1. INTRODUCTION

The conversion of lignin may provide a sustainable and renewable route to chemicals and fuels. However, the polymeric structure of lignin consists of interlinked phenolic monomers, with high oxygen content, which requires appropriate catalysts to guarantee selectivity and high yields during its processing. In the case of fuel-oriented utilization, it is desirable to increase the H:C and C:O ratios of the lignin-derived products in order to improve the efficiency of combustion. Several experimental methods have been designed to depolymerize, deoxygenate and hydrogenate lignin. For instance, the pyrolysis of lignin-derived compounds has been performed in the presence of catalytically active zeolites in order to decrease the oxygen content. However, this method generates a high number of different products without apparent selectivity, and has the drawback of generating solid residues that decrease the lifetime of the catalyst.

On the other hand, the hydrodeoxygenation (HDO) of organosolv lignin and lignin-derived compounds, using bifunctional catalysts consisting of transition metal nanoparticles deposited on acid supports, outperforms the pyrolytic method in selectivity, yields and a reduction of solid byproducts.

The bifunctional catalysts comprise transition metal nanoparticles, which promote the hydrogenation, supported on solid acids that mediate the dehydrogenation and alkylation of the hydrogenation intermediates. Examples of bifunctional catalysts include Pt supported on zeolite HY (in short Pt/HY), Ru/HZSM-5, Ni/HZSM-5, and Ni/HBEA, as well as a combination of Pd/C and zeolite HZSM-5. A mixture of monocyclic and bicyclic alkanes are obtained with these methods, highlighting the dehydration function of the support and the hydrogenation by the metallic component.

The HDO of phenolic monomers, such as phenol and cresol, have been the subject of extensive research, both experimental and theoretical, because they are good examples of the major recalcitrant species derived from the upgrading of lignin. The modifications occurring to the phenolic species depend on the metal and support. For example, 3-methylcyclohexanone is the main product of the processing of m-cresol on Ni/SiO₂ or Pt/SiO₂, while selectivity toward toluene is highest when the conversion takes place on Fe/SiO₂ or Pt/ZrO₂. This outcome has been explained by the occurrence of keto-enol tautomerism (represented in Figure 1) that transforms m-cresol into 3-methyl-3,5-cyclohexadiene-none. The cyclohexadiene may follow two different pathways: (i) hydrogenation of the C=C bonds, producing 3-methyl-cyclohexanone or (ii) the hydrogenation of the C=O group followed by dehydration, generating toluene. However, recent DFT calculations have shown that the most probable pathway to obtain toluene consists of the direct deoxygenation of m-cresol, promoted by the oxophilicity of the...
metal particle’s surfaces, such as Ru(0001),19 this logic could also be applied to the selectivity observed on oxophilic supports such as ZrO2.17,20 Nevertheless, the keto-enol tautomerism is still an appropriate approach to explain the product selectivity of the hydroprocessing, especially when there are no oxophilic components within the catalysts.17–20

Considering the importance of the keto-enol tautomerization during the hydroprocessing, we have performed a computational study of the possible isomerization of phenol on zeolite Socony Mobil-five (MFI)21–23 doped with different metal atoms, which is based on the wide utilization of this zeolite as a support during the HDO of lignin-derived compounds. Computer simulations, using either quantum mechanics or classical methods, have provided crucial insights into the physical and chemical properties of zeolites. For example, calculations of aluminum siting and substitution configurations have complemented experimental techniques, such as nuclear magnetic resonance.23–25 Furthermore, the analysis of proton transfer in zeolites is important owing to their solid acid character, and computer modeling has been essential in providing understanding of this process at the atomic level.26–30 The elucidation of the adsorption configurations and reaction pathway in the transformation of environmentally and industrially important molecules inside the pore system of zeolites is another area, where theoretical predictions have been extremely valuable.30–33 The present work falls under this latter topic.

Previously, we have shown that three-coordinated Lewis acid sites in aluminum-substituted zeolite MFI reduce by at least four times the activation energy of phenol tautomerization compared to direct isomerization in the gas phase.34 In the present work, we have extended this study in order to consider other dopants with a formal charge of 3+. Experimental intrawork framework substitutions of zeolites with Sc, Fe and Ga have been reported, and thus we have used these metals to study the tautomerization of phenol on their Lewis acid forms.35–37 We have placed these Lewis acid sites at the external surface of the zeolite, where they are more easily accessible to medium-sized molecules, such as phenol. Incidently, recent experimental reports on Pt nanoparticles confined in the cavities of zeolite-A have shown the importance of the external Lewis acid sites for the adsorption and hydrogenation of unsaturated molecules through a hydrogen spillover mechanism.38–40 Zeolite A (framework type LTA) and zeolite MFI have different pore dimensions: while LTA is characterized by eight-membered ring (8MR) pore apertures,41 effectively hindering the diffusion of molecules such as phenol into its pore system, MFI shows 10MR openings, which does allow the access of phenol to the interior of the zeolite. However, in the present work, we have exclusively analyzed the adsorption of phenol at the external surface of zeolite MFI.

Our choice is based on the size of the metal nanoparticles, with diameters larger than 2 nm,12,42 which therefore cannot diffuse into the pore system of the zeolite and can only be supported at the outer surface of the microporous material. In addition, the selectivity and pathway during hydroprocessing have been ascribed to the synergy that occurs at the metal-support interface.20,43 Hence, Lewis acid sites located at the external surface of the zeolite at close distance from the metal clusters should have an important role to play in the HDO process.

The first part of the discussion is dedicated to the formation of three-coordinated Lewis acid sites resulting from the dehydration of metal-substituted silanol groups at the external surface of zeolite MFI. It is followed by the adsorption of phenol and the analysis of its proficiency to substitute water at the Lewis site. Then, the tautomerization is discussed on the basis of a three-step process that involves (i) dissociation of the O=H bond of phenol, (ii) rotation of the aromatic ring, and (iii) formation of the C–H bond following the transfer of the phenolic H back to the molecule.34 A similar pathway has been proposed for the tautomerization of phenol and m-cresol on the surfaces Pt(111), Pd(111), and Ru(0001).19,44 A comparison between GGA, meta-GGA, and hybrid-GGA functionals is also discussed and rationalized, which measures the precision of the GGA compared to higher tier functionals with increased accuracy.

2. COMPUTATIONAL METHODS

2.1. DFT Calculations. We have employed density functional theory (DFT) methods to perform all calculations presented in this work, as implemented in the Vienna Ab-initio Simulation Package (VASP).45–48 We have used the derivation of Perdew, Burke, and Ernzerhof (PBE) of the general gradient approximation (GGA) to obtain the exchange-correlation energy of the systems.49 Although most of the calculations presented in this work were generated using the GGA functional PBE, we have also used the GGA functional PBE optimized for solids (PBEsol),50,51 the meta-GGA functional proposed by Tao, Perdew, Staroverov, and Scuseria (TPSS)52 and its revised version (rev-TPSS),53 and the hybrid functional proposed by Heyd, Scuseria, and Ernzerhof (HSE06)54–56 to compare and validate the results generated by PBE. We observed that the PBE functional produced binding energies and energy barriers with differences no bigger than 13 kJ/mol compared to the values calculated by the higher tier functionals; for more information see section S1 of the Supporting Information, where the data derived from PBEsol, TPSS, rev-TPSS, and HSE06 are compiled. The PBE functional was accompanied by the Grimme method (DFT-D3) to include the long-range dispersion forces.56–59 This approach incorporates first-principle computing and geometry information into the parametrization of the pairwise coefficients and cutoff radii, as well as three-body terms to avoid the overestimation of the attractive forces. A basis set of plane waves was used to describe the valence electrons, employing the projector-augmented-wave method (PAW) to account for the nodal features of the valence wave functions and their interaction with the inner part of the atoms.60,61 The precision of the basis set was assured by a plane wave kinetic energy cutoff of 550 eV. The Brillouin zone was only sampled with the Gamma point considering the large size of the supercell under study. Gaussian smearing of the electronic states was employed to improve the self-consistent field
convergence, with band widths of 0.01 and 0.1 eV for isolated molecules (water and phenol) and zeolite MFI (with and without adsorbate), respectively. During the geometry optimization, we adopted the thresholds 10^{-5} eV and 0.03 eV/Å as fair convergence criteria for the electronic and ionic relaxations, respectively. All calculations were performed under spin polarization conditions.

In the case of the Fe-substituted zeolite, we performed two sets of calculations: the first one used Dudarev’s approach to deal with the electron correlation, which is derived from the on-site Coulomb repulsion of the 3d electrons of the Fe atom, whereas we did not use this approach in the second set of calculations. We employed a value of 4.0 eV for U_{eff} in accordance with previous reports of different iron oxides. The calculations without on-site Coulomb correction were used together with the results for Sc- and Ga-substituted zeolites to discuss the structural features along the tautomerization pathway.

The molecular binding free energy was calculated with the following equation:

$$F_{\text{Bind}} = F_{\text{molecule}} - (F_{\text{zeolite}} + F_{\text{molecule}}^{\text{gas}})$$

where F_{molecule}, F_{zeolite}, and $F_{\text{molecule}}^{\text{gas}}$ are the free energy of the bare zeolite, the zeolite-molecule complex, and the isolated molecule, respectively. The free energies were computed by including the zero-point energy correction and the entropic contributions.

Only the vibrational entropy was considered for the zeolite-related systems, while the rotational and translational entropies were also computed for the molecules in the gas phase, assuming them as ideal gases. The vibrational frequencies were calculated by the finite difference method, using small enough displacements to keep the system within the harmonic approximation. During the vibrational calculations, we only allowed atomic displacements for the metal substituent, the first-neighbor SiO4 tetrahedra surrounding the metal and the molecule adsorbed on the Lewis acid site. This constraint was introduced to speed up the calculations without introducing serious errors.

The derived thermodynamic quantities (thermal energies, enthalpies, entropies and free energies) are reported in section S2 of the Supporting Information.

The energy barriers along the reaction pathways were calculated by combining the nudged elastic band (NEB) method and the improved dimer method (IDM). We tested from one to three images between reactants and products to perform the transition state (TS) geometry optimization under the NEB algorithm. We found that the utilization of a single image was enough to start the exploration of the TS. Thereafter, the output of the NEB calculation was used as a reasonable TS guess structure, which was refined by the IDM. During the search of the TS, only the metal substituent, the three SiO4 tetrahedra binding the metal, and the phenol or water molecule adsorbed on the Lewis site were allowed to relax, the rest of the structure was kept frozen. We adopted this scheme because the freedom of movement that phenol retains while it is adsorbed makes the relaxation of the TS less dependent on the long-range flexibility of the framework. The reactant and product of each reaction step were optimized without geometry constraints. This procedure increases considerably the speed of the search for the TS, mainly during the frequency calculations needed for the IDM, which incurs in an overestimation of the energy barriers of less than 4 kJ/mol compared to the systems without constraints.

2.2. Simulation Model. All simulations were carried out using periodic boundary conditions. The input coordinates and unit cell of zeolite MFI, which were used for the geometry optimization, were obtained from the database of the International Zeolite Association. We optimized the unit cell by creating a set of fixed volume calculations, allowing the atomic positions and the cell shape to relax. Afterward, the correlation between the energies of the cells and their volumes was fitted to the Birch–Murnaghan equation of state. This procedure avoids the drawbacks related to the Pulay stress, and gives the bulk modulus as an adjustable parameter. The relaxed equilibrium cell had values of 20.272, 19.942, and 13.400 Å for the parameters a, b, and c, respectively, with a volume of 5417 Å³, which was less than 1% larger than the experimental value. At the same time, we calculated a bulk modulus of 18.4 GPa, in good agreement with an experimental measurement of 18.2 GPa.

We have used the slab model to analyze the adsorption of phenol at the (010) surface of zeolite MFI, which is the exposed face in MFI nanosheets. The slab was built by cutting the structure along the [010] direction and keeping the periodicity over the (010) plane, saturating the cleaved Si-O bonds with hydroxyl groups. This procedure to create the slab resembles the methodology of previous computational simulations, where the external surfaces of zeolites have been considered explicitly. This type of morphology has been experimentally synthesized in the form of single unit cell nanosheets. In previous publications, we have shown that the external surface of zeolite MFI is well-described by a slab formed by one pentasil layer, which closely resembled the results obtained using a more realistic slab constituted of two pentasil layers. Therefore, we have used one-pentasil slabs in this work, placing a vacuum layer of 20 Å along the normal direction to the surface in order to minimize the interaction between periodic images, leading to unit cell parameters for the slab model of 20.272, 34.971, and 13.400 Å along the a, b and c directions, respectively.

Studying the Al substitution of the T-sites in a one-pentasil slab, we observed that the T9 site, which is shown in Figure 2, was the most stable Al-substituted silanol out of four different available positions per unit cell: T7, T9, T10, and T12. Therefore, we have used this site to substitute Sc, Fe, and Ga and compare them to our previous results on the tautomeration of phenol on Al-substituted MFI.

The visualization of all structures shown in this work was obtained with the code Visualization for Electronic and Structural Analysis (VESTA 3).
In the present study, the inclusion of the on-site Coulomb correction (hereafter referred as +U) for Fe decreased the absolute energy of the reactant, TS and product by 5 to 7 kJ/mol, yielding an exothermic energy of 22 kJ/mol and a barrier of 19 kJ/mol, thus retaining the trends of the calculation without +U. The activation energies in Figure 3 are similar to the equivalent transformation for Al-substituted silanol T9, where values between 10 and 20 kJ/mol have been calculated. Thus, we can conclude that the dehydration of the metal-substituted silanols is thermodynamically and kinetically favored.

The water molecule is desorbed from the Lewis acid site upon thermal treatment of the material, leading to the generation of three-coordinated M$^{3+}$ centers. Therefore, we have used the bare three-coordinated Lewis centers, shown in Figure 4, as reference structures to calculate the binding free energies along the tautomeration process.

3.2. Adsorption of Phenol

Two different configurations were examined for the adsorption of phenol on the Lewis sites: the nonplanar configuration, which places the plane of the aromatic ring perpendicular to the plane created by the three framework O atoms that bind the metal substituent (see Figure 5a), and the coplanar configuration, which places the plane of the aromatic ring almost parallel to the plane created by the three framework O atoms (see Figure 5b).

Phenol adsorbs preferentially on the three Lewis acid sites with a coplanar configuration, as indicated by the calculated binding free energies of \approx34, \approx14, and \approx6 kJ/mol against values of \approx7, \approx11, and \approx17 kJ/mol for the nonplanar configuration on the Sc, Fe, and Ga sites, respectively. The +U approach reduced the stability of the bare, Fe-substituted Lewis acid site, and thus increased the strength of the adsorption by 5–6 kJ/mol. These results agree with the preferential coplanar adsorption of phenol on Al-substituted zeolite MFI, which is 30 kJ/mol stronger than the nonplanar configuration.

The binding energy has been identified as a convenient descriptor to characterize the Lewis acidity in zeolites. Consequently, according to the values of binding free energies
<table>
<thead>
<tr>
<th>M</th>
<th>q(M)<sup>a</sup></th>
<th>q(ph)<sup>b</sup></th>
<th>q(M)<sup>c</sup></th>
<th>q(3O)<sup>d</sup></th>
<th>q/q<sub>e</sub><sup>e</sup></th>
<th>q(M)<sup>a</sup></th>
<th>q(ph)<sup>b</sup></th>
<th>q(M)<sup>c</sup></th>
<th>q(3O)<sup>d</sup></th>
<th>q/q<sub>e</sub><sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>+2.445</td>
<td>+0.034</td>
<td>+0.024</td>
<td>−0.014</td>
<td>0.24</td>
<td>+2.484</td>
<td>+0.040</td>
<td>+0.017</td>
<td>−0.013</td>
<td>0.23</td>
</tr>
<tr>
<td>Sc</td>
<td>+2.025</td>
<td>+0.072</td>
<td>+0.009</td>
<td>−0.049</td>
<td>0.60</td>
<td>+2.147</td>
<td>+0.067</td>
<td>+0.008</td>
<td>−0.046</td>
<td>0.61</td>
</tr>
<tr>
<td>Fe</td>
<td>+1.639</td>
<td>+0.113</td>
<td>+0.030</td>
<td>−0.099</td>
<td>0.69</td>
<td>+1.853</td>
<td>+0.094</td>
<td>+0.031</td>
<td>−0.090</td>
<td>0.72</td>
</tr>
<tr>
<td>Fe (+U)</td>
<td>+1.759</td>
<td>+0.102</td>
<td>+0.032</td>
<td>−0.094</td>
<td>0.70</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Ga</td>
<td>+1.847</td>
<td>+0.102</td>
<td>+0.050</td>
<td>−0.118</td>
<td>0.78</td>
<td>+1.955</td>
<td>+0.096</td>
<td>+0.040</td>
<td>−0.101</td>
<td>0.74</td>
</tr>
</tbody>
</table>

^aq(M): Bader atomic charges (e[−] units) of the Al, Sc, Fe, and Ga atoms before the adsorption of phenol.

^bq(ph): Total charge of phenol after adsorption.

^cq(M): Variation of q(M) after the adsorption of phenol.

^dq(3O): Variation of the total charge of the three O atoms that bind the metal substituent after the adsorption of phenol.

^eq/q_e: Ratio between the negative and positive charges, calculated using eq 4.

Figure 6. Projected density of states (PDOS) of (a) Sc-substituted and (b) Al-substituted MFI nanosheet: (top graphs) total projection onto phenol atoms, (middle graphs) projection onto the 3s orbitals of Al and the 4s orbitals of Sc, and (bottom graphs) projection onto the 3p orbitals of Al and the 3d orbitals of Sc. (c) Molecular orbitals (MO) of phenol within each of the four regions shadowed in light gray in the PDOS profiles of phenol. The MO HOMO−6 was not detected within any of the four regions, and we reason that it was rehybridized with the rest of the MO after adsorption.

Calculated in this work, combined with the results of phenol adsorption on Al-substituted zeolite MFI, we can establish the following order of Lewis acid strength: Ga < Fe < Sc < Al.

We have used the Bader atomic charges to analyze the charge transfer between phenol and the Lewis acid sites, compiling the values derived by PBE and HSE06 in Table 1. In the case of HSE06, the PBE-optimized geometries were used as input coordinates for single-point calculations. Before adsorption of phenol, the charge of the metal centers q(M) yielded by PBE followed the order: Fe (+1.639 e[−] and +1.759 e[−] with the +U correction) < Ga (+1.847 e[−]) < Sc (+2.025 e[−]) < Al (+2.445 e[−]), which almost correlates with the ranking of adsorption energies except for the Fe−Ga swap at the beginning of the series; HSE06 produced similar results.

After adsorption of phenol, the variation of the atomic charges was calculated with the following equations:

\[
q(M) = q(M)_{\text{after ads.}} - q(M)_{\text{before ads.}}
\]

\[
q(3O) = q(3O)_{\text{after ads.}} - q(3O)_{\text{before ads.}}
\]
where \(q(M) \) is the variation of the metal atomic charge \(q(3O) \) before and after the adsorption of phenol, \(q(3O) \) is the variation of the total atomic charge of the three O atoms that bind the metal before and after the adsorption of phenol, and \(q_++q_- \) is the ratio between the variations in negative and positive charges after adsorption, including the charge of phenol \(q(ph) \). This ratio provides an indication of the fraction of the charge that is transferred to the O atoms directly binding the metal (see Table 1).

Upon adsorption of phenol, we observed a net charge transfer from phenol to the zeolite, which, according to PBE and HSE06, increased along the series Al < Sc < Fe < Ga. However, despite this net movement of electronic charge into the zeolite framework, the positive charge of the metal centers increased after the interaction with phenol, with Sc reporting the smallest variation \(q(M) \) (PBE: +0.009 e- and HSE06: +0.008 e-), followed by Al and Fe, and with Ga yielding the largest growth (PBE: +0.050 e- and HSE06: +0.040 e-). In the case of Sc, Fe, and Ga, more than half of the net charge transferred from phenol and the metal substituent to the rest of the zeolite was located in the three O atoms binding the metal center, yielding \(q_-/q_+ \) values between 0.60 and 0.80. In contrast, only approximately 20% of this net charge remained in the three O atoms binding the Al atom. We have rationalized these observations as follows: the smaller the electronegativity of the metal the stronger the adsorption energy within the series Sc and Ga, where the three O atoms are in the same row of the periodic table; \(q(M) \) decreases, and \(q(3O) \) also increases, with the electronegativity of Ga being smaller than Sc. \(q(M) \) is the ratio between the variations in the charge of the metal \(M \) and the charge of the entire adsorbed molecule. A similar correlation has been reported before for M4+.

Figure 6 shows the projected density of states (PDOS) onto the valence states of Al and Sc, where we have observed differences in their hybridization state with phenol. The PDOS of adsorbed phenol can be divided into four regions that span approximately from -22 to 0.0 eV, with the Fermi energy shifted to zero, and contain the profiles associated with the molecular orbitals of phenol (see Figure 6). Regions II, III, and IV show the strongest signs of hybridization between the molecular orbitals of phenol and the electronic states of Al and Sc, respectively. While region III, spanning from approximately -3 to -2 eV, is very similar in Al and Sc, the profile of region II reaching a minimum of 33 kJ/mol for Sc and Fe (see Figure 8). In this region, there is a significant difference in the hybridization of phenol-Al and phenol-Sc, which is a measure of important electronic interactions between the two metal centers.

We also compared the thermodynamic viability of the coplanar adsorption of phenol against the adsorption of water on the Lewis acid sites, adopting the condition that the translational and rotational degree of freedoms of the physisorbed molecules are frustrated. Therefore, we only included the vibrational contribution to the entropy and the thermic energy in eq 1 for molecules optimized in the gas phase. Under these conditions, and at 473 K, the binding free energies of phenol were stronger than those of water by 31 to 35 kJ/mol for the three metal substitutions. Hence, according to our calculations, the Lewis site preferentially adsorbs phenol over water.
3.4. Formation of Cyclohexa-2,4-dien-1-one. In order to complete the tautomerization, the dissociated phenol rotates around the dihedral angle $C1-O_{ph}-M-O8$ to decrease the distance between H_{ph} and $C2$, and to favor the transfer that produces the final tautomer. Previously, we have observed that this rotation has the lowest barrier along the tautomerization pathway with 12 kJ/mol. The rotation avoids the regeneration of phenol by placing the molecule in an unfavorable orientation to retrieve H_{ph} from O8. Hence, we did not examine the value of the rotation barrier here, assuming it is also lower than the transfer of H_{ph} and we focused instead on the geometrical optimization of phenol upon rotation and formation of the tautomer.

Figure 10 shows the optimized geometries after the rotation of phenol around the dihedral angle $C1-O_{ph}-M-O8$. The binding free energy strengthened by 7 kJ/mol for Sc while remaining unchanged for Fe and Ga. The distance $C2-H_{ph}$ decreased to 2.503, 2.335, and 1.986 Å for Sc, Fe and Ga, respectively. These short separations between H_{ph} and the aromatic ring caused increments in the O8–H_{ph} bond by 0.008–0.024 Å (see Figure 10). We associated these increments with the perturbation that the electron-rich π cloud of phenol exerts on H_{ph}. We have observed a similar elongation of up to 0.031 Å for the O8–H_{ph} bond when the adsorption takes place on the three-coordinated Al-substituted T9 site. The final step of the tautomerization of phenol involves the breaking of the O8–H_{ph} bond and the H_{ph} transfer to C2, weakening the adsorption on the Lewis acid sites (see Figure 8). The binding free energy remained negative only for Sc, while increasing to +10 (+4 with the +U approach) and +25 kJ/mol for Fe and Ga, respectively. In the gas phase, the tautomer is highly unstable when compared to phenol, hence it should be stabilized on the Lewis site in order to span its lifetime long enough to go through further hydrogenation; in this regard, Sc is the best candidate among the three substituents discussed here. The energy barrier for the transfer of H_{ph} to C2 showed the smallest value for Sc with 32 kJ/mol, followed by Ga and Fe with 35 and 47 kJ/mol, respectively. The inclusion of the +U correction on Fe decreased the barrier by only 6 kJ/mol compared to the noncorrected one, showing a value of 41 kJ/mol. On Sc, this activation energy is 5 kJ/mol larger than on Al, which is still distinct metal centers. In TS1, H_{ph} was at an intermediate position between O_{ph} and O8, at no more than 1.31 Å away from either of the two O atoms. This range of distances was achieved by the movement of the phenol molecule toward the O8 atom, which shortened the O8–O_{ph} distance and distorted the metal-centered tetrahedron. After dissociation, the bond length O8–H_{ph} remained between 0.973 and 0.976 Å, which increased the distance between O8 and the metal substituents above 2.0 Å. As a consequence of the H_{ph} transfer, the O_{ph}–C1 bond was shortened by 0.047–0.061 Å, depending on the metal substituent.

Figure 8. Binding free energies along the tautomerization pathway for the three Lewis centers: Sc (black line), Fe (red line), Fe with the +U correction (green), and Ga (blue line). The barrier and reaction energies for the dissociation of phenol (TS1) and the formation of the final tautomer (TS2) are shown within parentheses. The horizontal dashed line marks the reference energy (shifted to zero), constituted by the bare Lewis acid site and a molecule of phenol in the gas phase. Close-ups showing relevant structural features along the pathway are presented at the bottom of the graph. Important O atoms are represented in red, C atoms in dark gray, H atoms in white, metal substituent in light gray, and Si by orange sticks.

Figure 9. Optimized geometries after the rotation of phenol using the structures after the dissociation of phenol in Figure 9 as input geometries: (a) Sc, (b) Fe, and (c) Ga. Important O atoms are represented in red, C atoms in dark gray, H atoms in white, and Si by orange sticks. Relevant interatomic distances are shown for each geometry.

Figure 10. Optimized structures after the rotation of phenol around the dihedral angle C1–O_{ph}–M–O8 using the structures after the dissociation of phenol shown in Figure 9 as input geometries: (a) Sc, (b) Fe, and (c) Ga. Important O atoms are represented in red, C atoms in dark gray, H atoms in white, and Si by orange sticks. Relevant interatomic distances are shown for each geometry.
reversible at relatively low temperatures. Likewise, the equivalent C–Hph combination for phenol and m-cresol mediated by the metal surfaces Pt(111), Pd(111), and Ru(0001) has higher activation energies, with values ranging from 63 to 93 kJ/mol. On these extended metallic surfaces, the Hph atom and dissociated phenol are more strongly stabilized by multiple interactions with the surface metal atoms, which increases the energy of the C–Hph bond formation compared to the zeolite Lewis acid sites, where only the highly polarized O8–Hph bond needs to be broken.

Figure 11 shows the optimized geometries of transition states (TS2) and products for the transfer of Hph to C2. In the calculated energy barrier for the water-assisted tautomerization of phenol at the Ru=TiO2(110) interphase is 37 kJ/mol, which is within the range of our calculated activation energies for the Hph transfer. We have not explicitly considered the effect of solvents on the tautomerization mechanism of phenol at the Lewis acid sites, but we could hypothesize that, once phenol is adsorbed on the Lewis acid site, water could facilitate the tautomerization by simultaneously accepting the phenol proton, while donating its own to one of the carbon atoms at ortho positions. This step would effectively reduce the activation energy of the hydrogen hopping. However, this suggestion considers a single water molecule only, whereas more complex mechanisms could be devised by adding more molecules to the system. Only the explicit treatment of the solvent would allow us to draw more specific conclusions. This is beyond the scope of the current study, but will be considered in future work.

4. CONCLUSIONS

We have performed density functional theory calculations in order to investigate the proficiency of three-coordinated Lewis acid sites in zeolite MFI to catalyze the tautomerization of phenol. The Lewis acid site was formed from the dehydration of the metal-substituted silanol group at the T9 site exposed at the external (010) surface of the zeolite. Three different metals, with formal charge 3+, were used to replace silicon in the T9 site: scandium, iron, and gallium. We have shown that phenol is able to substitute water on the Lewis site once the dehydration of the silanol group has taken place.

The tautomerization is conceived as a three-step process consisting of (i) dissociation of the Oph–Hph bond of phenol and the Hph transfer to one of the framework O atoms binding the metal, (ii) rotation of the molecule to reduce the distance between the Hph atom bound to the zeolite and one of the ortho C atoms of phenol, and (iii) transfer of the Hph atom from the zeolite to the phenoxide to form the C=Hph bond. The entire process has activation energies below 47 kJ/mol for any of the three dopants. In particular, the Sc gives the strongest binding free energy for phenol, the lowest activation energies during the tautomerization, and is the substituent that better stabilizes the final tautomer, followed by Fe and Ga. Furthermore, the three metals show a lower activation energy than Al for the first step of the tautomerization process, by 9 to 16 kJ/mol, although they simultaneously raise the barrier for the second Hph transfer, with increments that range from 5 kJ/mol for Sc to 20 kJ/mol for Fe (without +U correction). These results indicate that Sc could potentially be used as a dopant in zeolites with a promising performance to promote the tautomerization of phenol.

The utilization of the +U approach to describe the on-site Coulomb repulsion of the 3d electrons of Fe does not significantly modify quantitative results, which are mainly limited to the increase of the binding energy of phenol by no more than 10 kJ/mol. Finally, we have observed that the PBE functional is suitably accurate to describe the analyzed tautomerization pathway, compared to other functionals of higher hierarchy within the density functional theory, i.e., TPSS, rev-TPSS, and HSE06.

ASSOCIATED CONTENT

Figure 11. Optimized structures of (a–c) transition states (TS2 in Figure 10) and (d–f) products of the final step of the tautomerization of phenol using the configurations shown in Figure 10 as input geometries: (a, d) Sc, (b, e) Fe, and (c, f) Ga. Important O atoms are represented in red, C atoms in dark gray, H atoms in white, and Si by orange sticks. Relevant interatomic distances are shown for each geometry.
Binding energy of phenol on the Lewis acid site and energy barrier for the hydrogen transfer from phenol to the zeolite calculated by the functionals PBE, PBEsol, TPSS, rev-TPSS, and HSE06 and the electronic energy, thermal energy, enthalpy, entropy, and free energy of all chemical reactions reported in this work (PDF)

AUTHOR INFORMATION

Corresponding Author
(N.H.d.L.) E-mail: deleewnn@cardiff.ac.uk.

ORCID

Carlos Hernandez-Tamargo: 0000-0002-1413-5059

Nora H. de Leeuw: 0000-0002-8271-0545

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University, and HPC Wales. Via our membership of the U.K.’s HEC Materials Chemistry Consortium, which is funded by EPSRC [grant number: EP/L000202], this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). CEHT acknowledges EPSRC [grant number: EP/K009567/2] for funding and NHDL, thanks the Royal Society for an Industry Fellowship. All data created during this research is openly available from the University of Cardiff Research Portal at http://doi.org/10.17035/d.2017.0031746452.

REFERENCES

(30) Hernandez-Tamargo, C. E.; Roldan, A.; De Leeuw, N. H. DFT Modeling of the Adsorption of Trimethylphosphine Oxide at the

(91) Ryder, J. A.; Chakrabarty, A. K.; Bell, A. T. Density Functional Theory Study of Proton Mobility in Zeolites: Proton Migration and
