
Publishers page: http://dx.doi.org/10.1017/S003329171900196X
<http://dx.doi.org/10.1017/S003329171900196X>

Please note:
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may not be reflected in this version. For the definitive version of this publication, please refer to the published source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made available in ORCA are retained by the copyright holders.
Evidence that endophenotypic expression of schizophrenia polygenic risk is greater in healthy siblings of patients compared to controls, suggesting gene-environment interaction. The EUGEI study.

Jim van Os1,2,3*; Lotta-Katrin Pries2; Philippe Delespaul2; Gunter Kenis2; Jurjen J. Luykx1,4; Bochao D. Lin1; Alexander L. Richards3; Berna Akdede6; Tolga Binbay2; Vesile Altınyazar1; Berna Yalıncıt6; Güvem Gümüş-Akay9; Burçin Cihan10; Haldun Soygür11; Halis Ulaş11; Eylem Şahin Cankurtaran12; Semra Ulusoy Kaymak13; Marina M. Mihaljevic14,15; Sanja Andric Petrovic15; Tijana Mirjanić16; Miguel Bernardo17,18,19; Bibiana Cabrera17,19; Julio Bobes19,20,21,22; Pilar A. Saiz19,20,21,22; María Paz García-Portilla19,20,21,22; Julio Sanjuan19,23; Eduardo J. Aguilar19,23; José Luis Santos19,24; Estela Jiménez-López19,25; Manuel Arrojo26; Angel Carracedo27; Gonzalo López19,28; Javier González-Peñas19,28; Mara Parellada19,28; Nadja P. Maric14,15; Cem Atbaşoğlu29; Alp Ucok30; Köksal Alptekin6; Meram Can Saka29; Genetic Risk and Outcome Investigators (GROUP)#; Celso Arango19,28; Michael O’Donovan5; Bart P. F. Rutten2; Sinan Guloksuz2,31

Affiliations

1 Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
2 Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, the Netherlands
3 King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
4 Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
5 MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
6 Department of Psychiatry, Dokuz Eylül University School of Medicine, Izmir, Turkey
7 Department of Psychiatry, Faculty of Medicine, Adnan Menderes University, Aydin, Turkey.
8 Department of Neuroscience, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
9 Ankara University Brain Research Center, Ankara, Turkey
10 Department of Psychology, Middle East Technical University
11 Private practice
12 Güven Çayyolu Healthcare Campus, Ankara, Turkey
13 Atatürk Research and Training Hospital Psychiatry Clinic, Ankara, Turkey
14 Faculty of Medicine, University of Belgrade
15 Clinic for Psychiatry CCS, Belgrade, Serbia
16 Special Hospital for Psychiatric Disorders Kovin, Kovin, Serbia
17 Barcelona Clinic Schizophrenia Unit, Neuroscience Institute, Hospital Clinic of Barcelona, University of Barcelona, Spain
18 Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
19 Biomedical Research Networking Centre in Mental Health (CIBERSAM), Spain.
20 Department of Psychiatry, School of Medicine, University of Oviedo, Spain
21 Instituto de Investigación Sanitaria del Principado de Asturias, ISPA, Spain
22 Mental Health Services of Principado de Asturias, SESPA; Oviedo, Spain
23 Department of Psychiatry, Hospital Clínico Universitario de Valencia, School of Medicine, Universidad de Valencia, INClIVA, Valencia, Spain.
24 Department of Psychiatry, Hospital Virgen de la Luz, Cuenca, Spain
25 Department of Psychiatry, Hospital Castilla-La Mancha, Health and Social Research Center, Cuenca, Spain
26 Department of Psychiatry, Instituto de Investigación Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain
27 Fundación Publica Galega de Medicina Xenómica, Hospital Clinico Universitario de Santiago de Compostela, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
28 Department of Child and Adolescent Psychiatry, Hospital General Universitario Gregorio Marañón, ISGGM, School of Medicine, Universidad Complutense, Madrid, Spain.
29 Department of Psychiatry, School of Medicine, Ankara University, Ankara, Turkey
30 Istanbul University, Istanbul Faculty of Medicine, Department of Psychiatry
31 Department of Psychiatry, Yale School of Medicine, New Haven, CT

* Genetic Risk and Outcome of Psychosis (GROUP) Investigators in EUGEI

* University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research center, Groningen, The Netherlands;
* Maastricht University Medical Center, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands;
* University Medical Center Utrecht, Department of Psychiatry, UMC Utrecht Brain Centre, Utrecht University, Utrecht, The Netherlands;
* Altrecht, General Mental Health Care, Utrecht, The Netherlands
* Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam, The Netherlands;
* Maastricht University Medical Center, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht, The Netherlands;
* GGNet Mental Health, Apeldoorn, The Netherlands
* King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, United Kingdom
* KU Leuven, Department of Neuroscience, Research Group Psychiatry, Leuven, Belgium;

Acknowledgements

This work was supported by the European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EUGEI) Project is funded by grant agreement HEALTH-F2-2010-241909 (Project EUGEI) from the European Community’s Seventh Framework Programme. We thank the patients and their families for participating in the EUGEI project. We also would like to thank all research personnel involved in the GROUP project, in particular: Joyce van Baaren, Erwin Veermans, Ger Driessen, Truda Driesen, Erna van ’t Hag, Jessica de Nijs. All the DNA samples from Turkey were
provided by Ankara University Brain Research Center Biobank that was supported by AUBAPRO (10A6055003).

Correspondence:

Jim van Os
Department of Psychiatry
UMC Utrecht Brain Centre
Utrecht University Medical Centre
PO BOX 85500 | 3508 GA Utrecht, The Netherlands
T: +31 88 75 583 46 | j.j.vanos-2@umcutrecht.nl

Figure: 1
Tables: 8
Supplementary Figures: 0
Supplementary Tables: 0
Word count text: 4678
Abstract

BACKGROUND.

First-degree relatives of patients with psychotic disorder have higher levels of polygenic risk (PRS) for schizophrenia and higher levels of intermediate phenotypes.

METHODS

We conducted, using two different samples for discovery (n=336 controls and 649 siblings of patients with psychotic disorder) and replication (n=1208 controls and 1106 siblings), an analysis of association between PRS on the one hand and psychopathological and cognitive intermediate phenotypes of schizophrenia on the other in a sample at average genetic risk (healthy controls) and a sample at higher than average risk (healthy siblings of patients). Two subthreshold psychosis phenotypes, as well as a standardized measure of cognitive ability, based on a short version of the WAIS-III short form, were used. In addition, a measure of jumping to conclusion bias (replication sample only) was tested for association with PRS.

RESULTS

In both discovery and replication sample, evidence for association between PRS and subthreshold psychosis phenotypes was observed in the relatives of patients, whereas in the controls no association was observed. Jumping to conclusion bias was similarly only associated with PRS in the sibling group. Cognitive ability was weakly negatively and non-significantly associated with PRS in both the sibling and the control group.

CONCLUSIONS

The degree of endophenotypic expression of schizophrenia polygenic risk depends on having a sibling with psychotic disorder, suggestive of underlying gene-environment interaction. Cognitive biases may better index genetic risk of disorder than traditional measures of neurocognition, which instead may reflect the population distribution of cognitive ability impacting the prognosis of psychotic disorder.
Introduction

Although there is a growing number of studies on the impact of schizophrenia-associated genetic variation on intermediate phenotypes of schizophrenia (Hatzimanolis et al., 2018, Hatzimanolis et al., 2015, Jones et al., 2016, Mistry et al., 2017, Nivard et al., 2017, Power et al., 2015, Riglin et al., 2017, van Os et al., 2017), more work is required, particularly in order to obtain exact rather than approximate replication (Kapur et al., 2012). In a previous publication, we showed that genetic variation underlying psychosis spectrum disorder was associated with suggested intermediate phenotypes of psychopathology and cognition in a sample of first degree relatives of patients, who have a higher than average genetic and environmental liability, and healthy comparison participants with average genetic liability (van Os et al., 2017). Although the earlier study had adequate sample size, any study in this area is crucially dependent on exact replication with similar measures and study design. The aim of this publication, therefore, was to produce an exact replication study, repeating the previous discovery analysis, comparing similar groups and using the same self-report and interview measures of psychopathology and cognition to analyse associations with the schizophrenia polygenic risk score (PRS), using the latest available GWAS summary statistics from the Psychiatric Genomics Consortium wave-2 SCZ group as a training set. As our previous study indicated differential patterns of association between relatives and healthy comparison participants, which is in line with the concept that relatives can be expected to show stronger endophenotypic associations than healthy comparison participants, we tested for interactions with relative/control status. The replication sample was derived from Workpackage 6 (GxE Vulnerability & Severity) of the international EUGEI study (European Network of National Networks studying Gene-Environment Interactions in Schizophrenia et al., 2014), consisting of 1525 healthy comparison participants and 1282 siblings of patients.

Cognitive vulnerabilities underlying psychosis include cognitive biases such as jumping to conclusion bias, in addition to traditional measures of neurocognition (McLean et al., 2017). Given that jumping
to conclusion bias may be more prevalent in first-degree relatives of patients (Van Dael et al., 2006),
and no previous study has tested for molecular genetic association with these cognitive biases, we
examined, in the replication sample, for association between PRS and a measure of jumping to
conclusion bias.

Thus, in the current paper, we analyse associations between PRS on the one hand and measures of
psychopathology, neurocognition and jumping to conclusion bias in siblings of patients with a
psychotic disorder and healthy comparison subjects. As described above, two samples were used.
The first sample, referred to as the ‘GROUP discovery sample’ is a re-analysis of our previously
published results in the GROUP sample (van Os et al., 2017). The second sample, referred to as the
‘EUGEI replication sample’ is the analysis of the more recent EUGEI sample.

Method

Samples

EUGEI replication sample

The EUGEI project is a 25-centre, 15-country, EU-funded collaborative network studying the impact
of genetic and environmental factors on the onset, course and neurobiology of psychosis spectrum
disorder (European Network of National Networks studying Gene-Environment Interactions in
Schizophrenia et al., 2014). Workpackage 6, entitled ‘Vulnerability and Severity’, focussed on the
psychometric expression of genetic and environmental liability in the siblings of patients, who are at
higher than average genetic and environmental risk compared to well healthy comparison
participants. The sample in Workpackage 6 was collected in Spain (5 centres), Turkey (3 centres) and
Serbia (1 centre) and consisted of 1525 healthy comparison participants, 1261 patients with a
diagnosis of psychosis spectrum disorder (average duration of illness since age of first contact with
mental health services: 9.9 years) and 1282 siblings of these patients. Exclusion criteria for all
participants were diagnosis of psychotic disorders due to another medical condition, history of head injury with loss of consciousness, and intelligence quotient < 70. The current analyses were restricted to the group of healthy comparison participants and the siblings. Individuals of non-white ethnic group (n=30) were excluded, as were individuals with missing GWAS information (n=463), leaving 2314 participants (1208 healthy comparison participants and 1106 relatives) for the current analysis.

To achieve high quality and homogeneity in clinical, experimental, and environmental assessments, standardized instruments were administered by psychiatrists, psychologists, or trained research assistants who completed mandatory on-site training sessions and online training modules including interactive interview videos and self-assessment tools (European Network of National Networks studying Gene-Environment Interactions in Schizophrenia et al., 2014). Both on-site and online training sessions were repeated annually to maintain high inter-rater reliability throughout the study enrollment period (for details see: https://cordis.europa.eu/result/rcn/175696_en.html).

The EUGEI project was approved by the Medical Ethics Committees of all participating sites and conducted in accordance with the Declaration of Helsinki. All respondents provided written informed consent and, in the case of minors, such consent was also obtained from parents or legal guardian.

GROUP discovery sample

The current paper also present a re-analysis of the discovery sample, presented in detail in a previous publication, pertaining to the GROUP study, an ongoing multicentre study in the Netherlands of patients diagnosed with schizophrenia and related disorder, as well as their siblings, parents and healthy participants (Korver et al., 2012, van Os et al., 2017). The current analysis in the GROUP sample focussed on 336 healthy comparison participants and 649 siblings of patients, who were assessed three times over a period of six years, yielding 2416 observations.
Allowing for true replication from GROUP discovery to EUGEI replication sample

In order to allow for true replication in the original discovery sample of the Dutch GROUP study, differences between the previous GROUP study and the current EUGEI study that were under our control were dissolved. Thus, one possible reason for discrepancy between studies using polygenic risk for schizophrenia is difference in the platform for molecular genetic analysis used, as well as difference in the version of the GWAS summary statistics from the training sample (Psychiatric Genomics Consortium wave-2 SCZ group). In order to neutralise these factors, GWAS was repeated in the GROUP sample (data version 7.0), using the same genetic analysis platform as used in the current (and later) EUGEI study. Similarly, quality control and calculation of polygenic scores was done in the same fashion as the EUGEI study. In addition, a standardized cognitive score was calculated in the GROUP sample, based on the same variables as in the EUGEI sample. In addition, the same comparison between healthy comparison participants and healthy siblings of patients was conducted. Previous publications in the GROUP sample have shown significant differences between healthy comparison participants and siblings in the measures of CAPE and SIS-R psychosis proneness used in the current analysis, with siblings displaying higher values (Genetic Risk and Outcome in Psychosis Investigators, 2011).

Measures

The GROUP discovery and EUGEI replication samples used the same instruments as listed below, with the exception of the beads task, which was used only in the EUGEI replication sample.

Interview-based schizotypy: SIS-R

The SIS-R was administered to healthy comparison participants, parents and siblings. The SIS-R is a semi-structured interview containing 20 schizotypal symptoms and 11 schizotypal signs rated on a 4-point scale (Kendler et al., 1989, Vollema and Ormel, 2000). Symptoms are defined as verbal
responses to standardized questions concerning, for example, magical ideation, illusions, and referential thinking. Signs refer to behaviours that are rated by the interviewer such as goal-directedness of thinking and flatness of affect. Questions and rating procedures are standardized. Guided by previous research, 33 item scores were reduced \textit{a priori} to 2 dimensional scores, representing the means of 7 positive schizotypy items (covering the areas of referential thinking, psychotic phenomena, derealisation, magical ideation, illusions, and suspiciousness) and 8 negative-disorganized schizotypy items (covering the areas of social isolation, sensitivity, introversion, restricted affect, disturbances in associative and goal-directed thinking, poverty of speech, and eccentric behaviour).

\textit{Self-reported psychotic experiences: CAPE}

The Community Assessment of Psychic Experiences (CAPE; www.cape42.homestead.com) was developed to rate self-reports of lifetime psychotic experiences (Konings \textit{et al.}, 2006). Items are modelled on patient experiences as contained in the Present State Examination, 9th version (Wing \textit{et al.}, 1974), schedules assessing negative symptoms such as the Scale for the Assessment of Negative Symptoms (SANS) (Andreasen, 1982) and the Subjective Experience of Negative Symptoms (SENS) (Selten \textit{et al.}, 1993), and scales assessing depressive symptoms such as the Calgary Depression Scale (Addington \textit{et al.}, 1993). Items are scored on a 4-point scale. In the current analyses, CAPE dimensions of frequency of positive experiences (20 items), negative experiences (14 items) and depressive experiences (8 items) were included (measured at baseline and 3-year follow-up), representing the person’s perceived psychosis load over the lifetime (at baseline) or in the past three years (follow-up). A total score representing the mean of all items was calculated for each dimension.

\textit{Cognitive score}
Cognition ability was estimated based on a short version of the WAIS-III short form: the Digit Symbol Coding subtest, uneven items of the Arithmetic subtest, uneven items of the Block Design subtest, every third item of the Information subtest (Blyler et al., 2000, Velthorst et al., 2013, Wechsler, 1997). For each test, the Z-score was calculated separately for each country and sex. The cognition score was the mean of the Z-scores of the different tests, expressed as a T-score (cognition score shifted and scaled to have a mean of 50 and a standard deviation of 10). The measure will be referred hereafter as ‘cognitive score’.

Beads task (EUGEI replication sample only)

The beads task (Phillips and Edwards, 1966) is an experimental test designed to measure individuals’ reasoning style under ambiguous conditions. It was administered only in the replication sample (EUGEI study). A computerised version of the beads task was completed to assess the presence or absence of the Jumping to Conclusions (JTC) bias. Participants were shown two jars containing red and blue coloured beads in opposite ratios. In this study, the ratio of 60 to 40 beads was chosen, resulting in 100 beads in each jar. The jars as well as all instructions were presented on a computer screen. After both jars were shown and a training session was completed, participants were instructed that all beads are drawn consecutively from one jar and, once presented, were returned to the same jar. After each draw, participants were asked whether they wanted to see another bead or make a decision on which jar the beads were drawn, with the possibility to see up to 20 beads before a decision had to be made. The order of presented beads was predetermined and the dominant colour presented in the training session selected at random. The number of beads drawn at was considered to represent individuals’ reasoning style, and used as dependent variable in the analyses.

Genotyping, imputation and polygenic risk scores
Samples of all individuals, i.e. pertaining to both the discovery and the replication sample, were genotyped at Cardiff University Institute of Psychological Medicine and Clinical Neurology, using custom Illumina HumanCoreExome-24 BeadChip genotyping arrays containing probes for 570038 genetic variants (Illumina, San Diego, CA). Genotype data were called using the GenomeStudio package and transferred into PLINK format for further analysis.

Genotype quality control – variants

Quality control was conducted in PLINK v1.07 (Purcell et al., 2007) or with custom Perl scripts. Variants with call rate < 98% were excluded from the dataset. Hardy-Weinberg Equilibrium p-value was calculated separately in Turkish, northern European and southern European samples. Variants with Hardy-Weinberg Equilibrium p-value < 1e-6 in any of these three regions were excluded from the dataset. After QC, 559505 variants remained.

Genotype quality control – samples

Samples with call rate < 98% were excluded from the dataset. A linkage disequilibrium pruned set of variants was calculated using the --indep-pairwise command in PLINK (maximum r2 = 0.25, window size = 500 SNPs, window step size = 50 SNPs) and used for further analyses. Homozygosity F values were calculated using the --het command in PLINK, and outlier samples (F < -0.11 or F > 0.15) were excluded. The genotypic sex of samples was calculated from X chromosome data using the --check-sex command in PLINK, and samples with different genotypic sex to their database sex were excluded.

Identity-by-descent (IBD) values were calculated for the sample in PLINK. Samples with 1 or more siblings among the genotyped samples according to the database but no identified genotypic siblings (defined as PI-HAT > 0.35 and < 0.65) were excluded. After these were removed from consideration, samples with 2 or more database siblings in the database that were not supported by the genotypic data were also excluded.
After visually observing clustering of errors by genotyping chip, we decided to exclude chips with a high proportion of errors. All samples on chips with 5 or more sample exclusions due to heterozygosity or call rate (out of 12 possible samples) were excluded. All samples on chips with 4 or more sample exclusions due to sex or relative checks were also excluded, unless their identity was corroborated by concordance between database and genotype relatedness data with a sample on another chip.

Principal component analysis

Principal components (PCs) were calculated in PLINK using LD pruned variants after combining the dataset with the Thousand Genomes reference dataset. Due to the inherently multi-population nature of the dataset and the variety of possible analyses, no exclusions were made to the whole dataset based on this analysis; population effects were corrected for separately in individual analyses.

Imputation

After quality control, genotypes were imputed on the Michigan Imputation Server using the Haplotype Reference Consortium reference panel (version 1.1) and the programs Eagle for haplotype phasing and Minimac3 for imputation (Das et al., 2016, Loh et al., 2016). After imputation, variants with an imputation $r^2 > 0.6$, MAF > 0.1% and call rate > 99% were retained (8277535 variants). Best-guess genotypes were generated from genotype probabilities using PLINK.

Polygenic risk score calculation

PRS-SCZ was constructed using summary statistics from the PGC2 genome-wide association study, excluding samples present in the GROUP data (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). Clumping was performed in imputed best-guess genotypes for each dataset using PLINK (maximum $r^2 = 0.2$, window size = 500kb, minimum MAF = 10%, minimum INFO score = 0.7), and variants within regions of long-range LD around the genome (including the MHC).
excluded (Price et al., 2008). PRS-SCZ were then constructed from best-guess genotypes using PLINK at 10 different p-value thresholds ($P_T = 1, 0.5, 0.3, 0.2, 0.1, 0.05, 0.01, 1 \times 10^{-4}, 1 \times 10^{-6}, 5 \times 10^{-8}$). We used $P_T = 0.05$ for our primary analysis, as this threshold explained the most variation in the phenotype in the PGC2 analysis (Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014).

In the EUGEI WP6 dataset, the number of siblings and controls for whom a polygenic risk score could be thus constructed, after QC and imputation, and after exclusion of non-white ethnic groups was: 1106 and 1208, respectively. In the GROUP dataset, a polygenic risk score could be similarly computed for 649 siblings and 336 healthy comparison participants, after exclusion of non-white groups.

Analyses

EUGEI WP6 database version 1.0 And GROUP database version 7.0 were used for the analyses. Bivariate scatterplots were constructed for SIS-R scores, CAPE scores, cognitive score and beads task on the one hand, and PRS on the other. Random intercept multilevel regression models (taking into account clustering of participants within families as well as within countries and, in the re-analysis of the discovery sample, clustering of repeated measures within participants) with SIS-R scores, CAPE scores, cognitive score and beads task as dependent variables were fitted using the MIXED routine in the Stata program, version 15 (StataCorp, 2017). Independent variables were polygenic risk score, *a priori* corrected for age and sex, while all models including PRS were additionally adjusted for ancestry, using the first 10 PCs.

In order to examine robustness of findings with regard to assumptions of normality, log-transformed outcomes of SIS-R scores, CAPE scores, cognitive score and beads task were additionally examined, using the Stata LNSKEW0 routine. LNSKEW0 creates newvar = ln(+/-exp - k), choosing k and the sign of exp so that the skewness of newvar is zero.
In order to examine to what degree the size of any association between PRS and measures of psychopathology/cognition would be stronger for siblings than for healthy comparison subjects, interactions were fitted between group (healthy comparison participant/relative status) and continuous PRS. Interaction analyses were followed by calculation of polygenic risk score effect sizes, stratified by group (i.e. calculating associations between PRS and measures of psychopathology/cognition separately for siblings and healthy comparison subjects), derived from the model with the interaction, using the STATA MARGINS command.

In line with Rothman (Rothman, 1990), corrections for multiple testing were not applied. Instead, we relied on a discussion of coherence and possible unifying pattern of results.

Results

EUGEI replication sample description

Relatives and healthy comparison participants showed similar demographic characteristics and cognitive scores. These variables also showed comparable distributions across the different countries, although participants tended to be younger in Serbia and the proportion of women was smaller in Spain (Table 1). Polygenic risk score scores were higher in Turkey, similar across the sexes and higher in the siblings (Table 2). Siblings had a higher schizophrenia polygenic risk score than healthy participants (standardized effect size: 0.06, p=0.006). Scores of SIS-R and CAPE were similar for men and women, with the exception of the CAPE depressive dimension, which was higher for women. Siblings had significantly higher scores on CAPE and SIS-R measures, with the exception of the CAPE positive dimension, probably due to defensive answering (data not shown) (for descriptives see Tables 3 and 4).

Association between polygenic risk score and group in the EUGEI replication sample
Scatter plots of CAPE, SIS-R and cognitive dimensions on the one hand and polygenic risk score on the other generally showed that (i) the direction of association differed between siblings and healthy comparison subjects and (ii) siblings displayed stronger associations, with the exception of cognitive score (Fig. 1). Accordingly, all multilevel regression models of (log-transformed) SIS-R, CAPE and cognitive scores showed significant interaction between polygenic risk score and group, with the exception of CAPE positive dimension and cognitive score (Table 5). Stratified analyses revealed significant or suggestive positive associations between PRS and SIS-R and CAPE measures (with the exception of the CAPE positive dimension), and a negative association with beads task number of beads in the siblings. In the healthy comparison participants, there was either no association (CAPE measures) or a weak, directionally inverse association (SIS-R measures, beads task)(Table 6). Cognitive scores showed a different pattern, with weak negative associations with polygenic risk in both the sibling and the control groups.

Re-analysis of original GROUP discovery sample

Re-analysis of the GROUP discovery sample, using repeated measures of CAPE, SIS-R and cognitive score (calculated so as to match the cognitive score in the EUGEI study) in 985 healthy participants and siblings of patients (n=336 healthy comparison participants and n=649 siblings), interviewed three times in 6 years, yielding 2416 observations, revealed results that were similar, in terms of direction, effect size and pattern of associations, to the current EUGEI study (Tables 7 and 8). Thus, again with the exception of cognitive score, there were significant interactions for the majority of psychopathological measures indicating no, or weakly negative association in the healthy participant group and significant associations in the sibling group (Tables 7 and 8). There was no association between cognitive score and PRS, and only in the sibling group was the association with cognitive score in the same (negative) direction as in the EUGEI replication sample (Tables 7 and 8).
Discussion

In a replication study, using similar sampling and methodological strategies across samples, we found that polygenic risk for schizophrenia was associated with intermediate phenotype measures of psychopathology in non-ill participants. However, the pattern of association was differential for groups at average and higher than average genetic risk, showing stronger and directionally dissimilar associations in the sibling group compared to the healthy comparison group. A similar pattern of differential association was present for a measure of cognitive bias (jumping to conclusions). For a measure indexing cognitive ability, the EUGEI replication sample but not the GROUP discovery sample showed non-significant associations in both the sibling and the healthy comparison group, with no suggestion of interaction.

The EUGEI replication findings thus match the results in the GROUP discovery sample (van Os et al., 2017), re-analysed to match the methods of genetic examination in the EUGEI replication sample. We conclude that when using similar instruments and genetic measures, associations between polygenic risk score and psychosis intermediate phenotypes can be reliably replicated from one sample to another, in that associations are readily detectable in the group at higher than average genetic risk, but not, or inversely, in the group at average genetic risk. Overall, the findings suggest, with the exception of the measure of neurocognition, a pattern of qualitative interaction: associations between PRS and psychosis intermediate phenotypes tend to be positive in relatives of patients (PRS predicting poorer outcome) and negative in healthy comparison participants (PRS predicting better outcome).

Polygenic risk and measures of psychopathology and cognition

As far as we are aware, there have been no previous studies differentially examining polygenic risk in individuals at higher than average genetic risk in relation to psychopathology and cognition.
intermediate phenotypes. Studies in healthy participants have shown inconsistent results
(Hatzimanolis et al., 2018, Hatzimanolis et al., 2015, Jones et al., 2016, Mistry et al., 2017, Nivard et
al., 2017, Riglin et al., 2017), one study notably reporting negative associations between polygenic
risk and schizotypy, similar to the current results (Hatzimanolis et al., 2018). Another recent general
population study found a protective effect of PRS in that PRS predicted greater levels of positive
affect in daily life (Pries et al., 2019). It is likely that crucial variation may be occasioned by platform
for genetic analysis and calculation of polygenic risk score. Other factors may include quality
checking of GWAS and variation in sampling, instruments and analysis. The results suggest that
linking intermediate phenotypes to molecular measures of risk can be reliably achieved in
moderately large samples of individuals at higher than average genetic risk. According to the
liability-threshold model, a person with a number of risk variants lower than or equal to the critical
threshold would not develop schizophrenia, whereas a person with more risk variants would (McGue
et al., 1983). Given genetic enrichment in the relatives, this model may explain why polygenic risk
was associated with psychometric and cognitive bias intermediate phenotypes in the relatives, but
not in the healthy comparison participants. The current findings also indicate that self-report
measures function less well than interview-based measures in uncovering associations between
psychometric measures and polygenic risk for schizophrenia. Indeed, the findings suggest that
siblings in the EUGEI replication sample showed a degree of defensive answering on the CAPE
positive dimensions, scoring lower than the healthy comparison participants (Table 3), which was
not the case in the discovery sample (van Os et al., 2017).

The positive association between polygenic risk and the jumping to conclusion bias confirms
previous results of familial clustering with psychosis (Van Dael et al., 2006). This result suggests that
genetic variation may impact psychopathology by moderating underlying styles of thinking which are
thought to interact with underling biological mechanisms in creating clinically relevant psychotic
symptoms (Howes and Murray, 2014).
Qualitative interactions

The results suggest that the degree of endophenotypic expression of polygenic molecular genetic risk crucially depends on having a first-degree relative with psychotic disorder, i.e. of having higher than average genetic risk for psychotic disorder. In the absence of a sibling with psychotic disorder, expression of polygenic risk may even be protective against expression of psychosis proneness, as also reported by other groups (Hatzimanolis et al., 2018, Pries et al., 2019). The notion of schizophrenia genetic risk having advantage may explain why all humans are carriers of a rich variety of schizophrenia genetic risk variants (Kendler, 2015) that, in addition, in the rare instances where it has been examined, may for example contribute to abilities required for a creative profession (Power et al., 2015). If polygenic risk for schizophrenia reduces the likelihood of schizophrenia-related intermediate phenotypes in non-ill people, siblings should display even lower levels of expression of these intermediate phenotypes, which, however, was not the case. One factor that may explain the differential association as a function of familial presence of psychotic disorder is the environment. Thus, the siblings growing up with a brother or sister diagnosed with psychotic disorder have a higher rate of exposure to known proxy environmental risk factors such as urban environment and ethnic group – which are almost always shared between siblings, but also to risk factors like cannabis use and childhood adversity (Heins et al., 2011, Smith et al., 2008). Although presence of family history is generally taken as an indicator of increased genetic risk, research suggests that molecular measures of polygenic risk explain only around a fifth of the effect of family history, suggesting a substantial part may be explained by epistasis and/or environmental effects and the interactions between genes and environment (Agerbo et al., 2015). Schizophrenia may be in part dependent on gene-environment interplay, amongst others in the form of differential sensitivity to environmental risks (van Os et al., 2010), as indeed shown in a recent analysis of the same EUGEI sample (Guloksuz et al., 2019). Thus, siblings may have higher rates of expression of psychosis intermediate phenotypes not because of higher levels of genetic risk, but because of genetic risk interacting with higher rates of exposure to environmental risks in this group. Another possibility,
not mutually exclusive with gene-environment interplay, is that siblings share gene-gene
interactions with their ill relatives that are uncommon in healthy controls, producing a qualitatively
different pattern of association with intermediate phenotypes.

Cognitive ability and lack of association and qualitative interaction

Cognitive ability was the only measure where there was no clear pattern of association or qualitative
interaction in both samples. Results in the largest sample showed weak and directionally similar
negative associations between schizophrenia polygenic risk and cognition in both the healthy
comparison and the sibling group. These findings are in line with previous population-based work
showing similar weak negative associations between schizophrenia polygenic risk and measures of
cognition, indicative of shared common genetic factors between schizophrenia and cognitive ability
(Hubbard et al., 2016, Lencz et al., 2014). One explanation for the observed contrast in qualitative
interaction between cognitive and non-cognitive intermediate phenotypes is prognostic
confounding, or the fact that variation in cognition as observed in schizophrenia may represent a
‘prognostic’ rather than a ‘disease’ factor. It has been pointed out that schizophrenia represents the
poor outcome fraction of a much broader psychosis phenotype (Guloksuz and van Os, 2018). One of
the factors driving prognostic variation in the psychosis spectrum is the degree of comorbid
cognitive alterations. If the poor outcome end of the spectrum is defined as a separate disease, of
which cognitive alteration is considered a key characteristic, prognostic confounding will arise. In
other words, psychosis spectrum disorder may have a poorer outcome when it occurs in people who
are at the lower end of the distribution of cognitive ability in the general population. This will
occasion an association between schizophrenia genetic risk and cognition if the disease phenotype is
conflated with the prognostic characteristic. As a result, schizophrenia genetic risk will predict lower
cognitive ability in the general population – but to a similar degree in controls and siblins of patients.
This interpretation is in line with recent work indicating that cognition in patients with schizophrenia
is more strongly associated with polygenic risk that indexes cognitive traits in the general population than polygenic risk from mental disorders (Richards et al., 2019).

Methodological issues

The strength of the current study is twofold: within-report true replication and unique large samples of individuals at higher-than average risk. We controlled for potential weaknesses such as the use of a multi-country sample with possible residual underlying population stratification. Future research may include more objective physiological intermediate phenotypes such as EEG or MRI-based measures. A limitation is that the current study lacked statistical power to conduct genome-wide analyses of association with endophenotypic measures, which would have allowed for GWAS stratified by sibling status as a confirmatory strategy.

Disclosures: The authors declare no conflicts of interest

Acknowledgments: We thank the patients and their families for participating in the EUGEI project. Furthermore, we would like to thank all research personnel involved in the GROUP project, in particular: Joyce van Baaren, Erwin Veermans, Ger Driessen, Truda Driesen, Erna van ’t Hag and Jessica de Nijs.

Funding/Support: The European Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EUGEI) Project is funded by grant agreement HEALTH-F2-2010-241909 (Project EUGEI) from the European Community’s Seventh Framework Programme.
Table 1. Sample demographics and cognitive scores, by group and country

<table>
<thead>
<tr>
<th>Group</th>
<th>Age</th>
<th>Sex</th>
<th>Educational level</th>
<th>Cognitive score</th>
<th>Beads task number drawn</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>Sd</td>
<td>% female</td>
<td>mean</td>
<td>sd</td>
<td></td>
</tr>
<tr>
<td>Healthy comparison participants</td>
<td>34.17</td>
<td>10.44</td>
<td>0.48</td>
<td>3.68</td>
<td>1.17</td>
<td>50.10</td>
</tr>
<tr>
<td>Siblings</td>
<td>34.26</td>
<td>9.46</td>
<td>0.53</td>
<td>3.75</td>
<td>1.19</td>
<td>50.44</td>
</tr>
<tr>
<td>Total</td>
<td>34.21</td>
<td>9.98</td>
<td>0.51</td>
<td>3.72</td>
<td>1.18</td>
<td>50.26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Country</th>
<th>Age</th>
<th>Sex</th>
<th>Educational level</th>
<th>Cognitive score</th>
<th>Beads task number drawn</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>33.81</td>
<td>10.45</td>
<td>0.54</td>
<td>3.75</td>
<td>1.18</td>
<td>50.31</td>
</tr>
<tr>
<td>Spain</td>
<td>35.56</td>
<td>9.18</td>
<td>0.44</td>
<td>3.66</td>
<td>1.19</td>
<td>50.24</td>
</tr>
<tr>
<td>Serbia</td>
<td>29.28</td>
<td>6.81</td>
<td>0.57</td>
<td>3.59</td>
<td>1.07</td>
<td>49.59</td>
</tr>
<tr>
<td>Total</td>
<td>34.21</td>
<td>9.98</td>
<td>0.51</td>
<td>3.72</td>
<td>1.18</td>
<td>50.26</td>
</tr>
</tbody>
</table>

sd = standard deviation
N = number of observations
* 12 individuals had unknown group status
Table 2. Polygenic scores by country, sex and group

<table>
<thead>
<tr>
<th>Group</th>
<th>Country and sex</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turkey</td>
<td>Spain</td>
<td>Serbia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>Healthy comparison</td>
<td>Mean</td>
<td>-16.53</td>
<td>-16.4</td>
<td>-19.73</td>
<td>-20.25</td>
</tr>
<tr>
<td></td>
<td>sd</td>
<td>2.47</td>
<td>2.42</td>
<td>2.67</td>
<td>2.51</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>361</td>
<td>435</td>
<td>241</td>
<td>123</td>
</tr>
<tr>
<td>Siblings</td>
<td>Mean</td>
<td>-15.52</td>
<td>-15.84</td>
<td>-19.29</td>
<td>-19.52</td>
</tr>
<tr>
<td></td>
<td>sd</td>
<td>2.45</td>
<td>2.45</td>
<td>2.54</td>
<td>2.55</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>299</td>
<td>329</td>
<td>196</td>
<td>226</td>
</tr>
</tbody>
</table>

sd = standard deviation
N = number of observations
Table 3. CAPE scores by group and sex

<table>
<thead>
<tr>
<th></th>
<th>CAPE positive score</th>
<th>CAPE negative core</th>
<th>CAPE depressive score</th>
<th>CAPE total score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>N</td>
<td>mean</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy comparison participants</td>
<td>0.26</td>
<td>0.29</td>
<td>1186</td>
<td>0.46</td>
</tr>
<tr>
<td>Siblings</td>
<td>0.23</td>
<td>0.21</td>
<td>1001</td>
<td>0.53</td>
</tr>
<tr>
<td>Total</td>
<td>0.24</td>
<td>0.26</td>
<td>2187</td>
<td>0.49</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>0.25</td>
<td>0.25</td>
<td>1070</td>
<td>0.49</td>
</tr>
<tr>
<td>Women</td>
<td>0.24</td>
<td>0.26</td>
<td>1114</td>
<td>0.49</td>
</tr>
<tr>
<td>Total</td>
<td>0.24</td>
<td>0.26</td>
<td>2184</td>
<td>0.49</td>
</tr>
</tbody>
</table>

sd = standard deviation
N = number of observations
Table 4. SIS-R scores by group and sex

<table>
<thead>
<tr>
<th></th>
<th>SIS-R positive score</th>
<th>SIS-R negative score</th>
<th>SIS-R total score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>sd</td>
<td>N</td>
</tr>
<tr>
<td>Group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthy comparison participants</td>
<td>0.22</td>
<td>0.3</td>
<td>1201</td>
</tr>
<tr>
<td>Siblings</td>
<td>0.42</td>
<td>0.42</td>
<td>1074</td>
</tr>
<tr>
<td>Total</td>
<td>0.31</td>
<td>0.38</td>
<td>2275</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>0.31</td>
<td>0.37</td>
<td>1121</td>
</tr>
<tr>
<td>Women</td>
<td>0.31</td>
<td>0.38</td>
<td>1151</td>
</tr>
<tr>
<td>Total</td>
<td>0.31</td>
<td>0.38</td>
<td>2272</td>
</tr>
</tbody>
</table>

sd = standard deviation
N = number of observations
Table 5. Associations between polygenic risk score and CAPE / SIS-R / Cognitive (bias) scores, and interaction with healthy comparison-sibling status

<table>
<thead>
<tr>
<th>Psychopathology measure</th>
<th>polygenic risk score x healthy comparison-sibling status interaction</th>
<th>B (95% CI)</th>
<th>p</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPE positive</td>
<td></td>
<td>-0.0007</td>
<td>-0.0079</td>
<td>0.0064</td>
</tr>
<tr>
<td>ln_CAPE positive*</td>
<td></td>
<td>0.0177</td>
<td>-0.0039</td>
<td>0.0392</td>
</tr>
<tr>
<td>CAPE negative</td>
<td></td>
<td>0.0161</td>
<td>0.0053</td>
<td>0.0268</td>
</tr>
<tr>
<td>ln_CAPE negative*</td>
<td></td>
<td>0.0218</td>
<td>0.0098</td>
<td>0.0339</td>
</tr>
<tr>
<td>CAPE depressive</td>
<td></td>
<td>0.0091</td>
<td>-0.0019</td>
<td>0.0202</td>
</tr>
<tr>
<td>ln_CAPE depressive*</td>
<td></td>
<td>0.0125</td>
<td>0.0001</td>
<td>0.0249</td>
</tr>
<tr>
<td>CAPE total</td>
<td></td>
<td>0.0081</td>
<td>-0.0005</td>
<td>0.0166</td>
</tr>
<tr>
<td>ln_CAPE total*</td>
<td></td>
<td>0.0163</td>
<td>0.0039</td>
<td>0.0288</td>
</tr>
<tr>
<td>SIS-R positive</td>
<td></td>
<td>0.0308</td>
<td>0.0210</td>
<td>0.0407</td>
</tr>
<tr>
<td>ln_SIS-R positive*</td>
<td></td>
<td>0.0881</td>
<td>0.0602</td>
<td>0.1160</td>
</tr>
<tr>
<td>SIS-R negative</td>
<td></td>
<td>0.0235</td>
<td>0.0148</td>
<td>0.0321</td>
</tr>
<tr>
<td>ln_SIS-R negative*</td>
<td></td>
<td>0.0544</td>
<td>0.0355</td>
<td>0.0732</td>
</tr>
<tr>
<td>SIS-R total</td>
<td></td>
<td>0.0270</td>
<td>0.0189</td>
<td>0.0350</td>
</tr>
<tr>
<td>ln_SIS-R total*</td>
<td></td>
<td>0.0637</td>
<td>0.0452</td>
<td>0.0823</td>
</tr>
<tr>
<td>Cognitive score</td>
<td></td>
<td>0.0249</td>
<td>-0.1836</td>
<td>0.2335</td>
</tr>
<tr>
<td>ln_Cognitive score*</td>
<td></td>
<td>0.0002</td>
<td>-0.0018</td>
<td>0.0021</td>
</tr>
<tr>
<td>Beads task score</td>
<td></td>
<td>-0.3810</td>
<td>-0.4956</td>
<td>-0.2664</td>
</tr>
<tr>
<td>ln_Beads task score</td>
<td></td>
<td>-0.1218</td>
<td>-0.1516</td>
<td>-0.0919</td>
</tr>
</tbody>
</table>

* = log-transformed measure
B = regression coefficient from multilevel model
95% CI = 95% confidence interval
P = p-value
N = number of observations
Table 6. Associations between polygenic risk score and measures of psychopathology, by group*

<table>
<thead>
<tr>
<th>Psychopathology measure</th>
<th>Stratified association of psychopathology measure with polygenic risk score</th>
<th>Association of log-transformed psychopathology measure with polygenic risk score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group</td>
<td>B (95% CI)</td>
</tr>
<tr>
<td>CAPE positive</td>
<td>Healthy comparison</td>
<td>0.0021</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0014</td>
</tr>
<tr>
<td>CAPE negative</td>
<td>Healthy comparison</td>
<td>-0.0032</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0128</td>
</tr>
<tr>
<td>CAPE depressive</td>
<td>Healthy comparison</td>
<td>-0.0005</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0087</td>
</tr>
<tr>
<td>CAPE total</td>
<td>Healthy comparison</td>
<td>-0.0004</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0077</td>
</tr>
<tr>
<td>SIS-R positive</td>
<td>Healthy comparison</td>
<td>-0.0089</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0219</td>
</tr>
<tr>
<td>SIS-R negative</td>
<td>Healthy comparison</td>
<td>-0.0063</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0172</td>
</tr>
<tr>
<td>SIS-R total</td>
<td>Healthy comparison</td>
<td>-0.0069</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0201</td>
</tr>
<tr>
<td>Cognitive score</td>
<td>Healthy comparison</td>
<td>-0.1939</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>-0.1690</td>
</tr>
<tr>
<td>Beads task</td>
<td>Healthy comparison</td>
<td>0.0806</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>-0.3004</td>
</tr>
</tbody>
</table>

* as derived from linear combination of terms in the model with the interaction
B=regression coefficient from multilevel model
95% CI = 95% confidence interval
P = p-value
N = number of observations
Table 7. Genetic Risk and Outcome of Psychosis (GROUP) sample: Associations between polygenic risk score and CAPE / SIS-R / Cognitive scores, and interaction with Healthy comparison-sibling status

<table>
<thead>
<tr>
<th>Psychopathology measure</th>
<th>polygenic risk score x healthy comparison-sibling status interaction</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B (95% CI)</td>
<td>p</td>
<td>N#</td>
</tr>
<tr>
<td>CAPE positive</td>
<td>0.0125</td>
<td>0.0051</td>
<td>0.0200</td>
</tr>
<tr>
<td>ln_CAPE positive*</td>
<td>0.0831</td>
<td>0.0369</td>
<td>0.1293</td>
</tr>
<tr>
<td>CAPE negative</td>
<td>0.0196</td>
<td>0.0016</td>
<td>0.0375</td>
</tr>
<tr>
<td>ln_CAPE negative*</td>
<td>0.0235</td>
<td>0.0014</td>
<td>0.0456</td>
</tr>
<tr>
<td>CAPE depressive</td>
<td>0.0277</td>
<td>0.0095</td>
<td>0.0459</td>
</tr>
<tr>
<td>ln_CAPE depressive*</td>
<td>0.0297</td>
<td>0.0096</td>
<td>0.0497</td>
</tr>
<tr>
<td>CAPE total</td>
<td>0.0206</td>
<td>0.0074</td>
<td>0.0337</td>
</tr>
<tr>
<td>ln_CAPE total*</td>
<td>0.0306</td>
<td>0.0097</td>
<td>0.0515</td>
</tr>
<tr>
<td>SIS-R positive</td>
<td>0.0294</td>
<td>0.0142</td>
<td>0.0445</td>
</tr>
<tr>
<td>ln_SIS-R positive*</td>
<td>0.0593</td>
<td>0.0246</td>
<td>0.0940</td>
</tr>
<tr>
<td>SIS-R negative</td>
<td>0.0089</td>
<td>-0.0015</td>
<td>0.0193</td>
</tr>
<tr>
<td>ln_SIS-R negative*</td>
<td>0.0197</td>
<td>-0.0029</td>
<td>0.0423</td>
</tr>
<tr>
<td>SIS-R total</td>
<td>0.0188</td>
<td>0.0077</td>
<td>0.0300</td>
</tr>
<tr>
<td>ln_SIS-R total*</td>
<td>0.0372</td>
<td>0.0133</td>
<td>0.0610</td>
</tr>
<tr>
<td>Cognitive score</td>
<td>-0.1465</td>
<td>-0.5360</td>
<td>0.2431</td>
</tr>
<tr>
<td>ln_Cognitive score*</td>
<td>0.0041</td>
<td>-0.0065</td>
<td>0.0147</td>
</tr>
</tbody>
</table>

* = log-transformed measure
B=regression coefficient from multilevel model
95% CI = 95% confidence interval
P = p-value
#N = number of observations in 985 individuals interviewed three times in 6 years
Table 8. Genetic Risk and Outcome of Psychosis (GROUP) sample: Associations between polygenic risk score and measures of psychopathology, by group*

<table>
<thead>
<tr>
<th>Psychopathology measure</th>
<th>Stratified association of psychopathology measure with polygenic risk score</th>
<th>Association of log-transformed psychopathology measure with polygenic risk score</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Group</td>
<td>B (95% CI)</td>
</tr>
<tr>
<td>CAPE positive</td>
<td>Healthy comparison</td>
<td>-0.0067</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0058</td>
</tr>
<tr>
<td>CAPE negative</td>
<td>Healthy comparison</td>
<td>-0.0072</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0124</td>
</tr>
<tr>
<td>CAPE depressive</td>
<td>Healthy comparison</td>
<td>-0.0056</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0221</td>
</tr>
<tr>
<td>CAPE total</td>
<td>Healthy comparison</td>
<td>-0.0068</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0137</td>
</tr>
<tr>
<td>SIS-R positive</td>
<td>Healthy comparison</td>
<td>-0.0097</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0196</td>
</tr>
<tr>
<td>SIS-R negative</td>
<td>Healthy comparison</td>
<td>-0.0014</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0075</td>
</tr>
<tr>
<td>SIS-R total</td>
<td>Healthy comparison</td>
<td>-0.0055</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>0.0133</td>
</tr>
<tr>
<td>Cognitive score</td>
<td>Healthy comparison</td>
<td>0.0344</td>
</tr>
<tr>
<td></td>
<td>Sibling</td>
<td>-0.1120</td>
</tr>
</tbody>
</table>

* as derived from linear combination of terms in the model with the interaction

B = regression coefficient from multilevel model

95% CI = 95% confidence interval

P = p-value

#N = number of observations in 985 individuals interviewed three times in 6 years
Fig. 1. PRS scatterplots with regression line for CAPE (Fig. 1a), SIS-R and (Fig. 1b) and cognition (Fig. 1c) outcomes

Fig. 1a

[PLACE HERE THE 4 FIGURES FOR FIGURE 1A: FIG_1A_CAPEPOS, FIG_1A_CAPENEG, FIG_1A_CAPEDEP, FIG_1A_CAPETOT]
Fig. 1b

[PLACE HERE THE 3 FIGURES FOR FIGURE_1B: FIG_1B_SISPOS, FIG_1B_SISNEG, FIG_1B_SISTOT]
Fig. 1c

[PLACE HERE THE 2 FIGURES FOR FIGURE_1C: FIG_1C_TCOG, FIG_1C_BEADS]
References

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ & Sham PC (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics 81, 559-75.

