Targeting GNE myopathy: A dual prodrug approach for the delivery of N-acetylmannosamine 6-phosphate.

Chiara Morozzi¹, Jana Sedláková¹, Michaela Serpi¹, Marialuce Avigliano¹, Rosangela Carbajo², Lucia Sandoval², Yadira Valles-Ayoub², Patrick Crutcher³, Stephen Thomas³, Fabrizio Pertusati¹*

¹School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, King Edward VII Avenue, Cardiff CF10 3NB, U.K.
²FirmaLab Bio-Diagnostics, 21053 Devonshire St, 106, Chatsworth, CA 91311, USA
³Cerecor Inc., 540 Gaither Rd, Suite 400, Rockville, MD 20850, USA

Abstract

ProTides comprise an important class of prodrugs currently marketed and developed as antiviral and anticancer therapies. The ProTide technology employs a phosphate masking groups capable of providing more favorable drug-like properties and an intracellular activation mechanism for enzyme-mediated release of a nucleoside monophosphate. Herein we describe the application of phosphoramidate chemistry to 1,3,4-O-acetylated N-acetylmannosamine (Ac₃ManNAc) to deliver ManNAc-6-phosphate (ManNAc-6-P), a critical intermediate in sialic acid biosynthesis. Sialic acid deficiency is a hallmark of GNE myopathy, a rare congenital disorder of glycosylation (CDG) caused by mutations in GNE that limit the production of ManNAc-6-P. Synthetic methods were developed to provide a library of Ac₃ManNAc-6-phosphoramidates that were evaluated in a series of studies for their potential as a treatment for GNE myopathy. Prodrug 12b showed rapid activation in a carboxylesterase (CPY) enzymatic assay and favorable ADME properties, while also being more effective than ManNAc at increasing sialic acid levels in GNE-deficient cell lines than ManNAc. These
results provide a potential platform to address substrate deficiencies in GNE myopathy and other CDGs.
Introduction

Congenital Disorders of Glycosylation (CDGs), first described as Carbohydrate Deficient Glycoprotein Syndrome by Jaeken et al. in 1980, are a group of rare, inherited, metabolic diseases characterized by defects in protein or lipid glycosylation. CDGs primarily affect children and can vary in clinical presentation from disabling to life-threatening conditions. Disease manifestations typically impact multiple organ systems, including liver and neurological involvement. Over 100 unique CDGs have been identified to date and the number continues to increase due to advances in the availability and efficiency of diagnostic techniques, namely genome sequencing.

Among the CDGs, Hereditary Inclusion Body Myopathy (HIBM), also known as GNE myopathy (GNEM), is an autosomal recessive neuromuscular disorder characterized by symptoms that typically appear during the third decade of life, starting with skeletal muscle atrophy and weakness that slowly progresses to a significant physical disability. GNEM is caused by biallelic mutations in the GNE gene resulting in loss-of-function of uridine 5'-diphosphate-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase and N-acetylmannosamine (ManNAc) kinase (GNE), a key enzyme in sialic acid biosynthesis (Figure 1). Sialic acids decorate cell surfaces as terminal component of glycoprotein and glycolipids, where they mediate or modulate a variety of physiological and pathological processes like signal transduction, cell adhesion, system embryogenesis, cancer metastasis or viral and bacterial infections. GNE is a bifunctional enzyme capable of catalyzing epimerization of UDP-GlcNAc at the 2-position of the hexose ring to afford ManNAc and subsequent phosphorylation at the 6-position to afford ManNAc-6P (Figure 1). As the rate-limiting step in sialic acid biosynthesis, GNE deficiency results in decreased sialic acid production and consequent hyposialylation of glycoproteins, particularly in muscle tissue. The prevalence of GNEM is estimated to be roughly 1 to 9 in 1,000,000 people. More than 140 mutations in GNE have been...
associated with GNE myopathy and can compromise the enzymatic activity of either catalytic
domain. Each domain is functional when expressed separately, but evolution of some
intramolecular dependency is exemplified by mutations causing reductions in both enzyme
activities to different extents in a manner independent of domain localization.

Figure 1. Sialic acid biosynthetic cascade: the point of mutation of UDP-GlcNAc 2-
epimerase/ManNAc kinase, responsible for the GNE myopathy, is highlighted in yellow.

To date, there is no approved therapy for GNEM. Palliative treatments, such as
physiotherapy, analgesic drugs, mobility devices and psychological support are available to
alleviate patient symptoms and improve quality of life. Therapeutic approaches have focused
on substrate replacement paradigms seeking to re-establish available pools of intracellular
sialic acid by supplementation of aceneuramic acid (Neu5Ac) or its precursor, ManNAc.11 Both compounds have proven capable of restoring sialic acid biosynthesis and preventing or arresting disease progression in mouse models of GNEM.12 ManNAc is currently in late-stage clinical trials to assess its safety and efficacy in patients with GNE myopathy,13, 14 whereas aceneuramic acid, although safe and well-tolerated, failed to demonstrate efficacy in a Phase 3 double-blind, placebo-controlled trial and was subsequently discontinued.15 Intravenous administration of immunoglobulin (IVIG) and gene therapy are other therapeutic options. Unfortunately, IVIG, although containing eight micromoles of sialic acid per gram, was not capable of improving muscle sialylation in GNE myopathy patients.10 Correction of GNE function through liposomal delivery of a wild-type GNE gene demonstrated increased production of sialic acid \textit{in vitro} and \textit{in vivo}. However, data supporting the continued stabilization of decline in muscle strength in a single patient are limited and no follow-up studies have been reported thus far.16 Although ManNAc presents an intriguing therapeutic approach, poor intracellular transport and feedback inhibition necessitates high daily dosage (from 3g to 12g).13, 17 No dose-response correlation was observed after repeated administration in patients with GNEM. Furthermore, patients with loss-of-function mutations in the ManNAc kinase domain of GNE may not be capable of phosphorylating ManNAc, thereby limiting restoration of sialic acid production. A study conducted in a GNE myopathy mouse model demonstrated that the lipophilic ManNAc analog \textit{O}-tetra-acetylated \textit{N}-acetylmannosamine (Ac₄ManNAc) was more effective at increasing sialylation and preventing the myopathic phenotype when compared to natural sialic acid metabolites after oral administration.18 Ac₄ManNAc is a prodrug of ManNAc and can more readily cross cellular membranes via passive diffusion, providing evidence that synthetic sugar analogs may be a practical consideration for the design of therapeutic agents for GNE myopathy. However, Ac₄ManNAc still requires phosphorylation upon release of ManNAc. To
 overcome the deficiency in both UDP-GlcNAc-2-epimerase and ManNAc kinase enzyme activity observed in GNE myopathy, administration of ManAc-6-P could be envisaged as an ideal substrate replacement strategy. Due to the high polarity of the phosphate moiety, a prodrug approach would be required to overcome poor cell permeability and mitigate de-phosphorylation by extracellular phosphatases.

Prodrug approaches for delivering phosphate carbohydrate analogs have been reported previously. Meyer et al designed cyclosaligenyl prodrugs of O-tetra-acetylated mannose-1-phosphate\(^1\) whereas Eklund with co-workers synthesized two mannose-1-acetoxymethylated phosphates.\(^2\) Both classes of phosphate prodrugs were designed for the treatment of phosphomannomutase 2 (PMM2) deficiency, characteristic of the PMM2-CDG condition also known as CDG-Ia. Despite encouraging results demonstrating intracellular delivery of the mannose-1-monophosphate capable of correcting the CDG-Ia phenotype \textit{in vitro}, these approaches were not explored further, most likely due to toxicity and stability concerns. To date, no additional studies have been reported.

Our laboratory was previously successful in applying phosphoramidate chemistry to \(N\)-acetyl glucosamine for the treatment of osteoarthritis\(^21,22\) and to various analogs of deoxyribose-1-phosphate as potential anti-HIV agents.\(^23\) The \(N\)-acetylglucosamine phosphoramidate prodrugs generated in these studies showed acceptable biological stability and prodrug activation in chondrocyte cell lysate. In particular, the \((L)\)-proline amino acid-containing \(O-3/O-4\) phosphoramidates demonstrated good activity at non-cytotoxic concentrations in human cartilage \textit{ex vivo}, exceeding that of \(N\)-acetylglucosamine and emerging as promising candidate for further development for the treatment of osteoarthritis and other musculoskeletal diseases.

Among many existing phosphate prodrug strategies,\(^24\) the ProTide approach has been successfully applied to nucleosides\(^25,26\) as evidenced by the development and approval of the currently marketed drugs Sofosbuvir\(^27\) and Tenofovir Alafenamide (TAF)\(^28\) (Figure 2). In
addition, in collaboration with our laboratories, NuCana plc is currently pioneering the ProTide technology in oncology, with the clinical candidates NUC-1031 (Acelarin),29 and NUC-3373,30 respectively in Phase III and Phase I studies for patients with advanced solid tumors (Figure 2). The phosphoramidate technology more recently was also exploited for the delivery of non-nucleoside derivatives.31

Figure 2. FDA-approved antiviral ProTides, Sofosbuvir and TAF and anticancer clinical candidates ProTides, NUC-1031 and NUC-3373.

Given the importance of phosphoramidate prodrug technology in recent drug discovery, we revived our interest in its application toward the delivery of ManNAc-6-P as a novel approach to the treatment of GNE myopathy. Rationally designed ManNAc phosphoramidate prodrugs could enable the bypass of deficient GNE enzyme observed in GNEM patients by directly providing a source of intracellular ManNAc-6-P. Our approach sought to optimize drug-like properties of ManNAc phosphoramidates to improve upon the low permeability and plasma stability of ManNAc-6-P. In this work, we report the design, synthesis and evaluation of a family of ManNAc-6-P and Ac\textsubscript{3}ManNAc-6-P ProTide analogues, including ADME assays, enzymatic activation studies and \textit{in vitro} assessment of sialic acid production in cell-based models of GNE myopathy. These data serve as proof-of-concept that the ProTide platform is a practical approach to substrate replacement therapies for GNE myopathy and potentially for
other CDGs characterized by deficiencies in phosphorylated metabolites.

RESULTS AND DISCUSSION

Chemistry

Our synthetic efforts began with the synthesis of ManNAc-6-phosphoramidates. We initially envisaged the application of a synthetic procedure previously reported by our group for the preparation of glucosamine phosphoroamidates as feasible approach. Surprisingly, when ManNAc (1) was coupled with different phosphorochloridates in the presence of N-methylimidazole (NMI), the formation of a complex mixture of by-products was always observed, from which no desired compound could be isolated.

We then chose to explore an alternative synthetic route, involving protection of the anomeric hydroxyl prior to attempting the coupling reaction. The benzyl group was selected as the protecting group given its removal via hydrogenation is highly compatible with the phosphoramidate motif, as evidenced by a similar procedure employed by our group in the synthesis of N-acetylglucosamine phosphoramidate derivatives. ManNAc (1) was fully acetylated (acetic anhydride in pyridine), and selectively benzylated at the anomeric position with benzyl alcohol and a catalytic amount of BF₃·OEt₂. Subsequent O-deprotection of the acetylated alcohols gave compound 2 as exclusively the α-anomer in 87% yield over three steps (Scheme 1). Pleasingly, the coupling of phosphorochloridates (3a, 4a-c) with compound 2 was efficient, affording exclusively O-6 phosphoramidate derivatives 5a and 6a-c (as a mixture of Sₚ and Rₚ diastereoisomers) with the same O-6 regioselectivity as previously observed for the N-acetyl glucosamine series. Finally, hydrogenation (10% Pd/C and H₂) of compound 5a in methanol proceeded smoothly and after 12 hours both MS and ¹H-NMR analysis of the crude reaction mixture revealed the presence of the desired product with concomitant disappearance of the starting material. Disappointingly, attempts to isolate pure compound 7a via traditional purification techniques (silica gel chromatography and/or reverse
phase HPLC) were unsuccessful due to partial degradation of the compound. When repeating
the synthesis with phosphorochloridates bearing different promoieties, purification following
hydrogenation consistently led to the observation of partial degradation and hindered isolation
of the desired product. Surprised by these results, we decided to further investigate the
degradation pathway via mass spectrometry. LC-MS analysis of 7a following purification
indicated the presence of the desired compound (m/z 490) and a side product showing a peak
at m/z 419 [M+Na]⁺ consistent with structure IV (Figure 3). Lack of UV absorbance in the LC-
MS traces for this peak and evidence of phenol release observed in the ¹H-NMR spectra of the
purified material further supported this hypothesis. LC-MS analysis of other phosphoramidates, whose purification was attempted after hydrogenation, led to similar results
that indicated the formation of compound IV-like structures (m/z values were in agreement
with the amino acid ester present in the parent compound). In addition, ³¹P-NMR of these
mixtures showed two peaks at ~9 ppm, indicative of a chiral phosphorodiamidate as in
compound IV (Figure 3).

Scheme 1. Phosphoramidate synthesis through 1’-O-Bn-N-acetylmannosamine. °Reagents and
conditions: (i) Ac₂O, DMAP, Py, rt, 12h; (ii) BnOH, BF₃OEt₂ cat., ACN, 80 °C, 3h; (iii)
NaOMe cat. MeOH, rt, 5h; (iv) NMI, THF/pyridine 4/2 v/v, rt, 12h; (v) H₂, 10% Pd/C, MeOH,
A plausible mechanism for the formation of by-product IV is proposed in Figure 3. Deprotection of the benzyl group at the anomeric position leads to the formation of both α- (I) and β-anomers (III) in equilibrium with an open-chain form (II). Since the 1-O-benzyl phosphoramidates were formed exclusively as α anomers and proved to be stable, we then hypothesized that only the β anomer of II could participate in the degradation pathway. The phosphorus atom of the β anomer could be particularly susceptible to intramolecular nucleophilic attack by the nitrogen atom of the sugar, leading to the corresponding cyclic adduct IV. Interestingly, this side reaction was not previously observed with any of the N-acetyl-glucosamine phosphoramide derivatives. The difference in stereochemistry at the 2’-position between GlcNAc and ManNAc phosphoramidates may be responsible for the divergence in reactivity toward the intramolecular cyclization process, further supporting the proposed mechanism. This could also justify the difficulty in obtaining the ManNAc phosphoramidate series from O-unprotected ManNAc in our earlier attempts. Although it would appear reasonable to assume that the phosphorous atom of the more flexible open chain structure II could undergo the same intramolecular nucleophilic attack by the nitrogen atom, we have ruled out this possibility given such degradation was not observed with N-acetyl glucosamine derivatives. Further studies to confirm this proposed mechanism are in progress.
Figure 3. Proposed mechanism for the formation of the side product IV during the purification step.

Efforts to block the attack of the nucleophilic nitrogen atom onto the phosphorus center by introducing hindered amino acid esters in conjunction with bulkier aryloxy moieties failed and degradation was still observed. We then sought to stabilize the phosphoroamidate moiety by introducing a para-methoxy functionality within the aryl group, thereby decreasing the electrophilicity of the phosphorous atom and making it less susceptible to nucleophilic attack. This resulted in a decreased rate of by-product formation and enabled isolation of the desired products (8a-c) (Scheme 1). However, these compounds were not pursued further as possible candidates due to unsatisfactory ADME properties, namely poor cell permeability due to the presence of several free hydroxyl groups.

Given these results, we turned our attention to the preparation of 1,3,4-\textit{O}-triacetylated ManNAc-6-phosphoramidates, which we envisaged as targets with more appropriate drug-like properties. The acetyl protecting groups would further increase the lipophilicity of the compounds while allowing for the possibility of \textit{in vivo} cleavage by plasma esterases following absorption from the gut, thus acting as a dual prodrug. Additionally, 1-\textit{O}-acetylation could stabilize the prodrug structure and prevent the cyclization side-reaction. 1,3,4-\textit{O}-triacetylated...
ManNAc (11) was prepared according to a literature procedure34 outlined in Scheme 2. ManNAc (1) was tritylated, peracetylated and selectively deprotected at the O-6 position to yield compound 11 as a mixture of α and β anomers (1:0.3), which was then coupled with phosphorochloridates 3a-j in the presence of Grignard reagent32 to afford compounds 12a-j as a mixture of S_p and R_p diastereoisomers of α and β anomers. To avoid the formation of regioisomeric phosphoramidates arising from acetyl migration,35,36 low reaction temperature was required during phosphoramidate formation.

\textbf{Scheme 2.} Synthetic strategy for the preparation of 1,3,4-O-triacetylated ManNAc phosphoramidates. Reagents and conditions: (i) Pyridine, rt, 12h and 60 °C, 1h; (ii) Pyridine, 0 °C to rt, 12h; (iii) glacial acetic acid, 60 °C, 2h; (iv) 1M t-BuMgCl, THF, 0 °C to rt, 12h.

A small, rationally designed library of Ac$_3$ManNAc phosphoramidates was built based on predicted log P values and existing knowledge of prodrug activation kinetics, using different amino acids and ester moieties to sample a diverse set of analogs (Table 1). Furthermore, since our previous report22 demonstrated that proline-based ProTides of N-acetyl glucosamine were particularly effective in cell-based models of osteoarthritis, we prepared the proline derivative 12c.
<table>
<thead>
<tr>
<th>Compound ID</th>
<th>Ar</th>
<th>R</th>
<th>R<sup>1</sup></th>
<th>R<sup>2</sup></th>
<th>log P<sup>a</sup></th>
<th>Yield<sup>b</sup> (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12a</td>
<td>Ph</td>
<td>CH<sub>3</sub></td>
<td>iPr</td>
<td>H</td>
<td>1.32</td>
<td>60</td>
</tr>
<tr>
<td>12b</td>
<td>Ph</td>
<td>CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Et</td>
<td>H</td>
<td>1.94</td>
<td>16</td>
</tr>
<tr>
<td>12c</td>
<td>Ph</td>
<td>(CH<sub>2</sub>)<sub>3</sub>Pro</td>
<td>Met</td>
<td>H</td>
<td>0.92</td>
<td>19</td>
</tr>
<tr>
<td>12d</td>
<td>Naph</td>
<td>H</td>
<td>Met</td>
<td>H</td>
<td>1.30</td>
<td>49</td>
</tr>
<tr>
<td>12e</td>
<td>Ph</td>
<td>CH<sub>2</sub>Ph</td>
<td>Et</td>
<td>H</td>
<td>2.28</td>
<td>45</td>
</tr>
<tr>
<td>12f</td>
<td>Naph</td>
<td>CH<sub>3</sub></td>
<td>Bn</td>
<td>H</td>
<td>2.95</td>
<td>47</td>
</tr>
<tr>
<td>12g</td>
<td>Ph</td>
<td>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Bn</td>
<td>H</td>
<td>2.64</td>
<td>39</td>
</tr>
<tr>
<td>12h</td>
<td>Ph</td>
<td>CH<sub>3</sub>CH<sub>2</sub>CHCH<sub>3</sub></td>
<td>Et</td>
<td>H</td>
<td>1.95</td>
<td>34</td>
</tr>
<tr>
<td>12i</td>
<td>Ph</td>
<td>CH<sub>3</sub></td>
<td>Bn</td>
<td>CH<sub>3</sub></td>
<td>2.38</td>
<td>64</td>
</tr>
<tr>
<td>12j</td>
<td>Ph</td>
<td>CH<sub>2</sub>CH(CH<sub>3</sub>)<sub>2</sub></td>
<td>Bn</td>
<td>H</td>
<td>3.04</td>
<td>61</td>
</tr>
</tbody>
</table>

1. **Table 2.** Library of Ac₃ManNAc phosphoramidate prodrugs.
 Predicted log P calculated using SwissADME webservice.

2. Yield of the isolated compounds.

3. **Carboxypeptidase Activation Studies**

4. The ProTide technology has proven to be a valuable strategy capable of delivering membrane-permeable nucleotide analogs intracellularly. Once across the cell membrane via passive diffusion, ProTides have been shown to undergo a series of enzymatic reactions leading to the release of the corresponding monophosphate analog. ManNAc phosphoramidates are believed to follow a similar activation sequence as depicted in Figure 4.
Figure 4. Proposed enzymatic activation mechanism for Ac3ManNAc phosphoramidates: a) carboxylesterase or carboxypeptidase catalyzed ester hydrolysis to metabolite A. Intramolecular nucleophilic displacement of the aryloxy group provide the cyclic anhydride intermediate B. c) water-mediated hydrolysis of B to phosphoromonoamidate C. d) P-N bond cleavage mediated by HINT enzyme or by spontaneous hydrolysis.

To assess whether a carboxypeptidase-mediated activation mechanism to phosphoromonoamidate C is also operative with ManNAc phosphoramidates, compounds 12a-i (Scheme 2 and Table 2) were subjected to enzymatic studies by incubating each compound with carboxypeptidase Y (CPY, from Baker’s yeast) in 0.05 M Trizma buffer (pH = 7.6) in deuterated acetone, which allowed monitoring of reaction progress by 31P-NMR and LC-MS analyses. Almost all compounds showed activation of the promoiety with less than 50% of the parent phosphoramidates remaining 15 minutes following the addition of CPY. The only exception was 12c, which showed no activation (up to 24 hours). Figure 5 displays the 31P-NMR spectra for the enzymatic activation assays of compounds 12b and 12c. Although the exact reaction sequence cannot be established from these data alone (and, consequently, the prodrug half-life), we can assert that compound 12b demonstrates rapid conversion into a species showing two signals at 6.82 and 7.02 ppm. On the other hand, replacement of leucine...
with proline (12b to 12c) completely abolishes prodrug activation under identical incubation conditions, as the minor change from ethyl to methyl ester moiety at R⁴ is unlikely to cause such a stark contrast in susceptibility to carboxypeptidase-mediated activation.

Figure 5. Deconvoluted ³¹P-NMR spectra of phosphoroamidates 12b (A) and 12c (B) over time after enzymatic incubation with Carboxypeptidase Y. Conditions: 202MHz, [D₆]acetone, 0.05M Trizma buffer, pH=7.6.

Crude enzymatic reaction mixture of 12b was further analyzed by LC-MS confirming the presence of intermediate C (see Figure 31 in Supporting Information). To independently confirm the real structure of intermediate C (two ³¹P-NMR peaks at 6.82 and 7.02 ppm), a sample of this compound was prepared synthetically. Compound 12j was debenzylated via catalytic hydrogenation to the corresponding acid, which formed the expected intermediate C as a triethyl ammonium salt (13) (Scheme 3) after treatment with 0.1 M triethylammonium bicarbonate buffer. Comparison of LC-MS (t_R = 2.5, 3.7 min) and ³¹P-NMR (7.02, 6.97 ppm) data for compound 13 and those obtained from incubation of compound 12b confirmed the effective activation of 12b into the corresponding phosphoromonoamidate C. This result demonstrates for the first time that carbohydrate phosphoramidates undergo a similar activation pathway observed for nucleoside phosphoramidates. In addition, these studies suggest that
even non-nucleoside phosphoramidates are metabolized intracellularly and can serve as a
substrate for monophosphate formation via enzymatic (i.e. HINT1) or spontaneous activation,
but the selection of the appropriate amino acid side chain is critical towards enabling the
activation mechanism.

Scheme 3. Synthesis of compound 13. Reagents and conditions: (i) H₂, 10% Pd/C, EtOH/EtOAc, 2h at rt; (ii) 0.1 M triethylammonium bicarbonate, 5 min at rt.

ADME Evaluation

Having established that these compounds can readily undergo enzymatic activation, we
decided to evaluate several Ac₃ManNAc phosphoramidates for ADME properties to select lead
candidates for cell-based models of GNE myopathy.

As previously mentioned, substrate replacement for GNE myopathy with highly polar small
molecules were hampered by poor passive diffusion across cellular membranes. While the
phosphoramidate promoiety increases cell permeability due to increased lipophilicity, this
effect must be balanced with adequate aqueous solubility to ensure proper compound
dissolution and absorption. Therefore, compounds 12b-e were screened for Caco-2 cell
permeability, kinetic solubility, human plasma stability and metabolic stability as key
parameters that would increase the likelihood of success in cell-based assays. The results of
these studies are displayed in Table 3.
<table>
<thead>
<tr>
<th>Compound ID</th>
<th>P<sub>app</sub> (B-A/A-B) (10<sup>-6</sup> cm/s)</th>
<th>Kinetic Solubility (μM, pH 7.4)</th>
<th>Human Plasma Stability (% remaining at 2 h)</th>
<th>HLM (T<sub>1/2</sub>, min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12b</td>
<td>0.8 / 1.5*</td>
<td>125</td>
<td>20</td>
<td>1.3</td>
</tr>
<tr>
<td>12c</td>
<td>0.1 / 0.6*</td>
<td>152</td>
<td>15</td>
<td>1.4</td>
</tr>
<tr>
<td>12d</td>
<td>0.3 / 0.6*</td>
<td>129</td>
<td>8.3</td>
<td>1.2</td>
</tr>
<tr>
<td>12e</td>
<td>0.3 / 0.4*</td>
<td>124</td>
<td>9.8</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 3. ManNAc phosphoroamidates ADME properties. *with pgp/bcrp inhibitor GF120918 (10 μM). Low permeability control was nadolol (P_{app} = 0.09) and high permeability control was metoprolol (P_{app} = 13.6). Efflux control was digoxin, and efflux ratio reduced from 374 to 1.69 in the presence of GF120918.

Compound 12b showed improved permeability based on the Caco-2 assay relative to all other compounds. Compound 12c had comparable permeability to 12d and 12e but showed increased plasma stability. Pleasingly, each compound showed acceptable solubility in aqueous environment at physiological pH. Hydrolysis of ester side chains via plasma esterases unsurprisingly causes rapid degradation of the parent compound, and the same phenomenon holds true for metabolic stability when incubated with human liver microsomes (HLMs) as evidenced by short half-lives of each compound. Aside from displaying acceptable ADME properties, 12c did not demonstrate activation in the aforementioned carboxypeptidase assay, potentially providing a negative control for assessing prodrug efficacy in cell-based assays models of GNE myopathy. Based on the results of the ADME screening, as well as the enzymatic activation data, compounds 12b and 12c were selected for further testing.

Sialic Acid Quantification in Cell-Based Models of GNE Myopathy

The evaluation of prodrugs (12b and 12c) to rescue sialic acid deficiencies in vitro was
conducted using two different cell lines: Lec3 CHO cells and GNEM patient-derived myoblasts. Both cell types present with reduced sialic acid levels due to mutations in GNE that mimic the hyposialylation defects observed in patients with GNE myopathy. In particular, Lec3 mutant CHO cells lack any detectable GNE activity\(^{38}\), whereas the patient-derived myoblasts contained a D378Y mutation that cause an 80% reduction in GNE activity.\(^9\) Compounds 12b and 12c were initially assessed for cytotoxicity in GNE mutant cell lines relative to ManNAc using Trypan Blue staining as an assay for cell viability after 48 hours incubation. At 0.1 mM, 12b and 12c induced no observable difference in cell viability relative to controls and at 1 mM, cell viability was comparable to 1 mM ManNAc (see Supporting Info, Figure 32). Sialic acid quantification was then carried out in duplicate at two concentrations to assess dose-response in GNE-deficient cells after 48-hour incubation with 0.1 mM and 1 mM 12b or 12c, 1 and 100 mM for ManNAc, and a negative control with media only. We focused specifically on assessing total and free sialic acid production in membrane protein fractions, as sialic acid availability in cell membranes plays a key role in promoting muscle growth, structure and integrity, a critical issue for GNE myopathy patients. Although clinical studies with therapies like aceneuramic acid and ManNAc supplementation have shown increases in plasma sialic acid levels, it is not clear that these data have correlated with increases in sialic acid levels within tissues.

As shown in Figure 6, 12b induced dose-dependent increases in total and free sialic acid levels in membrane protein fractions in both Lec3 CHO cells and GNEM patient-derived myoblasts. Given the lack of activation observed with 12c in the carboxypeptidase assay, the compound unsurprisingly produced no effects on sialic acid levels in Lec3 CHO cells. The effects of 12b were more pronounced than ManNAc, producing >30-fold and >50-fold more sialic acid in Lec3 CHO cell and GNEM patient-derived myoblasts, respectively, at 1 mM.
Figure 6. Sialic acid levels in membrane protein fraction. Sialic acid levels were determined using Sialic Acid Assay kit on isolated membrane protein fractions from Lec3 CHO cells (A) and GNEM patient-derived fibroblasts (B) incubated with 12b, 12c, ManNAc for 48 hours and normalized to control (media only) (n = 2, +/- SEM).

CONCLUSION

A substrate replacement paradigm was applied to the design of novel ProTide prodrugs of ManNAc-6-P as a therapeutic approach for GNE myopathy. A focused library of ManNAc-6-P phosphoramidates was synthesized and evaluated for ADME properties to select lead compounds for profiling in cell-based models of GNE myopathy. Two leads, 12b and 12c, displayed the most promising ADME properties, although 12c did not show activation in a carboxypeptidase assay. The demonstration and independent confirmation of carboxypeptidase-mediated activation of 12b serves as the first example of a non-nucleoside phosphoramidate activation mechanism. The contrast in prodrug activation between 12b and 12c further emphasizes the importance of selecting the appropriate amino acid side chain for the ProTide moiety. Compounds 12b and 12c were evaluated in two separate GNE-deficient cell lines for their ability to increase sialic acid production in membrane protein fractions.
relative to ManNAc. Compound 12b produced >30-fold and >50-fold more sialic acid than ManNAc in Lec3 CHO cell and GNEM patient-derived myoblasts, respectively, at 1 mM. The extension of the ProTide platform to monosaccharide prodrugs presents an opportunity to explore therapeutic options for diseases due to the deficiency of sugar metabolites, such as the CDGs.

Experimental Section

General Experimental Information

All chemicals were purchased from Sigma-Aldrich and Carbosynth and used without any further purification. All 1H-NMR (500MHz), 31P-NMR (202MHz) and 13C-NMR (125MHz) spectra were recorded on a Bruker AVANCE III HD 500 MHz spectrometer at 25 °C. The deuterated solvent used were CDCl$_3$ and CD$_3$OD and the spectra were calibrated using their residual peaks: CDCl$_3$, 1H: δ=7.26 ppm; 13C: δ=77.36 ppm and CD$_3$OD, 1H: δ=3.34 ppm; 13C: δ=49.86 ppm. Chemical shifts (δ) are reported in parts per million (ppm) and coupling constants (J) in Hertz. The following abbreviations are used in the assignment of NMR signals: s (singlet), d (doublet), t (triplet), q (quartet), spt (septet), m (multiplet), br (broad), dd (doublet of doublets) and ddd (doublet of doublet of doublets). The signals in the 1H and 13C NMR spectra were assigned based on analysis of coupling constants and additional two-dimensional experiments (COSY and HSQC). Some peaks in all NMR analyses may be overlapped. Reactions followed by thin-layer chromatography (precoated aluminium-backed plates, 60 F254, 0.2 mm thickness, Merck, were visualized under short-wave ultraviolet light (254 nm) and/or via Pancaldi’s solution (molybdate ammonium cerium sulfate solution).

Chromatography purifications were performed through ISOLERA™ 3.0 BIOTAGE OS 852M both with the sample being loaded as a concentrated solution in the same eluent and pre-adsorbed on top of silica. Fractions containing the product were identified by TLC, combined,
and the solvent was removed in vacuo. HPLC analysis was carried out to confirm the purity of final compounds by using a Varian Pursuit XRs 5 C18 150 mm × 4.6 mm analytical column. All compounds tested had a purity of >95% as determined by HPLC at two different wavelengths (220 and 254 nm).

Low-resolution mass and LC-MS analyses were performed on a Bruker Daltonics MicroTof-LC instrument (atmospheric pressure ionization, electrospray mass spectroscopy) in either the positive- or negative-ion mode. MS parameters were optimized to the following: set capillary 4500 V, set end plate offset -500 V, set nebulizer 1.0 Bar, set dry heater 200 °C, set dry gas 8.8 l/min, set divert valve source. Full scan mass spectra were recorded over a range of m/z 50-3000.

Standard Procedures. For practical purposes, standard procedures are given. Any variations from these procedures are discussed individually and described in full.

Synthesis of (α)-(2R,3S,4R,5S)-5-Acetamido-2-(acetoxymethyl)-6-(benzyloxy)tetrahydro-2H-pyran-3,4-diyl diacetate (2): A solution of N-acetyl-D-mannosamine hydrochloride (45.21 mmol, 10.0 g) and DMAP (4.52 mmol, 0.55 g) in pyridine (200 mL) was reacted with acetic anhydride (43 mL) and stirred at rt for 12 h. The reaction mixture was diluted with DCM, washed with 1M HCl, NaHCO$_3$ and brine. The residue was concentrated in vacuo and purified by column chromatography eluting with DCM/CH$_3$OH (2:10) to afford tetra-acetylated-D-mannosamine as a yellowish oil (74 %) which was then dissolved in ACN (40 mL) followed the addition of benzyl alcohol (57.8 mmol, 6 mL) and BF$_3$Et$_2$O (1.83 mmol, 230 µL). The resulting mixture was heated at 80 °C and stirred for 12 h. Afterwards, the mixture was cooled down to rt, diluted with DCM (400 mL) and washed with NaHCO$_3$. The expected product was obtained after column chromatography purification eluted with Hexane/EtOAc (1:4) in 75 % yield. Final deacetylation was accomplished via treating the latter compound (2.29 mmol, 1.00
g) dissolved in anhydrous MeOH (50 mL) with a solution of NaOMe (0.23 mmol, 0.012 g) in
300 μL of dry CH₃OH under argon atmosphere. The resulting solution was stirred at rt for 5 h
and then Amberlite IR-120 hydrogen form was added leaving the mixture under stirring for
another 1 h. The mixture was then filtered through celite and the solvent was removed under
reduced pressure. The resulting solid was triturated with Et₂O and
further purified by column
chromatography on silica using EtOAc/MeOH (4:1) to obtain the final product (2) in 87% as
two anomers α and β anomers (0.62 g). White solid. ¹H-NMR (500 MHz, CDCl₃): δH 7.35-
7.28 (m, 5H, Ph), 4.81 (s, 1H, H-1), 4.64 (d, 1H, J = 11.7 Hz, CH₂aPh), 4.47-4.44 (m, 2H,
CH₂bPh and H-2), 4.11-4.09 (m, 1H, H-3), 3.95 (d, 1H, J = 10.8 Hz, H-4), 3.79-3.730 (m, 2H,
H-5, H-6), 3.61 (d, 1H, J = 9.4 Hz, H-6), 2.00 (s, 3H, OCOCH₃) ppm. MS (ES+): m/z 334.15
[M+Na]⁺
Standard Procedure 1. General Synthesis of Phosphorochloridate (3a-i/4a-c): A solution
of aryl dichlorophosphate (1 equiv) and an appropriate amino acid ester (1 equiv) in anhydrous
DCM under argon atmosphere was cooled down to -78 °C. Afterwards, Et₃N (2 equiv) was
added dropwise and the resulting mixture was stirred for 15 minutes at -78 °C. Then, the
reaction mixture was allowed to reach room temperature and left under stirring for 1 hour. The
solvent was removed under reduced pressure, the solid residue was redissolved in diethyl ether
and the resulting mixture was stirred under argon atmosphere for 20 min. The solid was filtered
off and the solvent was evaporated giving the pure compound as a colorless oil which was used
in the next step without further purification.

Isopropyl (chloro(phenoxy)phosphoryl)-L-alaninate (3a): Colorless oil; 99 %, 8.36 g. ³¹P-
NMR (202 MHz, CDCl₃, mixture of Rp and Sp diastereoisomers, a:b): δP 8.09 (1P), 7.71 (0.9)
ppm. ¹H-NMR (500 MHz, CDCl₃): δH 7.39-7.36 (m, 2H, CH-Ph), 7.28-7.22 (m, 3H, CH-Ph),
5.10-5.05 (m, 1H, CH(CH₃)₂), 4.16-4.08 (m, 1H, NHCHCO), 1.50 (dd, 3H, J = 2.4, 7.1 Hz,
NHCHCH₃), 1.30-1.26 (m, 6H, CH(CH₃)₂) ppm.

Ethyl (chloro(phenoxy)phosphoryl)-L-leucinate (3b): Prepared according to *Standard procedure 1* in 98%, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Colorless oil; 4.20 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 8.51 (1P), 8.27 (1P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₜ 7.38-7.34 (m, 2H, CH-Ph), 7.27-7.21 (m, 3H, CH-Ph), 4.34-4.19 (m, 3H, NH, OCH₂CH₃), 1.86 (spt, 0.5H, J = 6.6 Hz, CH₃(CH₃)₂), 1.79 (spt, 0.5H, J = 6.6 Hz, CH₃(CH₃)₂), 1.64-1.59 (m, 2H, CH₂CH), 1.30-1.26 (m, 3H, OCH₂CH₃), 0.96-0.93 (m, 6H, CH₃CH(CH₃)₂) ppm.

Methyl (chloro(phenoxy)phosphoryl)-L-prolinate (3c): Prepared according to *Standard procedure 1* in 80%, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Light yellow oil; 1.20 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 7.95 (1P), 7.76 (0.9P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₜ 7.38-7.34 (m, 2H, CH-Ph), 7.30-7.28 (m, 1H, CH-Ph), 4.50-4.46 (m, 0.5H, NHCH₂CO), 4.32-4.39 (m, 0.5H, NHCH₂CO), 3.73 (s, 1.5H, COOCH₃), 3.72 (s, 1.5H, COOCH₃), 3.58-3.49 (m, 2H, H-Pro), 2.28-2.19 (m, 1H, H-Pro), 2.15-2.08 (m, 1H, H-Pro), 2.07-1.95 (m, 2H, H-Pro) ppm.

Methyl (chloro(naphthalen-1-yloxy)phosphoryl)glycinate (3d): Prepared according to *Standard procedure 1* in 78%, yield as a mixture of two stereoisomers (SSₚ and SRₚ). Light yellow oil; 2.30 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 9.08 ppm. ¹H-NMR (500 MHz, CDCl₃): δₜ 8.06 (d, 1H, J = 8.3 Hz, CH-Naph), 7.87 (d, 1H, J = 7.7 Hz, CH-Naph), 7.72 (d, 1H, J = 8.3 Hz, CH-Naph), 7.60-7.52 (m, 3H, CH-Naph), 7.43 (t, 1H, J = 8.3 Hz, CH-Naph), 4.43-4.40 (br, 1H, NH), 4.00 (dd, 2H, J = 4.2, 9.7 Hz, NHCH₂CO), 3.80 (s, 3H, COOCH₃) ppm.

Ethyl (chloro(phenoxy)phosphoryl)-L-phenylalaninate (3e): Prepared according to *Standard procedure 1* in > 99%, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Colorless oil; 6.30 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 8.03 (1P), 7.96 (1P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₜ 7.39-7.15 (m, 10H, CH-Ar), 4.48-4.35 (m, 1H, NHCH₂CO), 4.23-4.16 (m, 23
Benzyl (chloro(naphthalen-1-yloxy)phosphoryl)-L-alaninate (3f): Prepared according to Standard procedure 1 in 96 %, yield as a mixture of two diastereoisomers (SSp and SRp).
Colorless oil; 7.2 g. 31P-NMR (202 MHz, CDCl$_3$): δ$_P$ 8.17 (0.8P), 7.90 (1P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δ$_H$ 8.06-8.04 (m, 1H, CH$_2$-Ar), 7.88-7.86 (m, 1H, CH$_2$-Ar), 7.74-7.72 (d, 1H, J = 8.3 Hz, CH$_2$-Ar), 7.60-7.52 (m, 3H, CH$_2$-Ar), 7.44-7.40 (m, 1H, CH$_2$-Ar), 7.39-7.35 (m, 2H, CH$_2$Ph), 4.52-4.39 (m, 1H, NH), 4.37-4.31 (br, 1H, NHCO), 1.55 (dd, 3H, J = 7.3, 10.2 Hz, CH$_3$) ppm.

Benzyl (chloro(phenoxy)phosphoryl)-L-valinate (3g): Prepared according to Standard procedure 1 in 89 %, yield as a mixture of two diastereoisomers (SSp and SRp). Light yellow oil; 4.40 g. 31P-NMR (202 MHz, CDCl$_3$): δ$_P$ 9.53 (1P), 9.02 (1P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δ$_H$ 7.38-7.22 (m, 10H, CH$_2$-Ph), 5.32-5.07 (AB system, 2H, J = 7.6 Hz, OCH$_2$Ph), 4.32-4.16 (m, 1H, NH), 4.04-3.93 (m, 1H, NHCO), 2.21-2.13 (m, 1H, 3H, CH(CH_3)$_2$), 1.00 (m, 3H, CH(CH_3)$_2$), 0.90 (m, 3H, CH(CH_3)$_2$) ppm.

Ethyl (chloro(phenoxy)phosphoryl)-L-isoleucinate (3h): Prepared according to Standard procedure 1 in 98 %, yield as a mixture of two diastereoisomers (SSp and SRp). Light yellow oil; 8.40 g. 31P-NMR (202 MHz, CDCl$_3$): δ$_P$ 9.47 (1P), 8.91 (0.9P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δ$_H$ 7.39-7.35 (m, 2H, CH$_2$-Ph), 7.29-7.22 (m, 3H, CH$_2$-Ph), 4.56-4.48 (m, 1H, NH), 4.28-4.20 (m, 2H, OCH$_2$CH$_3$), 4.03-3.93 (m, 1H, NHCHCO), 1.91-1.88 (m, 1H, CH$_3$CHCH$_2$), 1.56-1.48 (m, 1H, CHCH$_2$CH$_3$), 1.30 (m, 3H, OCH$_2$CH$_3$), 1.27-1.23 (m, 1H, CH$_2$CH$_2$CH$_3$), 1.00-0.92 (m, 6H, CH(CH$_3$)$_2$) ppm.

Benzyl 2-((chloro(phenoxy)phosphoryl)amino)-2-methylpropanoate (3i): Prepared according to Standard procedure 1 in 96 %, yield as a mixture of two stereoisomers (SSp and SSp). Light yellow oil; 96 %; 3.84 g. 31P-NMR (202 MHz, CDCl$_3$): δ$_P$ 5.62 ppm. 1H-NMR (500 MHz, CDCl$_3$): δ$_H$ 7.28-7.11 (m, 10H, CH$_2$-Ph), 5.12 (s, 2H, OCH$_2$Ph), 1.62 (s, 3H, C(CH$_3$)$_2$), 2.17-2.13 (m, 1H, CH$_2$CH$_2$CH$_3$), 1.00-0.92 (m, 6H, CH(CH$_3$)$_2$) ppm.
1.60 (s, 3H, C(CH₃)₂) ppm.

Benzyl (chloro(phenoxyposphoryl))-L-leucinate (3j): Prepared according to *Standard procedure 1* in > 99 %, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Colorless oil; 2.43 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 8.31 (0.9P), 8.00 (1P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₗ 7.30-7.26 (m, 7H, CH-Ar), 7.18-7.13 (m, 3H, CH-Ar), 5.16-5.08 (m, 2H, OCH₂Ph), 4.14-4.01 (m, 2H, NH and NHCHCO), 1.81-1.67 (m, 1H, CH(CH₃)₂), 1.61-1.49 (m, 2H, CHCH₂CH), 0.88-0.85 (m, 6H, CH(C(H₃)₂)) ppm.

Ethyl (chloro(4-methoxyphenoxy)phosphoryl))-L-leucinate (4a): Prepared according to *Standard procedure 1* in > 99 %, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Colorless oil; 4.58 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 9.03 (1P), 8.84 (1P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₗ 7.18-7.16 (m, 2H, CH-Ph), 6.87-6.85 (m, 2H, CH-Ph), 4.22 (m, 2H, OCH₂CH₃), 4.15-4.00 (m, 2H, NH and NHCHCO), 3.78 (s, OCH₃), 1.86 (spt, 0.5H, J = 6.7 Hz, CHₐ(CH₃)₂), 1.79 (p, 0.5H, J = 6.7 Hz, CHₐ(CH₃)₂), 1.66-1.51 (m, 2H, CHCH₂CH), 1.29 (m, 3H, OCH₂CH₃), 0.97-0.94 (m, 6H, CH(CH₃)₂) ppm.

Methyl (chloro(4-methoxyphenoxy)phosphoryl))-D-prolinate (4b): Prepared according to *Standard procedure 1* in > 99 %, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Light yellow oil; 10.00 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 9.03 (1P), 8.84 (1P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₗ 7.20 (dd, 1H, J = 1.8, 9.3 Hz, CH-Ph), 7.15 (dd, 1H, J = 1.8, 9.1 Hz, CH-Ph), 6.86 (dd, 2H, J = 1.7 Hz, 8.9 Hz, CH-Ph), 4.49-4.45 (m, 0.5H, NHCH₂CO), 4.41-4.37 (m, 0.5H, NHCH₂CO), 3.78 (s, 1.5H, OCH₃), 3.77 (s, 1.5H, OCH₃), 3.73 (s, 1.5H, OCH₃), 3.72 (s, 1.5H, OCH₃), 3.57-3.49 (m, 2H, H-Pro), 2.2-2.18 (m, 1H, H-Pro), 2.15-2.07 (m, 1H, H-Pro), 2.06-1.94 (m, 2H, H-Pro) ppm.

Isopropyl (chloro(4-methoxyphenoxy)phosphoryl))-L-alaninate (4c): Prepared according to *Standard procedure 1* in > 99 %, yield as a mixture of two diastereoisomers (SSₚ and SRₚ). Colorless oil; 14.00 g. ³¹P-NMR (202 MHz, CDCl₃): δₚ 8.76 (1P), 8.41 (1P) ppm. ¹H-NMR
(500 MHz, CDCl3): δH 7.19-7.16 (m, 2H, CH-Ph), 6.86 (dd, 2H, J = 2.4, 9.0 Hz, CH-Ph), 5.11-5.04 (m, 1H, CH3CH2CH3), 4.17-4.09 (m, 1H, NHCHCO), 3.78 (s, 3H, OCH3), 1.48 (dd, 3H, J = 3.7, 7.1 Hz, CH(CH3)2), 1.28-1.25 (m, 6H, CH(CH2)2) ppm.

Standard Procedure 2. General Synthesis of 1-OBn-phosphoroamidates (5a/6a-c): To a solution of compound 2 (1 equiv) in THF/Py (8/2, v/v), N-methylimidazole (2.5 equiv) was added dropwise under argon atmosphere at room temperature and the resulting solution was stirred for 30 minutes. A solution of an appropriate phosphorochloridate (2.5 equiv) in THF was added dropwise to the mixture and stirred overnight at room temperature. After solvent evaporation, the product was purified by column chromatography on silica using DCM/CH3OH (93:7) yielding the expected products 5-6.

(α)-Isopropyl (((2R,3S,4R,5S)-5-acetamido-6-(benzzyloxy)-3,4-dihydroxytetrahydro-2H-pyran-2-yl)methoxy)(phenoxy)phosphoryl)-L-alaninate (5a): Colorless oil; 45 %, 1.23 g. 31P-NMR (202 MHz, CDCl3, mixture of Rp and Sp diastereoisomers as α anomer): δP 3.86 (1P), 3.45 (0.6P) ppm. 1H-NMR (500 MHz, CDCl3): δH 7.37-7.15 (m, 10H, CH-Ar), 4.97-4.90 (m, 1H, CH(CH3)2, overlap with the solvent), 4.78-4.77 (m, 1H, H-1, overlap with the solvent), 4.67-4.63 (m, 1H, CH2Ph), 4.47-4.44 (m, 1H, CH2Ph), 4.35-4.30 (m, 1H, H-2), 4.01-3.90 (m, 3H, NHCHCO, H-5 and H-4), 3.83-3.77 (m, 1H, H-3), 3.63-3.56 (m, 2H, H-6), 1.99 (s, 3H, NHCOCH3), 1.37-1.27 (m, 3H, NHCH2CH3), 1.23-1.18 (m, 6H, CH(CH3)2) ppm. 13C-NMR (125 MHz, MeOD): δC 174.63 (d, 3JCP= 5.2 Hz, C=O ester), 174.07 (d, 3JCP= 7.2 Hz, C=O ester), 170.03 (NHCOCH3), 154.66 (d, 2JCP= 6.8 Hz, “ipso” OPh), 152.28 (d, 2JCP= 6.5 Hz, “ipso” OPh), 138.57 (“ipso” OCH2Ph), 130.72, 130.69, 130.07, 129.41, 129.19, 129.16, 128.85, 128.65, 126.03, 125.99, 123.82 (CHAr), 121.54 (d, 3JCP= 4.9 Hz, CH-OPh), 121.45 (d, 3JCP= 4.9 Hz, CH-OPh), 99.57 (C-1), 73.12 (d, 4JCP= 6.8 Hz, C-4), 70.55, 70.39 (C-3), 70.17 (OCH2Ph), 70.11, 70.03 (CH(CH3)2), 69.19, 69.07 (NHCHCO), 68.33 (C-5), 68.07 (d,
(α)-Ethyl (((2R,3S,4R,5S)-5-acetamido-6-(benzyloxy)-3,4-dihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-L-leucinate (6a): Prepared according to Standard procedure 2 in 20 %, yield as a mixture of Rp and Sp diastereoisomers as α anomer.

Light yellow oil; 0.16 g. 31P-NMR (202 MHz, CDCl3): δp 4.37 (1P), 4.30 (1P) ppm. 1H-NMR (500 MHz, CDCl3): δH 7.35-7.31 (m, 5H, CH-Ar), 7.18-7.13 (m 2H, CH-Ar), 6.87-6.83 (m, 2H, CH-Ar), 4.79 (d, 1H, J = 10.9 Hz, H-3), 4.68-4.64 (m, 1H, CH2Ph), 4.49-4.41 (m, 1H, CH2Ph), 4.35-4.34 (m, 1H, H-2), 4.17-4.12 (m, 2H, OCH2CH3), 4.11-4.07 (m, 1H, H-4), 4.00-4.07 (m, NHCHCO), 3.92-3.87 (m, 1H, H-3), 3.84-3.73 (m, 4H, OCH3 and H-5), 3.63-3.58 (m, CHCH2CH), 1.27-1.19 (m, 3H, OCH2CH3), 0.94-0.84 (m, 6H, CH(CH3)2) ppm. 13C-NMR (125 MHz, MeOD): δC 175.45 (d, 3JCP= 2.5 Hz, C=O ester), 175.33 (d, 3JCP= 2.5 Hz, C=O ester), 174.11, 174.05 (NHCOCH3), 158.25, 157.59 (“ipsos” POCH3), 145.83 (d, 2JCP= 3.8 Hz, “ipsos” POC3), 138.56 (“ipsos” OCH2Ph), 129.42, 129.39, 129.27, 129.22, 128.86, 122.46, 122.42 (CHAr), 122.32 (d, 3JCP= 4.4 Hz, CH-POPh), 122.18 (d, 3JCP= 4.5 Hz, CH-POPh), 115.58, 115.55, 115.31 (CHAr), 99.56, 99.51 (C-1), 73.11 (d, 4JCP= 7.5 Hz, C-4), 73.08 (d, 4JCP= 6.3 Hz, C-4), 70.58, 70.37 (NHCHCO), 70.14 (OCH2Ph), 68.40, 68.37 (C-5), 68.04 (d, 2JCP= 5.3 Hz, C-6), 67.88 (d, 2JCP= 5.4 Hz, C-6), 62.27, 62.22 (OCH2CH3), 56.02, 55.99 (C-3), 54.56, 54.37 (C-2), 44.15, 43.96 (CHCH2CH), 25.55, 25.46 (CH(CH3)2), 23.19, 23.16, 22.56, 22.41, 22.13, 21.90 (NHCOCH3 and CH(CH3)2) ppm. MS (ES+): m/z 603.22 [M+Na]⁺

(α)-Methyl (((2R,3S,4R,5S)-5-acetamido-6-(benzyloxy)-3,4-dihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-D-proline (6b): Prepared according to
Standard procedure 2 in 32%, yield as a mixture of R_p and S_p diastereoisomers as α anomer.

Light yellow oil; 0.23 g. 31P-NMR (202 MHz, CDCl$_3$): δP 2.27 (0.1P), 1.87 (1P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δH 7.33-7.28 (m, 5H, CH$_2$-Ar), 7.14-7.12 (m 2H, CH-Ar), 6.87-6.84 (m, 2H, CH$_2$-Ar), 4.77-4.76 (m, 1H, H-1), 4.61 (d, 1H, $J = 11.7$ Hz, CH$_{2a}$Ph), 4.55-51 (m, 1H, NHCHCO), 4.4 (m, 1H, $J = 11.7$ Hz CH$_{2b}$Ph), 4.33-4.31 (m), 4.26-4.23 (m), 3.98-3.95 (m), 3.81-3.78 (m), 3.71 (s, 3H, COOCH$_3$), 3.69 (s, 3H, PhOCH$_3$), 3.41-3.33 (m), 2.19-2.13 (m, 2H, CH$_2$Pro), 1.99 (s, 3H, NHCOCH$_3$), 1.96-1.81 (m, 2H, CH$_2$Pro) ppm. MS (ES+): m/z 631.21 [M+Na]$^+$

(α)-Isopropyl (((2R,3S,4R,5S)-5-acetamido-6-(benzyloxy)-3,4-dihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-L-alanine (6c): Prepared according to *Standard procedure* 2 in 21%, yield as a mixture of R_p and S_p diastereoisomers as α anomer.

Colorless oil; 0.20 g. 31P-NMR (202 MHz, CDCl$_3$): δP 4.30 (1P), 4.09 (0.8P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δH 7.30 (m, 5H, CH$_2$-Ar), 7.14 (d, 2H, $J = 86$ Hz, CH-Ar), 6.84-6.80 (m, 2H, CH$_2$-Ar), 4.98-4.93 (m, 1H, CH(CH$_3$)$_2$), 4.77 (s, 1H, H-1), 4.65-4.64 (m, 1H, CH$_{2a}$Ph), 4.44-4.38 (m, 1H, CH$_{2b}$Ph), 4.32-4.31 (m, 1H, H-2), 4.29-4.21 (m), 3.98-3.95 (m), 3.93-3.88 (m, 1H, NHCHCO), 3.80-3.77 (m), 3.70 (s, 1.5H, PhOCH$_3$), 3.69 (s, 1.5H, PhOCH$_3$), 3.62-3.55 (m, 2H, H-6), 1.99 (s, 3H, NHCOCH$_3$), 1.37-1.32 (m, 3H, NHCHCH$_3$), 1.23-1.20 (m, 6H, CH(CH$_3$)$_2$) ppm. 13C-NMR (125 MHz, MeOD): δC 173.34, 173.33 (C=O ester), 172.73, 172.67 (NHCOCH$_3$), 156.87 (“ipso” OPh), 144.38 (“ipso” POPh), 137.21 (“ipso” OCH$_2$Ph), 128.05, 127.87, 127.84, 127.49, 121.00, 120.93, 114.23, 114.20 (CHAr), 98.18, 98.14 (C-1), 73.11 (d, 4J_{C-P} = 7.5 Hz, C-4), 73.08 (d, 4J_{C-P} = 6.3 Hz, C-4), 70.58, 70.37 (NHCHCO), 70.14 (OCH$_2$Ph), 68.40, 68.37 (C-5), 68.04 (d, 2J_{C-P} = 5.3 Hz, C-6), 67.88 (d, 2J_{C-P} = 5.4 Hz, C-6), 62.27, 62.22 (OCH$_2$CH$_3$), 56.02, 55.99 (C-3), 54.56, 54.37 (C-2), 44.15, 43.96 (CHCH$_2$CH), 25.55, 25.46 (CH(CH$_3$)$_2$), 23.19, 23.16, 22.56, 22.41, 22.13, 21.90 (NHCOCH$_3$ and CH(CH$_3$)$_2$) 14.46, 14.41
Standard Procedure 3. General Synthesis of Deprotected Phosphoroamidates (8a-c): To a solution of 5 or 6 (1 equiv) in EtOH/EtOAc (2:1) was added Pd/C (10% Pd on activated carbon) under inert atmosphere. The resulting mixture was stirred at room temperature for 5 hours under H₂ atmosphere (1 atm, ballon). The crude was filtered through celite, concentrated in vacuo and triturated with Et₂O giving the expected products 8a-c.

Ethyl ((((2R,3S,4R,5S)-5-acetamido-3,4,6-trihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-L-leucinate (8a): Light yellow oil; 29%; 0.17 g. ³¹P-NMR (202 MHz, CDCl₃, mixture of Rp and Sp diastereoisomers as α and β anomers): δₚ 4.41 (1P), 4.31 (0.7P), 4.19 (0.7P) ppm. ¹H-NMR (500 MHz, CDCl₃): δₜ 7.14 (d, 2H, J = 9.0 Hz, CH-Ar), 6.87 (d, 2H, J = 9.0 Hz, CH-Ar), 5.03 (s, 1H, H-1), 4.56 (s, 1H, H-2), 4.34-4.26 (m, 1H, CH₂Ph), 4.17-4.12 (m, 2H, OCH₂CH₃), 4.11-4.07 (m, 1H, H-4), 4.00-4.07 (m, NHCHCO), 3.92-3.87 ppm. ³¹C-NMR (125 MHz, MeOD): δc 174.20, 174.09 (C=O ester), 172.77, 172.69 (NHCOCH₃), 156.92, 156.84 (“ipso” PhOCH₃), 144.41 (d, 2Jc-r = 6.8 Hz, “ipso” POPh), 121.06, 121.02, 120.81, 120.77, 114.21, 114.16 (CHAr), 93.67, 93.37 (C-1), 73.11 (d, 4Jc-r = 7.5 Hz, C-4), 73.08 (d, 4Jc-r = 6.3 Hz, C-4), 70.58, 70.37 ppm. MS (ES+): m/z 571.21 [M+Na]^+.

Methyl ((((2R,3S,4R,5S)-5-acetamido-3,4,6-trihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-D-proline (8b): Prepared according to
Standard procedure 3 in 32%, yield as a mixture of R_p and S_p diastereoisomers as α and β anomers. Light yellow oil; 0.23 g. 31P-NMR (202 MHz, CDCl$_3$): δ_P 2.36 (0.3P), 2.03 (1P), 1.90 (0.4P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δ_H 7.13 (d, 2H, $J = 9.0$ Hz, CH-Ar), 6.89 (d, 2H, $J = 9.0$ Hz, CH-Ar), 5.04 (m, 1H, H-1), 4.55-51 (m, 1H, NHCHCO), 4.33-4.31 (m), 4.26-4.23 (m), 3.98-3.95 (m), 3.81-3.78 (m), 3.71 (s, 3H, COOCH$_3$), 3.69 (s, 3H, PhOCH$_3$), 3.41-3.33 (m), 2.19-2.13 (m, 2H, CH$_2$Pro), 1.99 (s, 3H, NHCOCH$_3$), 1.96-1.81 (m, 2H, CH$_2$Pro) ppm. 13C-NMR (125 MHz, MeOD): δ_C 173.48 (C=O ester), 172.77 (NHCOCH$_3$), 156.94 ("ipso" PhOCH$_3$), 144.15 (d, $^2J_{C-P} = 2.5$ Hz, "ipso" POPh), 120.93 (d, $^3J_{C-P} = 4.6$ Hz, CH-POPh), 120.67 (d, $^3J_{C-P} = 4.5$ Hz, CH-POPh), 120.66, 114.33, (CHAr), 93.66, 93.33 (C-1), 68.95, 68.82, 67.05, 66.80, 60.87, 60.62, 54.68, 53.89, 51.34, 30.82 (d, $^2J_{C-P} = 9.1$ Hz, CH$_2$Pro), 24.81 (d, $^3J_{C-P} = 9.0$ Hz, CH$_2$Pro), 21.24 (NHCOCH$_3$) ppm. MS (ES+): m/z 541.17 [M+Na]$^+$

Isopropyl (((2R,3S,4R,5S)-5-acetamido-3,4,6-trihydroxytetrahydro-2H-pyran-2-yl)methoxy)(4-methoxyphenoxy)phosphoryl)-L-alaninate (8c): Colorless oil; 42%, 0.11 g. 31P NMR (202 MHz, CDCl$_3$, mixture of R_p and S_p diastereoisomers as α and β anomers): δ_P 8.42 (0.2P), 8.33 (0.8P), 8.10 (1P) ppm. 1H-NMR (500 MHz, CDCl$_3$): δ_H 7.17-7.13 (m, 2H, CH-Ar), 6.89-6.87 (m, 2H, CH-Ar), 5.03 (d, 1H, $J = 9.0$ Hz, H-1), 4.98-4.93 (m, 1H, CH(CH$_3$)$_2$), 4.32-4.31 (m, 1H, H-2), 4.29-4.21 (m), 3.98-3.95 (m), 3.93-3.88 (m, 1H, NHCHCO), 3.80-3.77 (m), 3.70 (s, 1.5H, PhOCH$_3$), 3.69 (s, 1.5H, PhOCH$_3$), 3.62-3.55 (m, 2H, H-6), 1.99 (s, 3H, NHCOCH$_3$), 1.37-1.32 (m, 3H, NHCHCH$_3$), 1.23-1.20 (m, 6H, CH(CH$_3$)$_2$) ppm. 13C-NMR (125 MHz, MeOD): δ_C 173.49, 173.44 (C=O ester), 172.76, (NHCOCH$_3$), 156.89 ("ipso" OPh), 144.38, 114.32 ("ipso" POPh), 121.01, 120.98, 114.21, 114.18 (CHAr), 93.79, 93.30 (C-1), 73.11 (d, $^4J_{C-P} = 7.5$ Hz, C-4), 73.08 (d, $^4J_{C-P} = 6.3$ Hz, C-4), 70.58, 70.37 (NHCHCO), 68.40, 68.37 (C-5), 68.04 (d, $^2J_{C-P} = 5.3$ Hz, C-6), 67.88 (d, $^2J_{C-P} = 5.4$ Hz, C-6), 62.27, 62.22 (OCH$_2$CH$_3$), 56.02, 55.99 (C-3), 54.56, 54.37 (C-2), 44.15, 43.96 (CHCH$_2$CH), 25.55, 25.46
Synthesis of (3S,4R,5S,6R)-3-Acetamido-6-(hydroxymethyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (11): N-acetyl-D-mannosamine (22.6 mmol, 5 g) was dissolved in pyridine (73 mL) and trityl chloride (24.86 mmol, 6.93 g) was added to the mixture under argon atmosphere. The reaction mixture was stirred at 60 °C and monitored by TLC. After two hours, the mixture was concentrated in vacuo and extracted with ethyl acetate (3 x 50 mL), washed with brine and dried with Na₂SO₄. The product was used in the next step without any further purification.

To a stirred suspension of compound (22.6 mmol) in pyridine (15 mL), acetic anhydride (12 mL) was added at 0 °C under protected atmosphere. The reaction mixture was allowed to warm at rt and stirred for 12 h. The solvent was evaporated in vacuo, then the reaction crude was extracted with DCM (3 x 20 mL) and purified by column chromatography (EtOAc/hexane 75:25). Compound was isolated as light yellow powder; 65%; 8.65 g. ¹H-NMR (500 MHz, CDCl₃, mixture of diastereoisomers of α and β anomers, 1:0.3): δH 7.44-7.41 (m, 6H, Ph), 7.32-7.29 (m, 6H, Ph), 7.25-7.22 (m, 3H, Ph), 6.11 (d, 0.7H, J = 1.9 Hz, NHα), 5.85 (d, 0.3H, J = 1.7 Hz, NHβ), 5.81 (d, 0.3H, J = 9.1 Hz, H-1β), 5.77 (d, 0.7H, J = 9.3 Hz, H-1α), 5.36-5.25 (m, 1H, H-4), 4.98 (dd, 0.3H, J = 3.9, 9.9 Hz, H-3β), 4.76-4.73 (m, 0.3 H, H-2β), 4.64-4.61 (m, 0.7H, H-2α), 3.92-3.89 (m, 0.7H, H-5α), 3.70-3.64 (m, 0.3H, H-5β), 3.38-3.33 (m, 1H, H-6), 3.09 (dd, 0.3H, J = 4.1, 10.6 Hz, H-6β), 3.05 (dd, 0.7H, J = 3.8, 10.6 Hz, H-6α), 2.16 (s, 2.1H, OCOCH₃α), 2.13 (s, 0.9H, OCOCH₃β), 2.11 (s, 0.9H, OCOCH₃β), 2.09 (s, 2.1H, OCOCH₃α), 1.99 (s, 2.1H, OCOCH₃α), 1.98 (s, 0.9H, OCOCH₃β), 1.78 (s, 0.9H, NHCOCH₃β), 1.77 (s, 2.1H, NHCOCH₃α) ppm. Afterwards, a mixture of compound (3.4 mmol, 2.0 g) in 80% aqueous acetic acid (46 mL) was warmed up to 60 °C and stirred for 4 h. Next, the reaction mixture was concentrated under vacuum and the resulting residue was purified by column chromatography (EtOAc/hexane 75:25). Compound was isolated as light yellow powder; 65%; 3.1 g.
chromatography to give the expected compound 11. White powder; 75%; 1.09 g. 1H-NMR
(500 MHz, CD$_3$OD, mixture of diastereoisomers of α and β anomers, 1:0.3): δ$_H$ 5.95 (d, 0.7H, J = 1.7 Hz, H-1α), 5.92 (d, 0.3H, J = 1.7 Hz, H-1β), 5.32 (t, 0.7H, J = 10.1 Hz, H-3α), 5.27-5.24 (m, 1H, H-4), 5.15-5.12 (m, 0.3H, H-3β), 4.72-4.70 (m, 0.3H, H-2β), 4.57-4.56 (m, 0.7H, H-2α), 3.92-3.88 (m, 0.7H, H-5α), 3.72-3.60 (m, 0.3H, H-5β, 2H, H-6), 2.16 (s, 2.1 H, OCOCH$_3$α), 2.06-2.05 (m, 4.8H, 3 × OCOCH$_3$), 2.03 (s, 2.1H, OCOCH$_3$β), 1.95 (s, 3H, NHCOCH$_3$) ppm.

Standard Procedure 4. General Synthesis of Phosphoramidates (12a-j): To a solution of compound 11 (1 equiv) in anhydrous THF was added tBuMgCl (1.5 equiv) at 0 °C under argon atmosphere. After 30 min, a solution of an appropriate phosphorochloridates 3a-j (1.5 equiv) in dry THF was added dropwise to the mixture at the same temperature. Then, the reaction was allowed to reach room temperature and stirred for 12 h. The solvent was evaporated in vacuo and the crude residues were purified by column chromatography (DCM/CH$_3$OH 98:2) to give compounds 12a-j as mixture of S_p and R_p diastereoisomers of α and β anomers.

(3S,4R,5S,6R)-3-Acetamido-6-(((3S)-1-isopropoxy-1-oxopropan-2-yl)amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12a):

Light yellow powder; 68%; 0.63 g. 31P-NMR (202 MHz, CD$_3$OD, mixture of R_p and S_p diastereoisomers as α and β anomers): δ$_P$ 3.83 (0.5P), 3.76 (1P), 3.55 (0.5P), 3.35 (0.2P) ppm.

1H-NMR (500 MHz, CD$_3$OD): δ$_H$ 7.40-7.37 (m, 2H, CH-Ph), 7.27-7.21 (m, 3H, CH-Ph), 6.00-5.97 (m, 1H, H-1), 5.40-5.28 (m, 1.7H, H-3 and H-4), 5.20-5.18 (m, 0.3H, H-3), 5.04-4.97 (m, 1H, CH(CH$_3$)$_2$), 4.77-4.76 (m, 0.3H, H-2), 4.61-4.60 (m, 0.7H, H-2), 4.35-4.13 (m, 3H, 2H-6 and NHCHCO), 3.97-3.89 (m, 1H, H-5), 2.19-1.99 (m, 12H) (3 × OCOCH$_3$ and NHCOCH$_3$), 1.39-1.34 (m, 3H, NHCHCH$_3$), 1.28-1.24 (m, 6H, CH(CH$_3$)$_2$) ppm. 13C-NMR (125 MHz, CD$_3$OD): δ$_C$ 173.22 (d, 3J$_{C-P}$ = 5.2 Hz, C=O ester), 172.94 (d, 3J$_{C-P}$ = 4.7 Hz, C=O ester), 172.44 (d, 3J$_{C-P}$ = 4.7 Hz, C=O ester), 170.24 (d, 3J$_{C-P}$ = 4.4 Hz, C=O ester), 170.15, 170.12, 170.05, 32
170.00, 168.71, 168.62, 168.60 (NHCOCH$_3$ and OCOCH$_3$), 150.81 (d, 2J$_{C-P}$= 7.0 Hz, “ipso” OPh), 129.39, 129.32, 124.75, 124.72, 120.19, 120.03 (CH-Ph), 91.75, 91.73, 90.72, 90.68 (C-1), 71.37, 71.12 (NHCHCO), 69.31, 69.23 (C-3), 68.80, 68.75 (CH(CH$_3$)$_2$), 65.56, 65.49 (C-6), 65.40, 65.31 (C-4), 50.38 (C-5), 49.13, 48.46 (C-2), 21.03, 20.99 (NHCOCH$_3$), 20.62, 20.58, 20.51 (CH(CH$_3$)$_2$), 19.32, 19.25 (OCOCH$_3$), 19.02, 18.97 (NHCHCH$_3$) ppm. HPLC: (gradient H$_2$O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, $\lambda = 210$ nm): t_R 21.29 min, 21.70 min. MS (ES+): m/z 639.20 [M+Na]$^+$

(3S,4R,5S,6R)-3-acetamido-6-((((S)-1-ethoxy-4-methyl-1-oxopentan-2-yl)amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyli triacetate (12b):

Prepared according to Standard procedure 4 in 43%, yield as a mixture of R_P and S_P diastereoisomers as α and β anomers. White powder; 360 mg. 31P-NMR (202 MHz, CD$_3$OD):

δP 3.81 (0.6P), 3.71 (1P), 3.65 (0.4P) ppm. 1H-NMR (500 MHz, CD$_3$OD): δH 7.38-7.34 (m, 2H, CH-Ph), 7.22-7.18 (m, 3H, CH-Ph), 5.97-5.96 (m, 1H, H-1), 5.40-5.16 (m, 1.8H, H-3 and H-4), 5.20-5.16 (m, 0.2H, H-3), 4.75-4.74 (m, 0.2H, H-2), 4.58-4.57 (m, 0.8H, H-2), 4.33-4.01 (m, 5H, H-6, OCH$_2$CH$_3$ and NHCHCO), 3.88-3.83 (m, 1H, H-5), 2.17-1.97 (m, 3 x OCOCH$_3$ and NHCOCH$_3$), 1.75-1.58 (m, 1H, CH(CH$_3$)$_2$), 1.55-1.48 (m, CHCH$_2$CH), 1.27-1.23 (q, 3H, $J = 6.55$ Hz, OCH$_2$CH$_3$), 0.93-0.82 (m, 6H, CH(CH$_3$)$_2$) ppm. 13C-NMR (125 MHz, CD$_3$OD):

δC 175.52 (d, 3J$_{C-P}$= 2.9 Hz, C=O ester), 175.46 (d, 3J$_{C-P}$= 1.4 Hz, C=O ester), 175.19 (d, 3J$_{C-P}$= 2.7 Hz, C=O ester), 173.81 (d, 3J$_{C-P}$= 4.4 Hz, C=O ester), 171.65, 171.59, 171.52, 171.39, 171.36 (OCOCH$_3$), 170.10, 169.97 (NHCOCH$_3$), 152.25, 152.19, 152.16, 152.15 (“ipso” OPh), 130.78, 130.71, 130.67, 126.14, 126.10, 126.05, 121.59 (d, 3J$_{C-P}$= 4.5 Hz, CH-Ph), 121.28 (d, 3J$_{C-P}$= 4.9 Hz, CH-Ph), 93.14, 93.11, 92.20, 92.17 (C-1), 72.88, 72.60, 70.69, 70.58 (C-5, C-4, C-3), 66.93, 66.90 (OCH$_2$CH$_3$), 66.82 (C-2), 62.30 (d, 2J$_{C-P}$= 10.0 Hz, C-6), 54.60 (d, 2J$_{C-P}$= 4.9 Hz, NHCHCO), 50.52 (CH(CH$_3$)$_2$), 44.03 (d, 3J$_{C-P}$= 7.7 Hz, CHCH$_2$CH), 25.57,
25.41, 23.26, 23.11, 22.39, 22.07, 21.71, 21.67, 20.72, 20.64, 14.47 (NHCOCH₃, 3 ×OCOCH₃,
OCH₂CH₃, and CH(CH₃)₂) ppm. HPLC: (gradient H₂O/ACN from 90/10 to 0/100 in 30 min,
flow: 1 mL/min, λ = 210 nm): tᵣ 18.55 min, 18.96 min. MS (ES+): m/z 667.23 [M+Na]⁺

(3S,4R,5S,6R)-3-acetamido-6-(((1R)-2-(methoxycarbonyl)pyrrolidin-1-
yl)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12c):
Prepared according to Standard procedure 4 in 16 %, yield as a mixture of Rp and Sp
diastereoisomers as α and β anomers. White powder; 0.12 g. ³¹P-NMR (202 MHz, CD₃OD) δₚ
1.75 (1P), 1.65 (0.4P), 1.32 (0.6P), 1.23 (0.1P) ppm. ¹H-NMR (500 MHz, CD₃OD): δH 7.39-
7.35 (m, 2H, C-Ph), 7.28-7.19 (m, 3H, C-Ph), 5.98 (d, 0.3H, J = 1.9 Hz, H-1), 5.97 (d, 0.7H,
J = 1.8 Hz, H-1), 5.37-5.26 (m, 1.7H, H-3 and H-4), 5.24-5.16 (m, 0.3H, H-3), 4.75-4.74 (m,
0.3H, H-2), 4.60-4.58 (m, 0.7H, H-2), 4.41-4.10 (m, 4H, NHCO, H-5 and 2H-6), 3.72 (s,
0.9H, OCH₃), 3.68 (s, 2.1H, OCH₃), 3.40-3.37 (m, 2H, H-Pro), 2.21-1.87 (m, 16H, 4H-Pro, 3
×OCOCH₃ and NHCOCH₃) ppm. ¹³C-NMR (125 MHz, CD₃OD): δC 174.30, 174.08, 172.93,
172.30 (C=O ester), 170.27, 170.22, 170.11, 170.01, 169.97, 169.93, 168.69, 168.60, 168.58
(NHCOCH₃ and OCOCH₃), 150.73 (d, ²J₃₋₅= 7.1 Hz, “ipso” OPh), 150.59 (d, ²J₃₋₅= 7.4 Hz,
“ipso” OPh), 129.51, 129.44, 124.85, 124.82, 124.76, 119.99, 119.96, 119.85, 119.81 (CH-Ph),
91.84, 91.77, 90.77, 90.62 (C-1), 71.34, 71.24, 71.19 (C-5), 69.31, 69.26 (C-3), 65.55 (d, ²J₃₋₅
= 5.5 Hz, C-6), 65.35, 65.27, 65.17 (C-4), 60.63 (²J₃₋₅= 6.9 Hz, NHCHCO), 60.35 (²J₃₋₅= 6.3
Hz) (NHCHCO), 51.41, 51.37 (COOCCH₃), 49.18, 49.12 (C-2), 47.35, 47.31 (NCH₂CH₂,
overlap with the solvent), 30.95, 30.87, 30.80, 30.72 (NCH₂CH₂), 24.87, 24.79, 24.72
ppm. HPLC: (gradient H₂O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, λ = 210
nm): tᵣ 15.80 min. MS (ES+): m/z 637.19 [M+Na]⁺

(3S,4R,5S,6R)-3-acetamido-6-(((2-methoxy-2-oxoethyl)amino)(naphthalen-1-
yloxy)phosphoryl(oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12d): Prepared according to Standard procedure 4 in 49 %, yield as a mixture of \(R \) \(P \) and \(S \) \(P \) diastereoisomers as \(\alpha \) and \(\beta \) anomers. Yellow powder; 0.53 g. \(^{31}\)P-NMR (202 MHz, CD\(_3\)OD): \(\delta \) \(P \) 5.57 (0.9P), 5.52 (0.4P), 4.75 (1P), 4.60 (0.3P) ppm. \(^1\)H-NMR (500 MHz, CD\(_3\)OD): \(\delta \) \(H \) 8.20-8.17 (m, 1H, Naph), 7.89 (d, 1H, \(J = 8.0 \) Hz, Naph), 7.71 (d, 1H, \(J = 8.0 \) Hz, Naph), 7.59-7.43 (m, 4H, Naph), 6.00 (d, 0.8H, \(J = 1.7 \) Hz, H-1), 5.97 (d, 0.2H, \(J = 1.7 \) Hz, H-1), 5.40-5.28 (m, 1.8H, H-3 and H-4), 5.21-5.16 (m, 0.2H, H-3), 4.75 (ddd, 0.2H, \(J = 1.9 \), 4.4, 9.6 Hz, H-2), 4.59 (ddd, 0.8H, \(J = 1.9 \), 4.4, 9.6 Hz, H-2), 4.45-4.25 (m, 2H, H-6), 4.19-4.14 (m, 0.8H, H-5), 4.05-4.02 (m, 0.1H, H-5), 3.97-3.93 (m, 0.1H, H-5), 3.97-3.93 (m, 2H, NHCH\(_2\)CO), 3.69-3.67 (m, 3H, COOCH\(_3\)), 2.15-1.96 (m, 12H, \(3 \times \) OCO\(_3\) and NHCO\(_3\)) ppm. \(^{13}\)C-NMR (125 MHz, CD\(_3\)OD): \(\delta \) \(C \) 174.43 (C=O ester) 170.22, 170.08, 168.78, 168.65, 168.61 (NHCO\(_3\) and OCO\(_3\)), 146.51, 134.91, 127.86 (“ipso” ONaph, Naph-C10 and Naph-C9), 127.43, 126.36, 126.11, 125.23, 124.60, 121.46 (Naph), 121.35 (d, \(^3\)J\(C\rightarrow\)P = 6.9 Hz, Naph-C1), 115.07 (d, \(^3\)J\(C\rightarrow\)P = 3.3 Hz, Naph-C1), 91.79, 91.73, 90.71 (C-1), 71.30 (\(^3\)J\(C\rightarrow\)P = 6.4 Hz, C-5), 71.22 (\(^3\)J\(C\rightarrow\)P = 6.4 Hz, C-5), 71.12 (C-5), 69.21 (C-3), 65.63 (d, \(^3\)J\(C\rightarrow\)P = 5.3 Hz, C-6), 65.50 (d, \(^3\)J\(C\rightarrow\)P = 5.7 Hz, C-6), 65.29 – 65.27 (C-4), 51.26 (OCH\(_3\)), 49.18 (C-2), 42.39, 42.26 (NHCH\(_2\)CO), 21.00, 20.97 (NHCO\(_3\)), 19.28, 19.25 (OCO\(_3\)) ppm. HPLC: (gradient H\(_2\)O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, \(\lambda = 210 \) nm): \(t \) \(R \) 20.19 min, 20.77 min. MS (ES+): \(m/z \) 647.17 [M+Na\(^+\)]

(3S,4R,5S,6R)-3-acetamido-6-((((S)-1-ethoxy-1-oxo-3-phenylpropan-2-yl)amino)(phenoxy)phosphoryl)(oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12e): Prepared according to Standard procedure 4 in 45 %, yield as a mixture of \(R \) \(P \) and \(S \) \(P \) diastereoisomers as \(\alpha \) and \(\beta \) anomers. Yellow powder; 0.53 g. \(^{31}\)P-NMR (202 MHz, CD\(_3\)OD): \(\delta \) \(P \) 3.40 (1P), 3.21 (0.3P), 3.02 (0.1P) ppm. \(^1\)H-NMR (500 MHz, CD\(_3\)OD): \(\delta \) \(H \) 7.33-7.15 (m,
8H, CH-Ar), 7.11, 7.05 (m, 2H, CH-Ar), 5.96 (d, 1H, J = 1.7 Hz, H-1), 5.93 (d, 1H, J = 1.7 Hz, H-1), 5.33-5.14 (2H, m, H-3 and H-4), 4.74-4.02 (m, 6H, H-5 and 2H-6 and OCH3CH3 and NHCHCO), 3.05-3.01 (m, 1H, CHCH2Ph), 2.95-2.91 (m, 1H, CHCH2Ph), 2.15-1.96 (m, 12H, 3 × OCOCH3 and NHCOCH3), 1.19-1.15 (m, OCH2CH3) ppm. 13C-NMR (125 MHz, CD3OD): δC 174.26, 174.05, 173.80, 171.59, 171.46, 171.320, 170.08, 170.01 (C=O ester, NHCOCH3 and 3 × OCOCH3), 152.04 (d, JCP = 6.2 Hz, “ipso” OPh), 137.95 (“ipso” CH2Ph), 130.73, 130.69, 130.55, 129.50, 127.96, 127.90, 127.90, 126.06, 121.40, 121.38, 121.35 (CH-Ar), 93.13, 92.16, 92.05 (C-1), 72.72, 72.61, 72.44 (d, JCP = 6.3 Hz, NHCHCO), 70.71, 70.63 (C-3), 66.70 (C-4), 66.65 (d, JCP = 5.5 Hz, C-6), 66.45 (d, JCP = 5.4 Hz, C-6), 62.41, 62.33 (OCH2CH3), 57.80, 57.79, 57.70 (C-5), 50.74, 50.67, 50.52 (C-2), 22.39, 22.36 (NHCOCH3), 20.70, 20.64, 20.62 (OCOCH3), 14.36 (d, J = 3.8 Hz, OCH2CH3) ppm. HPLC: (gradient H2O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, λ = 210 nm): tR 23.11 min, 23.44 min, 23.79 min, 24.23 min. MS (ES+): m/z 701.21 [M+Na]+

(3S,4R,5S,6R)-3-acetamido-6-((((S)-1-(benzyloxy)-1-oxopropan-2-yl)amino)(naphthalen-1-yloxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12f): Prepared according to Standard procedure 4 in 47 %, yield as a mixture of RP and SP diastereoisomers as α and β anomers. Yellow powder; 0.58 g. 31P-NMR (202 MHz, CD3OD): δP 4.11 (1P), 3.81 (0.8P), 3.52 (0.2P) ppm. 1H-NMR (500 MHz, CD3OD): δH 8.24-7.24 (12H, m, CH-Ar), 6.03 (d, 1H J = 1.6 Hz, H-1), 6.00 (d, 1H, J = 1.6 Hz, H-1), 5.98 (d, 1H, J = 1.6 Hz, H-1), 5.96 (d, 1H, J = 1.6 Hz, H-1), 5.50-5.17 (m, 2H, H-3 and H-4), 5.15-5.04 (m, 2H, CH2Ph), 4.78-4.61 (m, 1H, H-2), 4.44-3.90 (m, 4H, H-5 and 2H-6 and NHCH), 1.17-1.95 (12H, m, 3 × OCOCH3 and NHCOCH3), 1.37 (3H, dd, J = 18.7, 7.4 Hz, CHCH3) ppm. 13C-NMR (125 MHz, CD3OD): δC 174.99, 174.85, 173.87, 173.81 (C=O ester), 171.63, 171.51, 171.45, 171.38, 170.04, 170.00 (NHCOCH3 and OCOCH3), 147.98, 147.93 (“ipso” Naph), 137.19, 136.26, 129.54, 129.27,
129.17, 128.88, 127.90, 127.73, 127.51, 127.46, 126.59, 125.95, 125.91, 122.85, 122.78, 127.73, 127.51, 127.46, 66.80, 66.65, 51.90, 51.76, 50.63, 50.51, 22.63, 20.68, 20.64, 20.25 ppm. HPLC: (gradient: H2O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, \(\lambda = 210 \text{ nm} \)): tR 25.20 min, 25.45 min, 25.39 min, 26.25 min. MS (ES+): m/z 737.23 [M+Na]+

(3S,4R,5S,6R)-3-acetamido-6-(((S)-1-(benzyloxy)-3-methyl-1-oxobutan-2-yl)(amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12g): Prepared according to Standard procedure 4 in 40 %, yield as a mixture of \(R_P \) and \(S_P \) diastereoisomers as \(\alpha \) and \(\beta \) anomers. Yellow powder; 0.39 g.

\[1^3 \text{C-NMR} \text{ (125 MHz, CD}_3\text{OD): } \delta_C 172.85, 172.69, 172.41, 172.37 (\text{C}=\text{O ester}), 170.29, 170.22, 170.12, 170.09, 170.05, 170.01, 168.71, 168.65, 168.61 (\text{NHCOCH}_3 \text{ and OCOCH}_3), 150.80 \]

(\(d, 2^J_{C-P} = 7.1 \text{ Hz, “ipso” OPh} \)), 150.77 (\(d, 2^J_{C-P} = 7.1 \text{ Hz, “ipso” OPh} \)), 135.81, 135.77 (“ipso” OCH₂Ph), 129.41, 129.37, 129.33, 128.26, 128.23, 128.20, 128.16, 128.11, 128.06, 124.73, 124.71, 120.25, 120.22, 120.19, 120.09, 120.05, 120.02, 119.99 (CH-Ar), 91.75, 90.82 (C-1), 73.77, 73.65, 71.39, 71.25, 71.22, 71.17, 69.32, 69.23 (C-3 and C-5), 66.65, 66.60, 66.50 (OCH₂Ph), 65.63 (\(d, 2^J_{C-P} = 5.7 \text{ Hz, C-6} \)), 65.44, 65.41 (C-4), 60.66 (\(d, 2^J_{C-P} = 7.6 \text{ Hz, NHCHCO} \)), 60.49 (\(d, 2^J_{C-P} = 5.1 \text{ Hz, NHCHCO} \)), 49.41, 49.34, 49.27, 49.16 (C-2), 31.79 (\(d, 3^J_{C-P} = 7.4 \text{ Hz, CH(CH}_3)_2 \)), 21.16, 21.11, 19.43, 19.35
(NHCOC\textsubscript{H}\textsubscript{3} and OCOCH\textsubscript{3}), 18.17, 17.14 \textit{(CH(\textsubscript{CH}3))\textsubscript{2}} ppm. HPLC: (gradient H\textsubscript{2}O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, \(\lambda = 210\) nm): t\textsubscript{R} 25.23 min, 25.49 min, 25.90 min.

MS (ES+): \textit{m/z} 715.24 [M+Na+]

(3S,4R,5S,6R)-3-acetamido-6-(((2S,3S)-1-ethoxy-3-methyl-1-oxopentan-2-yl)amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12h):

Prepared according to \textit{Standard procedure 4} in 64\% yield as a mixture of \(R_P\) and \(S_P\) diastereoisomers as \(\alpha\) and \(\beta\) anomers. Yellow powder; 0.12 g. 31P-NMR (202 MHz, CD\textsubscript{3}OD):

\[\delta_P\] 4.22 (1P), 4.16 (0.2P) ppm. 1H-NMR (500 MHz, CD\textsubscript{3}OD): \(\delta_H\) 7.38-7.35 (m, 2H, CH-Ar), 7.24-7.18 (m, 3H, CH\textsubscript{2}-Ar), 5.97 (d, 0.8H, \(J = 2.1\) Hz, H-1), 5.95 (d, 0.2H, \(J = 1.9\) Hz, H-1), 5.36-5.16 (m, 2H, H-4 and H-3), 4.76-4.74 (m, 0.2H, H-2), 4.59-4.58 (m, 0.8H, H-2), 4.21-4.06 (m, 5H, H-5, H-6 and OCH\textsubscript{2}CH\textsubscript{3}), 3.75-3.68 (m, 1H, NHCHCO), 2.18-1.97 (m, 12H, \(3 \times \) CH\textsubscript{2}CH\textsubscript{3} and CHCH\textsubscript{2}CH\textsubscript{3}), 1.27-1.21 (m, 4H, OCH\textsubscript{2}CH\textsubscript{3} and CHCH\textsubscript{2}CH\textsubscript{3}), 0.92-0.85 (m, 6H, CH\textsubscript{3}CH\textsubscript{2} and CHCH\textsubscript{2}CH\textsubscript{3}) ppm. 13C-NMR (125 MHz, CD\textsubscript{3}OD): \(\delta_C\) 173.00 (d, \(3J_{C-P}= 3.3\) Hz, C=O ester), 172.88 (d, \(3J_{C-P}= 3.3\) Hz, C=O ester), 172.82 (d, \(3J_{C-P}= 3.3\) Hz, C=O ester), 172.43 (d, \(3J_{C-P}= 4.0\) Hz, C=O ester), 170.27, 170.21, 170.15, 170.08, 170.02, 169.99, 168.66, 168.59, 168.56 (NH\textsubscript{COCH} and OCOCH\textsubscript{3}), 150.82 (d, \(2J_{C-P}= 6.7\) Hz, “\textit{ipso}” OPh), 150.80 (d, \(2J_{C-P}= 7.4\) Hz, “\textit{ipso}” OPh), 129.38, 129.33, 124.74, 124.68, 120.17 (d, \(3J_{C-P}= 4.5\) Hz, CHPh), 120.01 (d, \(3J_{C-P}= 4.6\) Hz, CHPh), 119.94 (d, \(3J_{C-P}= 4.7\) Hz, CHPh), 91.72, 90.77 (C-1), 71.18 (d, \(3J_{C-P}= 6.9\) Hz, C-5), 69.29, 69.19 (C-3), 65.56, 65.52 (OCH\textsubscript{2}CH\textsubscript{3}), 65.39 (C-4), 60.86, 60.77 (C-6), 59.35 ppm. HPLC: (gradient H\textsubscript{2}O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, \(\lambda = 210\) nm): t\textsubscript{R} 17.36 min, 17.90 min, 18.32 min. MS (ES+): \textit{m/z}
667.23 [M+Na]⁺

(3S,4R,5S,6R)-3-acetamido-6-(((1-(benzzyloxy)-2-methyl-1-oxopropan-2-
yl)amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12i):

Prepared according to *Standard procedure 4* in 34 %, yield as a mixture of Rp and Sp
diastereoisomers as α and β anomers. Yellow powder; 0.07 g. ³¹P-NMR (202 MHz, CD₂OD):

δP 2.20 (1P), 1.89 (0.4P), 1.77 (0.1P) ppm. ¹H-NMR (500 MHz, CD₂OD): δH 7.39-7.29 (m, 7H, CH-Ar), 7.22-7.15 (m, 3H, CH-Ar), 5.97 (d, J = 1.6 Hz, 0.8H, H-1), 5.94-5.93 (0.2H, H-1), 5.35-5.23 (m, 1.8H, H-4 and H-3), 5.22-5.11 (m, 2.2H, OCH₂Ph and H-3), 4.78-4.75 (m, 0.2H, H-2), 4.60-4.58 (m, 0.8H, H-2), 4.27-4.15 (m, 2H, H-6), 4.13-4.09 (m, 0.8H, H-5), 3.95-3.91 (m, 0.1H, H-5), 3.90-3.86 (m, 0.1H, H-5), 2.13-1.96 (m, 12H, 3 × OCOCH₃ and NHCOCH₃), 1.52-1.44 (m, 6H, CH₃CCH₃) ppm. ¹³C-NMR (125 MHz, CD₂OD): δC 176.44 (d, 3J_C,P= 3.4 Hz, C=O ester), 176.62 (d, 3J_C,P= 3.5 Hz, C=O ester), 174.35, 174.27, 174.80, 171.64, 171.57, 171.49, 171.46, 171.31, 170.06, 169.99 (NHCOCH₃ and OCOCH₃), 152.23 (d, 2J_C,P= 7.0 Hz, “ips” OPH), 137.38 (d, 2J_C,P= 7.0 Hz, “ips” OCH₂Ph), 130.73, 130.69, 129.57, 129.26, 129.18, 126.02, 121.57, 121.52, 121.49, 121.46 (CHAr), 93.13, 93.08, 92.15, 92.09

(C-1), 75.14 (d, 3J_C,P= 7.5 Hz, C-5), 74.91 (d, 3J_C,P= 7.6 Hz, C-5), 72.57, 72.50, 70.78, 70.56

(C-3), 68.24, 68.22 (OCH₂Ph), 66.83 (C-4), 66.70 (d, 2J_C,P= 5.6 Hz, C-6), 50.79, 50.68, 50.54, 50.51 (C-2), 27.63, 27.59, 27.53, 27.48, 27.34, 27.30, 27.20, 27.16 (CH₃CCH₃), 22.42, 22.39, 20.73, 20.69, 20.66 (NHCOCH₃ and OCOCH₃) ppm. HPLC: (gradient H₂O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min, λ = 210 nm): tᵣ 18.23 min, 18.57 min. MS (ES+): m/z 701.22 [M+Na]⁺

(3S,4R,5S,6R)-3-acetamido-6-(((1-(benzzyloxy)-4-methyl-1-oxopentan-2-
yl)amino)(phenoxy)phosphoryl)oxy)methyl)tetrahydro-2H-pyran-2,4,5-triyl triacetate (12j):

Prepared according to *Standard procedure 4* in 61 %, yield as a mixture of Rp and Sp
diastereoisomers as α and β anomers. Light yellow powder; 0.37 g. 31P-NMR (202 MHz, CD3OD): δP 3.73 (0.5P), 3.68 (1P), 3.57 (0.4P) ppm. 1H-NMR (500 MHz, CD3OD): δH 7.37-7.31 (m, 7H, CH-Ar), 7.20-7.17 (m, 3H, CH-Ar), 5.97-5.96 (m, 0.7H, H-1), 5.94-5.93 (m, 0.3H, H-6 and H-5), 3.94-3.89 (m, 1H, NHCHCO), 2.16-1.97 (m, 12H, 3 × OCOCH3 and NHCOCH3), 1.73-1.65 (m, 1H, CH(CH3)2), 1.49-1.46 (m, 2H, CHCH2CH), 1.56-1.49 (m, 6H, CH(CH3)2) ppm. 13C-NMR (125 MHz, CD3OD): δC 173.82, 173.79, 171.65, 171.59 (C=O ester), 171.36, 169.98, (OCOCH3 and NHCOCH3), 152.12 (d, 2JCP= 6.5 Hz, “ipso” OPh), 137.13 (“ipso” OCH3Ph), 130.76, 130.67, 129.54, 129.40, 129.32, 129.27, 126.06, 126.01 (CH-Ar), 121.56 (d, 3JC-β= 4.6 Hz, CH-Ar), 121.25 (d, 3JC-β= 4.8 Hz, CH-Ar), 93.10, 93.07, 92.15 (C-1), 72.53, 72.48 (C-5), 70.66, 70.55 (C-3), 67.94, 67.85 (OCH2Ph), 67.91 (d, 2JCP= 10.0 Hz, C-6), 66.72, 66.70 (C-4), 54.66, 54.60 (NHCHCO), 50.64, 50.48 (C-2), 43.87 (d, 3JC-β= 7.9 Hz, CHCH2CH), 43.72 (d, 3JC-β= 7.6 Hz, CHCH2CH), 25.50, 25.36 (CH(CH3)2), 23.14, 23.03, 22.39, 22.34, 22.04, 22.01 21.69, 20.69, 20.63, 20.60 (NHCOCH3, 3 ×OCOCH3 and CH(CH3)2) ppm. MS (ES+): m/z 729.25 [M+Na]+

Triethyl ammonium ((2R,3S,4R,5S)-5-acetamido-3,4,6-triacetoxyltetrahydro-2H-pyran-2-yl)methyl ((S)-1-carboxy-3-methylbutyl)phosphoramidate (13): Prepared according to the Standard procedure 3. Light yellow powder; 47%; 0.37 g. 31P-NMR (202 MHz, CD3OD, mixture α and β anomers): δP 6.53 (1P), 6.41 (0.3P) ppm. 1H-NMR (500 MHz, CD3OD): δH 5.93-5.90 (m, 1H, H-1), 5.29-5.16 (m, 2H, H-3 and H-4), 4.53-4.52 (m, 1H, H-2, overlap with the solvent), 4.11-4.10 (m, 1H, NHCHCO), 3.91-3.61 (m, 3H, H-6 and H-5), 3.12 (q, 6H, J = 7.4 Hz, N(CH2CH2)3), 2.13-1.95 (m, 12H, 3 × OCOCH3 and NHCOCH3), 1.70-1.61 (m, 1H, CH(CH3)2), 1.47-1.44 (m, 2H, CHCH2CH), 1.20 (t, 9H, J = 7.3 Hz, N(CH2CH2)3), 0.88-0.83 (m, 6H, CH(CH3)2) ppm. 13C-NMR (125 MHz, CD3OD): δC 174.63, (C=O ester), 172.98, 172.87
172.78, 171.72, 171.54 (OCOCH₃ and NHCOCH₃), 91.97, 90.91 (C-1), 70.98, 70.92 (NHCHCO), 70.07, 70.02 (C-3), 65.48, (C-4), 62.37 (d, \(^2J_{C,P}=4.6\) Hz, C-6), 53.41 (C-5), 49.15, 49.11 (C-2), 46.65 (N(CH₂CH₃)₃), 42.93 (d, \(^3J_{C,P}=3.4\) Hz, CHCH₂CH), 24.11 (CH(CH₃)₂), 22.04, 21.94, 21.68, 21.37, 21.31, 20.85, 20.24, 20.22, 20.13 (NHCOCH₃, 3 ×OCOCH₃ and CH(CH₃)₂), 8.20 (N(CH₂CH₃)₃) ppm. LC-MS: (gradient H₂O/ACN from 90/10 to 0/100 in 30 min, flow: 1 mL/min): \(t_R\) 2.5 min, 3.7 min. MS (ES⁻): \(m/z\) 574.16 [M-H]⁻

Enzymatic Activation Studies: All phosphoramidates 12a-i were analyzed for the enzymatic activation in the presence of carboxypeptidase Y. To a solution of compound 12a-i (5 mg) in [D₆]acetone (150 µL) was added 0.05M Trizma buffer (pH=7.6, 300 µL) and \(^{31}\)P-NMR was recorded at 25 °C. A thawed solution of carboxypeptidase Y (0.1 mg in 150 µL of 0.05M Trizma buffer) was added to the NMR sample and further analyzed by \(^{31}\)P-NMR at 25 °C. Afterwards, spectra were recorded every 3 hours and the resulting data were processed and analyzed with Bruker Topspin 3.5 program and the estimated half-life was calculated. All processed compounds were analyzed by mass and all active species were detected.

Caco-2 Assay: Caco-2 cells purchased from ATCC were seeded onto polyethylene membranes (PET) in 96-well BD Insert plates at 1 x 10⁵ cells/cm² and refreshed medium every 4~5 days until to the 21st to 28th day for confluent cell monolayer formation. The transport buffer in the study was HBSS with 10 mM HEPES at pH 7.40±0.05. Test compound was tested at 2 μM in presence and absence of 10 μM GF120918 bi-directionally in duplicate. Digoxin was tested at 10 μM in presence and absence of 10 μM GF120918 bi-directionally in duplicate, while nadolol and metoprolol were tested at 2 μM in absence of 10 μM GF120918 in A to B direction in duplicate. Final DMSO concentration was adjusted to less than 1%. The plate was incubated for 2 hours in CO₂ incubator at 37±1°C, with 5% CO₂ at saturated humidity without shaking. And all samples after mixed with acetonitrile containing internal standard were centrifuged at
4000 rpm for 10 min. Subsequently, 100 µL supernatant solution was diluted with 100 µL distilled water for LC/MS/MS analysis. Concentrations of test and control compounds in starting solution, donor solution, and receiver solution were quantified by LC/MS/MS methodologies, using peak area ratio of analyte/internal standard. After transport assay, lucifer yellow rejection assay was applied to determine the Caco-2 cell monolayer integrity.

The apparent permeability coefficient P_{app} (cm/s) was calculated using the equation:

$$P_{app} = \frac{(dC_r/dt) \times V_r}{(A \times C_0)}$$

Where dC_r/dt is the cumulative concentration of compound in the receiver chamber as a function of time (µM/s); V_r is the solution volume in the receiver chamber (0.075 mL on the apical side, 0.25 mL on the basolateral side); A is the surface area for the transport, i.e. 0.0804 cm² for the area of the monolayer; C_0 is the initial concentration in the donor chamber (µM).

The efflux ratio was calculated using the equation:

$$\text{Efflux Ratio} = \frac{P_{app}(BA)}{P_{app}(AB)}$$

Percent recovery was calculated using the equation:

$$\% \text{ Recovery} = 100 \times \frac{(V_r \times C_r) + (V_d \times C_d)}{(V_d \times C_0)}$$

Where V_d is the volume in the donor chambers (0.075 mL on the apical side, 0.25 mL on the basolateral side); C_d and C_r are the final concentrations of transport compound in donor and receiver chambers, respectively.

Kinetic Solubility: Test compounds (10 mM in DMSO 10 µL/well) were added into pH 7.4 NaH$_2$PO$_4$ buffer (490 µL/well) in a 96-well plate. The final concentration of test compound and DMSO was 200 µM and 2%, respectively. Test solutions were then incubated on a shaker at the speed of 600 rpm at room temperature. After 24 hours, 200 µL of each solubility solution was transferred into a new MultiScreen filter plate (polycarbonate membrane), filtered by Millipore vacuum manifold and the filtrate was collected as test sample. Test compound concentration was determined in the filtrate using a standard curve detected by HPLC-UV.
Plasma Stability: Pooled frozen plasma was thawed in a water bath at 37°C prior to experiments. Plasma was centrifuged at 4000 rpm for 5 min and clots were removed, if any. The pH was adjusted to 7.4 ± 0.1 if required. Compounds were prepared as 1 mM intermediate solution by diluting 10 μL of the stock solution with 90 μL DMSO; 1 mM intermediate of positive control Propantheline was prepared by diluting 10 μL of the stock solution with 90 μL ultra-pure water; 100 μM dosing solution was prepared by diluting 10 μL of the intermediate solution (1 mM) with 90 μL 45% MeOH/H2O. 196 μL of blank plasma was spiked with 4 μL of dosing solution (100 μM) to achieve 2 μM of the final concentration in duplicate and samples were incubated at 37°C in a water bath. At each time point (0, 10, 30, 60, and 120 min), 800 μL of stop solution (200 ng/mL tolbutamide and 200 ng/mL Labetalol in 50% ACN/MeOH) was added to precipitate protein and mixed thoroughly. Sample plates were then centrifuged at 4,000 rpm for 10 min. An aliquot of supernatant (100 μL) was transferred from each well and mixed with 200 μL ultra-pure water. The samples were shaken at 800 rpm for about 10 min before submitting to LC-MS/MS analysis.

The % remaining of test compound after incubation in plasma was calculated using following equation: % Remaining = 100 x (PAR at appointed incubation time / PAR at T0 time), where PAR is the peak area ratio of analyte versus internal standard (IS). The appointed incubation time points are T₀ (0 min), Tₙ (n=0, 10, 30, 60, 120 min).

Microsomal Stability: Human liver microsomes were purchased from BD and were prepared in solution at a final concentration of 0.5 mg protein/L in potassium phosphate buffer. The NADPH regenerating system was isocitric dehydrogenase at a final concentration of 1 unit/mL at incubation and the stop solution was cold ACN including 100 ng/mL Tolbutamide and 100 ng/mL Labetalol as internal standard (IS). Added 10 μL of compound (from 10 μM working solution in buffer) or control to all plates (T0, T5, T10, T20, T30, T60, NCF60) except matrix blank. Dispensed 680 μL/well microsome solution to 96-well plate as reservoir according to
the plate map, then added 80 μL/well to every plate by Apricot and incubated the mixture of microsome solution and compound at 37°C for about 10 min. NADPH regenerating system was then added. At each time point, 300 (μL/well) stop solution was added to terminate the reaction. Sampling plates are then shaken for approximately 10 min. and samples were centrifuged at 4000 rpm for 20 min at 4°C. Transferred 100 μL supernatant to 96-well plate containing HPLC water and mixed for LC/MS/MS.

Use equation of first order kinetics to calculate $T_{1/2}$ and $CL_{int(mic)}$:

$$C_t = C_0 \cdot e^{-k \cdot t}$$

when $C_t = \frac{1}{2} C_0$,

$$T_{1/2} = \frac{\ln 2}{k_e} = \frac{0.693}{k_e}$$

$$CL_{int(mic)} = \frac{0.693}{\text{In vitro} \ T_{1/2} \cdot \frac{\text{mg/mL microsomal protein in reaction system}}{\text{mg/mL microsomal protein in reaction system}}}$$

$$CL_{int(liver)} = CL_{int(mic)} \cdot \frac{\text{g liver}}{\text{g liver}} \cdot \frac{\text{kg body weight}}{\text{kg body weight}}$$

Cell Culture: Lec3 CHO cells and GNEM patient-derived myoblast cells were cultured in FirmaLab Inc. Lec3 CHO cells were grown in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 5% Fetal Bovine Serum (FBS) and 1% antibiotic agent. GNEM patient-derived myoblasts were grown in Nutrient Mixture Ham’s F-10 supplemented with 20% FBS, 1% antibiotic agent, and 0.5% chick embryo extract (Accurate Chemical). Both cell lines were detached from FBS prior to challenging them to compounds. Cells were incubated in a serum free medium with 13b, 13c, ManNAc or media only control at 37°C in an atmosphere of 5% CO₂ for 48 hours. Cell viability was determined before and after 48-hour incubation time.

Membrane protein fractions were extracted after the incubation period and sialic acid was measured in all fractions. All cell culture reagents were obtained from Thermo Fisher Scientific, except where otherwise indicated.

Cell Viability Assay: All cells and compound mixtures were treated the same. Each sample was thoroughly mixed and a 1:2 dilution was made with Trypan Blue stain (Sigma Aldrich) (20 μL of cell sample and 20 μL of 0.4% Trypan Blue) in a tube. The mixture was gently mixed.
10 μL of the mixture was then applied to the edge of a haemocytometer counting chamber between the cover slip and chamber. The mixture was drawn into the chamber by capillary action.

Cells were counted using a 10× objective. With the assumption that dead cells take up the stain while viable cells do not take up the stain, both viable (unstained) and dead (stained) cells were counted in each of the four corner quadrants. An average of these four readings was obtained and multiplied by 10^4 to obtain the number of viable cells per mL in the sample and doubled to account for the 1:2 dilution. Viability was calculated by taking percentage of viable cells over total number of cells (viable and dead).

Sialic Acid Quantification Assay: Cell-compound samples were pelleted after viability for extracting membrane protein. The Mem-PER plus membrane Protein Extraction Kit (Thermo Fisher Scientific) was used for protein extraction. The Mem-PER system consists of three reagents: Cell Wash Solution, Solubilization Buffer, and Permeabilization Buffer. Cell pellets were washed twice in 600 uL Cell Wash Solution. Supernatant was discarded. 150 uL Permeabilization Buffer was added to each cell pellet and vortexed to obtain a homogeneous cell suspension. Cells were incubated for 10 minutes at 4°C, then centrifuged for 15 minutes at 16,000 × g. Supernatant contained cytosolic proteins, this was a transferred to a new tube. 100 uL Solubilization Buffer was added to cell pellets and were resuspended. Samples were incubated at 4°C for 30 minutes, then centrifuged at 16,000 × g for 15 minutes. Supernatant containing solubilized membrane and membrane-associated proteins were transferred to a new tube. This fraction was used for measuring sialic acid.

Sialic acid concentration was measured with an enzymatic method using the EnzyChrom Sialic Acid Assay Kit (BioAssay Systems) on a Victor X3 plate reader (Perkin Elmer). Kit consists of 6 reagents: Assay Buffer, Enzyme, Dye Reagent, Hydrolysis Reagent, Neutralization Reagent and 10 mM Sialic Acid Standard. Sialic Acid Standard was diluted to make a standard
curve, curve points were treated as any other sample. Free and total sialic acid was measured for all samples. To measure total sialic acid, samples needed to be hydrolyzed. Samples were hydrolyzed by mixing 20 uL sample with 80 uL Hydrolysis reagent, this was incubated at 80°C for 60 minutes. 20 uL Neutralization reagent was added to mixture and briefly spun down to bring down volume. Sialic acid assay was done by preparing a working solution of 93 uL Assay buffer, 1 uL Dye reagent and 1 uL Enzyme for each sample. In a black 96-well plate, 10 uL of each sample were added to their corresponding position. 90 uL of working solution were added to 10 uL of each sample and incubated at room temperature for 60 minutes. After incubation period, fluorescence was read at $\lambda_{ex} = 530$ nm and $\lambda_{em} = 585$ nm. Sample readings were plotted against standard curve to determine sialic acid concentration. Hydrolyzed samples were multiplied by a factor of six to account for the dilution during the hydrolysis step.
ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website and include intermediate and final compounds characterization description, copies of 31P 1H, 13C-NMR spectra, 31P deconvoluted spectra stacked plot of enzymatic reactions of compounds 12a-i, LC-MS traces of compound 12b, 13 and 12b treated with CPY after 2h, cell viability bar graphs and HPLC of compounds 12b and 12c. Molecular Formula String for compounds 12b and 12c.

AUTHOR INFORMATION

Corresponding Author

*Email: pertusatif1@cardiff.ac.uk

Notes

The authors declare the following competing financial interest(s): Patrick J. Crutcher and Dr. Stephen Thomas are respectively the former Chairman of the Board, President and the Chief Scientific Officer, co-founder of Ichorion therapeutics, which has provided financial support to the project. They serve now as Vice President, Business Development and Vice President, Head of Discovery at Cerecor respectively.

ORCID: Fabrizio Pertusati: 0000-0003-4532-9101

ACKNOWLEDGMENTS

We thank Wuxi AppTec for the ADME data.

ABBREVIATIONS

CDGs, Congenital Disorders of Glycosylation; GNEM, GNE myopathy; GNE, mutated gene (UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase); CPY, carboxylesterase Y; Clint, intrinsic clearance; GlcNAc, N-acetyl Glucosamine; ManNAc, N-47
REFERENCES

Eggermont, E.; Eckels, R. Familial psychomotor retardation with markedly fluctuating serum
prolactin, FSH and GH levels, partial TBG-deficiency, increased serum arylsulphatase A and

2. Hennet, T.; Cabalzar, J. Congenital disorders of glycosylation: a concise chart of

Morava, E.; Jaeken, J.; Dos Reis Ferreira, V. CDG Therapies: From Bench to Bedside. Int

4. Luchansky, S. J.; Yarema, K. J.; Takahashi, S.; Bertozzi, C. R. GlcNAc 2-
epimerase can serve a catabolic role in sialic acid metabolism. J. Biol. Chem. 2003, 278, 8035-42.

5. Pogoryelova, O.; Gonzalez Coraspe, J. A.; Nikolenko, N.; Lochmuller, H.; Roos, A. GNE myopathy: from clinics and genetics to pathology and research strategies. Orphanet J Rare Dis 2018, 13, 70.

incorporation of unnatural sialic acids into polysialic acid on neural cells. Glycobiology 2000, 10, 1049-56.

7. Li, Y.; Chen, X. Sialic acid metabolism and sialyltransferases: natural functions and

Lucka, L.; Voi, T.; Mitrani-Rosenbaum, S.; Hinderlich, S. Influence of UDP-GlcNAc 2-
epimerase/ManNAc kinase mutant proteins on hereditary inclusion body myopathy. Biochem. 2006, 45, 2968-77.

10. Carrillo, N.; Malicdan, M. C.; Huizing, M. GNE Myopathy: Etiology, Diagnosis, and
Therapeutic Neuropeurotherapeutics 2018, 15, 900-914.

13. https://ClinicalTrials.gov/show/NCT02346461. An Open Label Phase 2 Study of
ManNAc in Subjects With GNE Myopathy. (accessed Jan 7, 2019).

32. Serpi, M.; Madela, K.; Pertusati, F.; Slusarczyk, M. Synthesis of phosphoramidate 49

Table of Contents graphic

![Diagram of enzymatic activation and deacetylation process](image-url)