Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis

Sieberts, Solveig K., Zhu, Fan, García-García, Javier, Stahl, Eli, Pratap, Abhishek, Pandey, Gaurav, Pappas, Dimitrios, Aguilar, Daniel, Anton, Bernat, Bonet, Jaume, Eksi, Ridvan, Fornés, Oriol, Guney, Emre, Li, Hongdong, Marín, Manuel Alejandro, Panwar, Bharat, Planas-Iglesias, Joan, Poglayen, Daniel, Cui, Jing, Falcao, Andre O., Suver, Christine, Hoff, Bruce, Balagurusamy, Venkat S. K., Dillenberger, Donna, Neto, Elias Chaibub, Norman, Thea, Aittokallio, Tero, Ammad-ud-din, Muhammad, Azencott, Chloe-Agathe, Bellón, Víctor, Boeva, Valentina, Bunte, Kerstin, Chheda, Himanshu, Cheng, Lu, Corander, Jukka, Dumontier, Michel, Goldenberg, Anna, Gopalacharyulu, Peddinti, Hajiloo, Mohsen, Hidru, Daniel, Jaiswal, Alok, Kaski, Samuel, Khalfaoui, Beyrem, Khan, Suleiman Ali, Kramer, Eric R., Marttinen, Pekka, Mezlini, Aziz M., Molparia, Bhuvan, Pirinen, Matti, Saarela, Janna, Samwald, Matthias, Stoven, Véronique, Tang, Hao, Tang, Jing, Torkamani, Ali, Vert, Jean-Phillipe, Wang, Bo, Wang, Tao, Wennerberg, Krister, Wineinger, Nathan E., Xiao, Guanghua, Xie, Yang, Yeung, Rae, Zhan, Xiaowei, Zhao, Cheng, Greenberg, Jeff, Kremer, Joel, Michaud, Kaleb, Barton, Anne, Coenen, Marieke, Mariette, Xavier, Miceli, Corinne, Shadick, Nancy, Weinblatt, Michael, de Vries, Niek, Tak, Paul P., Gerlag, Danielle, Huizinga, Tom W. J., Kurreeman, Fina, Allaart, Cornelia F., Louis Bridges, S., Criswell, Lindsey, Moreland, Larry, Klareskog, Lars, Saevarsdottir, Saedis, Padyukov, Leonid, Gregersen, Peter K., Friend, Stephen, Plenge, Robert, Stolovitzky, Gustavo, Oliva, Baldo, Guan, Yuanfang and Mangravite, Lara M. 2016. Crowdsourced assessment of common genetic contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nature Communications 7 (1) , -. 10.1038/ncomms12460

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (517kB) | Preview

Abstract

Rheumatoid arthritis (RA) affects millions world-wide. While anti-TNF treatment is widely used to reduce disease progression, treatment fails in ∼one-third of patients. No biomarker currently exists that identifies non-responders before treatment. A rigorous community-based assessment of the utility of SNP data for predicting anti-TNF treatment efficacy in RA patients was performed in the context of a DREAM Challenge (http://www.synapse.org/RA_Challenge). An open challenge framework enabled the comparative evaluation of predictions developed by 73 research groups using the most comprehensive available data and covering a wide range of state-of-the-art modelling methodologies. Despite a significant genetic heritability estimate of treatment non-response trait (h2=0.18, P value=0.02), no significant genetic contribution to prediction accuracy is observed. Results formally confirm the expectations of the rheumatology community that SNP information does not significantly improve predictive performance relative to standard clinical traits, thereby justifying a refocusing of future efforts on collection of other data.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Biosciences
Publisher: Nature Publishing Group
ISSN: 2041-1723
Date of First Compliant Deposit: 14 March 2019
Date of Acceptance: 5 July 2016
Last Modified: 01 Apr 2019 14:15
URI: http://orca-mwe.cf.ac.uk/id/eprint/120720

Citation Data

Cited 40 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics