time required for Step 2 on a single ow �eld , versus the number of symmetric multiprocessing
(SMP) threads nsmp . Colors as in the left panel.
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the residual of the GKE equation in the r +
x = 5 ; r +

y = 0 plane, chosen as a generic
representative planar cut of the computational domain. The spatial distribution of
the residual does not show any structure but one that can be attributed to remaining
statistical noise, with the largest values occurring in the near-wall region where the
GKE terms are also larger. In this plane, the maximum of the residual is0:0027;
to put this �gure in perspective, the maximum and minimum of the pr oduction and
dissipation terms in the same plane are 1:24 and � 0:725. The residual has been also
veri�ed to decrease with the increase of the size of the dataset available for computing
statistics.

A brief analysis of the two comprehensive newly-generated and publicly accessi-
ble GKE datasets is now presented. They illustrate the spatial and scale features of
turbulent wall-bounded ows, as well as their Reynolds-number dependence. In fact,
the dynamics of wall turbulence becomes richer as the Reynolds number increases;
some features, absent atRe� = 200, begin to emerge atRe� = 1000. This underlines
the importance of investigating high-Re turbulent ows, and emphasizes the need for
highly e�cient numerical tools.

The GKE terms are �rst observed in the r y = 0 space. The top panels of �gure
8 feature the source term� and the uxes (� r x ; � r z ; � ) in this 3-dimensional space,
comparing the Re� = 200 case on the left to the Re� = 1000 case on the right; the
bottom panels plot a two-dimensional section of the volume taken atr x = 0. The
�gures use the same scale on the axes, so that the e�ects of increasing the Reynolds
number can be easily appreciated.

The emerging picture, already described for example in Ref. [10], isthat in both cases
near the wall a region with large positive� is present, where energy production largely
overcomes its dissipation rate; see the red isosurfaces (corresponding to � + = 0 :45)
visible at small scales and wall distances in the top panels of �gure 8 and the near-
wall peak of the contour in the bottom panels. This is where wall turbulence is mainly
produced. The extent of this region scales in wall units, hence it shrinks in absolute
terms with increasing Re. The scales 0< r +

x < 200, 25< r +
z < 70 andY + � 13 shown

by the red isosurface, suggest a strong connection with the main coherent structures
in the wall region: the quasi-streamwise vortices and the streaks of streamwise velocity
[25, 26]. On the other hand, large negative values of the source term are observed at
Y ! 0 for any scale, and atr x ! 0 and r z ! 0 for any wall distance. Accordingly,
the immediate vicinity of the wall and the smallest scales of motion in the whole ow
are recognised to be the sink regions of wall turbulence, where viscous dissipation
dominates.

Only in the high-Re case, a further large region of positive� is additionally seen
quite far from the wall, in correspondence of larger streamwise and spanwise scales,
separated from the near-wall peak by a (sink) region with� < 0. This is in agreement
with the results shown in [27] using di�erent DNS databases atRe� = 550; 1000; 1500.
This region, absent in the low-Re case, presents rather low values of� , about one order
of magnitude smaller than the values of the near-wall production region, with the peak
of value � + = 0 :0095 placed atr +

x = 0, r +
z � 350 and Y + � 160 (same �ndings of

Ref. [27]). This secondary peak of the source term is related to an outer self-sustained
mechanism of turbulence well separated from the near-wall dynamics,as discussed in
Refs. [28, 29, 30] and several others. The scales and wall distances at which it occurs
are in agreement with the �ndings of Ref. [28]. Of course, atRe� = 1000 the outer peak
is only beginning to appear, and the two peaks do not show yet a completeseparation:
see the contours of the source term in the bottom right panel. Refs. [28] and [30], by
observing one-dimensional premultiplied power spectra of



u2

�
at progressively higher
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Figure 8. Top: three-dimensional view of the source term � and the vector �eld of uxes (� r x ; � r z ; � ) in the
space r y = 0: comparative view for Re� = 200 (left) and Re� = 1000 (right). The source �eld is plotted via a
red isosurface corresponding to � + = 0 :45, a grey isosurface corresponding to � + = 0 :005, and via the two color
contour planes at r +

x = 0 and r +
z = 0. The �eld lines are tangent to the ux vector, and are color ed according

to the ux vector magnitude. Bottom: two-dimensional view o f the source term � + in the space r +
x = r +

y = 0:
comparative view for Re� = 200 (left) and Re� = 1000 (right). Thick lines indicate � + = 0.

20



Reynolds numbers, suggest thatRe� approximately larger than 1700 is required before
the outer site can be clearly noticed. Since our data show an outer peak already at
Re� = 1000, it is possible that the GKE provides an earlier and/or sharper detection of
the outer cycle compared to the premultiplied spectra, as already hypothesized by [31]
and, more recently, by [32], where the di�erences in the detectionof the k� 1 spectral
law and of the real-space analogue logarithmic dependence onr x of the streamwise
structure function are discussed.

The GKE also provides us with the knowledge of the �eld of energy uxes. This
can be exploited, along the lines of Refs. [10] and [11], to follow scale energy as it
moves from the source regions to the sink regions, tracking the involved scales and
wall distances. This is visualised in ther y = 0 space of �gure 8 by �eld lines tangent
to the ux vector (� r x ; � r z ; � ). In both the low- Re and high-Re cases, the ux lines
origin from a singularity point located close to the peak of the source term in the
near-wall region, i.e. r +

x = 0, r +
z � 60 and Y + � 14, and are attracted by the two

sink regions mentioned above (the wall plane, and ther x = r z = 0 axis at larger
wall distances). From a topological viewpoint, the lines ful�l the requirement [10] of
vanishing perpendicularly to the sinks. In accordance with the outcome of the single-
point budget for the turbulent kinetic energy, these lines reveal that the excess of
turbulent energy production in the bu�er layer feeds both the upper and the lower
regions. However, the GKE provides important additional information concerning the
scales involved in these spatial transfers. For example, following the lines of the branch
vanishing at large Y , the coexistence of reverse and direct cascades is observed while
turbulent energy ascends from the wall. In detail, as shown in �gure 8, the lines
emanating from the singularity point show �rst an inverse cascade of energy moving
towards increasingr x and r z. Later a mixed direct/inverse cascade takes place, while
Y remains constant: an inverse cascade towards increasingr x is seen together with a
direct cascade towards decreasingr z. Finally, the lines start ascending towards larger
Y and present a more classic direct cascade towards smallerr x and r z. Interestingly,
in the Re� = 1000 case some of the lines that feed the sink at larger wall distances,
are seen to cross the outer source peak; they feed the �eld with the excess production
associated with the large-scale outer motions.

The e�cient implementation of the GKE analysis makes it a�ordable to lo ok at
the 4-dimensional domain overall. Figure 9 plots six 3-dimensional volumes, extracted
at di�erent streamwise separations from a 4-dimensional dataset. Moreover, the full
dataset is shown in the supplemental material to this manuscript as amovie, wherer x
is used as the temporal dimension to build the animation. The GKE dataset underlying
the Figure can be freely downloaded at this link. The separations extracted to produce
�gure 9 are r +

x = 0 ; 50; 100; 150; 200; 400, whereas in the movie the separation varies
continuously from r +

x = 0 to r +
x = 1000. In the 3-dimensional space wherer x is �xed,

i.e. on a frame of the movie, the GKE terms are not de�ned below theY = r y=2 plane,
owing to the �nite size of the channel in the wall-normal direction.

The plotted quantity is the wall-normal ux � + as it is the one changing the most
along the r x direction. It is represented via contour planes as well as with a dark-
coloured isosurface corresponding to the value� + = 0 :5 and black isolines correspond-
ing to � + = 0. Note that at r x = 0, the largest values of � are seen in the near-wall
region at small r y . The maximum of about 1.5 is observed at zero spanwise separations,
namely at (r +

y ; r +
z ; Y + ) � (50; 0; 30). This maximum is associated with the near-wall

cycle, as these separations and wall-normal positions are consistent with the �ndings
of Ref. [25] concerning the dominant near-wall vortical structures. At larger r x , as
shown in the other panels, the near-wall maximum is nearly unchanged,except for the
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Figure 9. Plot of � in the r +
x = 0 (a), r +

x = 50 (b), r +
x = 100 (c), r +

x = 150 (d), r +
x = 200 (e) and r +

x = 400
(f) 3-dimensional spaces. Dark-coloured isosurface corre sponds to � = 0 :5. Black isolines at the r z = 0 and
r y = 0 planes correspond to � = 0. The accompanying movie can be found as supplemental mate rial to this
manuscript. 22



portion near r z = 0, i.e. the statistical footprint of the near-wall cycle, which decreases.
On the contrary, the largest negative values are always forr y ! 0 and Y + < 20. Ac-
cordingly, for the budget equation of the turbulent kinetic energy, which is recovered
here for r y = 0, r z ! L z=2 and r x ! L x=2, the ux shows a non-monotonic behaviour
with negative values forY + < 17 and a positive peak placed atY + = 37, in agreement
with results presented in Refs. [9] atRe� = 180 and [27] at Re� = 550; 1000; 1500.

Large positive values of� are also observed in a at region in the vicinity of the
Y + = r +

y =2 + 30 plane for r +
y < 750 andr +

z > 200, excluding the smallest wall-normal
and spanwise scales. In ther x = 0 volume, unlike at larger streamwise separations,
this region is observed to connect to ther z = 0 plane, but this connection is lost at
larger r x . Since along the oblique plane the wall-normal positions of the points used to
compute the velocity increments arey+

1 = 30 and y+
2 = 30 + r +

y , a large positive value
of the spatial ux implies that attached eddies in the sense of Ref. [33]are associated
with an outward ux of



�u 2

�
[11].

In the r x = 0 volume, negative values of� are seen only very close to theY = r y=2
plane and for largeY and r y (see the black contour line in ther z = 0 plane in panel
(a), denoting the zero level). At increasing r x an additional region with negative �
is spotted at r z ! 0, Y + � 180 and r +

y � 250. Interestingly, this region reaches its
largest extension forr +

x = 200 and then, further increasing the streamwise separation,
it disappears.

Finally, for r +
x � 200, large values of� are also observed atY + � 500, i.e. in the

log-layer. In detail, at r x = 0, � + is larger than 0:5 for r +
z < 500 andr +

y 300, excluding
the smallest scales. By increasingr x , � decreases in the log-layer. Interestingly, the
decrease rate is faster at smallr z. In fact, large values of� are still present at r y ! 0
and r +

z � 700 in the volumes with r +
x = 150 and r +

x = 200. The large values of �
observed in the log-layer are associated with the structures of the outer self-sustained
mechanism of turbulence, as theser z and Y are in agreement with the �ndings of Ref.
[28]. Hence, a large positive spatial ux of



�u 2

�
may be related to these large-scale

motions. In the volumes with r +
x = 0 and r +

x = 50 the region with large � placed near
the wall is not separated from the one in the log-layer. On the contrary, for r +

x > 50
these two regions of large� are not connected, as shown by the isosurface in panel
(c) and (d), denoting a separation between the phenomena traceable tothe near-wall
structures and those to the outer structures.
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5. Conclusions and outlook

This work has described the implementation of a parallel computer program that
builds the complete budget of the Generalized Kolmogorov equation (GKE) starting
from a DNS-produced database of a turbulent channel ow. The source code is freely
available on GitHub. The most important feature is that the terms of the G KE, made
by variances of velocity di�erences, are rewritten as sums of cross-correlations. When
homogeneous directions are present (the inde�nite plane channel owpossesses two of
them), the Parseval theorem allows e�cient computation of such correlations in Fourier
space, with huge computational advantages. These advantages become more signi�cant
as the size of the computational problem increases, as it is expected when one wants to
deal with high-Re ows; they also remain signi�cant when the homogeneous direction
is only one, thus providing the present approach with a much broader scope than the
inde�nite plane channel ow alone.

Several optimizations are used to keep the CPU and RAM requirements to a min-
imum. Extensive use of analytical and statistical symmetries reduces the number of
functional evaluations required to compute all the terms in the wholefour-dimensional
space of their independent variables. As a result, in serial mode the code has been
measured to provide three- or four-orders of magnitude speedup (depending on the
problem size) when compared to a standard implementation. Three distinct parallel
strategies are available and can be combined freely to best match the speci�c hardware
con�guration (number and type of machines, CPU cores, storage system, etc).

The unbalance of the GKE terms, which descends from the �nite sizeof the statisti-
cal sample, is presented for validation; it is found to be negligible andto decrease with
sample size. For the �rst time the complete set of terms in the GKE has been computed
and observed in the whole 4-dimensional space. Results are presentedfor two channel
ow cases, at Re� = 200 and Re� = 1000. It is shown that the present code can handle
very large datasets with a reasonable amount of computational resources. Although
the 5-fold separation of the consideredRe is limited, and Re� = 1000 can hardly be
considered su�cient to achieve a turbulent ow with a well-dev eloped outer cycle, our
analysis reveals quite clearly the distinction between inner and outer turbulence cycle,
as well as the distinction between attached and detached turbulent structures. The
possibility thus exists that the GKE is an e�ective tool to put the se distinctions into
focus.

We hope that the computational tool described in this paper will enablesigni�cant
progress in our understanding on turbulent ows. An extension of the GKE equation
to consider distinct components of the Reynolds' stress tensor is underway, which is
deemed to bring even more insight into the physics of a geometrically simple but highly
anisotropic ow like the channel ow. At the same time, the GKE analys is is being used
to understand the profound modi�cations induced in a natural turbul ent ow by skin-
friction drag reduction techniques. For both these goals, the availability of a reliable,
e�cient and compact code to carry out the GKE analysis is a crucial step towards the
understanding of the complex physical processes which regulate production, transfer
and dissipation of turbulent energy in a wall-bounded ow.
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