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FIG. 1. Kagome lattice with the configurations of spins for the
√
3 ×

√
3 and q = 0 states

Exotic quantum spin liquid (QSL) states [1] and fractionalized quasiparticles [2, 3] in

frustrated magnets are of much current interest in theoretical and experimental studies of

quantum magnetism. The kagome-lattice Heisenberg antiferromagnet (KAFM) provides a

possible realization of just such novel topological states of matter. The kagome lattice shown

in Fig. 1 is one of eleven Archimedean lattices [4, 5] in two spatial dimensions, where the

word kagomé itself means “weave pattern” in Japanese. The Hamiltonian for the KAFM

model is given by

H = J
∑

⟨i,j⟩

si · sj , (1)

where s2i = s(s + 1) and the summation ⟨i, j⟩ again runs over all nearest-neighbor (NN)

bonds (counting each bond once only) and where J(> 0) is the bond strength. The KAFM

is geometrically frustrated in the sense that not all pairs of nearest-neighbor spins can be

simultaneously antiparallel, as is otherwise favored by the Heisenberg antiferromagnetic

exchange interaction between pairs of spins. Even the classical behavior of this model at

zero temperature is complicated because there are an infinite number of possible classical

ground states to choose from potentially. Each potential classical ground state has nearest-

neighboring spins on the “triangles” of these lattices that form angles of 120◦ to each other.

Thermal fluctuations [6–10] favor the
√
3 ×

√
3 (coplanar) state (see Fig. 1). Harmonic
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quantum fluctuations favor coplanar over non-coplanar states [11–13], whereas anharmonic

quantum fluctuations suggest specifically that it is the
√
3 ×

√
3 state that is favored for

s > 1/2.

Results for the ground-state energy for the spin-half, KAFM areEg/(NJs2) = −1.7544(0.002)

(density matrix renormalization group (DMRG) [14]; see also Refs. [15, 16]), −1.72884

(entanglement renormalization [17]), −1.732 (series expansions around a dimer limit [18]),

−1.754488 (coupled cluster method (CCM) [5, 19]), −1.75008(0.00024) (tensor network

states [20]), −1.75257 (large-scale exact diagonalizations (ED) for N = 42 [21, 22, 24]), and

−1.75482 (ED for N = 48 [23]). All of the evidence from these approximation methods (see,

e.g., Refs. [5, 14, 19–21]) indicates that the long-range magnetic order parameter is zero.

Candidates for the ground state of the spin-half KAFM system are a gapped spin liquid

[14–16, 25, 26] (gap ∼ 0.055(5) [16] to 0.13(1) [14]; see also recent experimental evidence

of Ref. [27]), a gapless spin liquid [20, 22, 28, 29], and a valence-bond state [18, 30–33].

Although long-range magnetic order does not occur, the exact nature of the ground state is

therefore still a topic of debate.

The simplest and most direct route that order may “emerge from magnetic disorder”

for the KAFM is to increase the spin quantum number, s. Results for the ground-state

energy for the spin-one KAFM are Eg/(NJs2) = −1.3950 (series expansions) [34], −1.40315

(CCM) [19, 35], −1.4109(2) (tensor network) [36], −1.410(2) (DMRG) [37], and −1.41095

(also DMRG) [38]. Results for the s = 3/2 KAFM are Eg/(NJs2) = −1.253022 (series

expansions) [34], −1.26798 (CCM) [19, 35], and −1.265(2) (tensor network) [39]. CCM

calculations [19, 35] also indicate that the ground-state energy scales with s (for s ≥ 3/2)

via the following equation,

Eg

NJs2
= −1 − 0.4140

s
+

0.0180

s2
. (2)

The order parameter is given by

M =
1

N

N∑

i

⟨Ψ|sz
i |Ψ⟩ , (3)

where sz
i is defined with respect to local axes of one of the classical ground states at site i.

We expect that the order parameter M/s will tend to M/s → 1 in the limit s → ∞. The

effect of quantum fluctuations is to reduce to the amount of magnetic order and so we expect

M/s < 1 for finite values of s. Results of most approximate methods for the spin-one KAFM
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suggest that there is no magnetic long-range order, although Ref. [40] indicated
√
3 ×

√
3

ground-state long-range order for integer spin quantum numbers, including s = 1. Series

expansion calculations [34] indicated that M/s = 0.14 ± 0.03 for the s = 3/2 KAFM and

tensor network calculations [39] also indicate that the s = 3/2 system is
√
3×

√
3 long-range

ordered. CCM calculations [19, 35] indicate that the system is
√
3×

√
3 ordered for s = 3/2

and that M/s is in the range 0.074 to 0.417. The KAFM demonstrates
√
3 ×

√
3 ground-

state long-range order for s ≥ 3/2 [19, 35, 40, 41]. CCM calculations [19, 35] indicated that

the order parameter (with respect to the
√
3×

√
3 state) scales with s (for s ≥ 3/2) via the

following equation,
M

s
= 1 − 1.0676

s0.5 +
0.0810

s
, (4)

whereas self-consistent spin-wave theory [11] suggested that M/s scales with s−1/3 to first

order.

The next route to the emergence of magnetic order in the KAFM model is to introduce

easy-plane anisotropy into the Hamiltonian [34, 41–45], which we shall refer to as the XXZ

model, where

H =
∑

⟨i,j⟩

{

∆sz
i s

z
j + sy

i s
y
j + sx

i s
x
j

}

. (5)

The summation ⟨i, j⟩ again runs over all NN bonds (counting each bond once only). The

XXZ model on the kagome lattice is predicted to be magnetically ordered for all values of

∆ ≥ 0 for s ≥ 3/2. In the limit s → ∞, CCM calculations [42] indicate that a phase

boundary between
√
3×

√
3 order at ∆ = 1 (KAFM) and q = 0 order (see Fig. 1) at ∆ = 0

(kagome XY model) occurs at the point ∆c(s → ∞) = 0.727 [42], whereas results of non-

linear spin-wave theory (NLSWT) [41] place this boundary at ∆c(s → ∞) = 0.72235. CCM

results also suggest that the boundary ∆c(s) between these two phases at finite s increases

with increasing s, whereas NLSWT suggest (tentatively) that the boundary ∆c(s) between

these two phases decreases with increasing s. (Note that CCM results for this boundary are

based on the direct comparison of numerical evidence for the two states, whereas statements

via NLSWT for this boundary are more speculative.) However, both NLSWT and the CCM

predict also that the spin-one, NN KAFM is disordered, which agrees with the conclusions

presented above for this model (see also [43]). However, CCM results also predict that a

reduction in ∆ from ∆ = 1 leads to the onset of q = 0 order, whereas NLSWT predicts

that a reduction in ∆ from ∆ = 1 leads to the onset of
√
3 ×

√
3 order. Finally, a range of
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approximate methods (namely, CCM [42], NLSWT [41], DMRG [44], and variational Monte

Carlo [45]) predict that the spin-half XXZ model on the kagome lattice is disordered for all

values of ∆ ≥ 0 (i.e., including the XY model).

Another extension of the spin-half, NN KAFM that leads to magnetic order is via the

introduction of inter-layer coupling [46–48], where

H = J
∑

n

∑

⟨i,j⟩

si,n · sj,n

︸ ︷︷ ︸

Within Layer

+ J⊥

∑

i,n

si,n · si,n+1

︸ ︷︷ ︸
Between Layers

. (6)

The summation ⟨i, j⟩ indicates NN bonds of strength J(> 0) within a given layer (indicated

by n). J⊥ therefore indicates the bond strength between layers n and n+1. The underlying

spin model is of two spatial dimensions for J⊥ = 0 and is of three spatial dimensions

model for J⊥ ̸= 0. Quantum magnetic systems of three spatial dimensions might well

have a stronger propensity towards magnetic order than systems of lower spatial dimension

and so it is not unnatural to suppose that magnetic order (of some) sort might occur.

Indeed, it was observed in Refs. [47, 48] that
√
3 ×

√
3 magnetic order is observed for both

J⊥/J = 1 (antiferromagnetic bonds) and J⊥/J = −1 (ferromagnetic bonds). CCM results

[48] then suggest that q = 0 magnetic order occurs between −0.435 < J⊥/J < −0.154 and

0.151 < J⊥/J < 0.310. A region of magnetic disorder [48] is then observed in the region

−0.154 < J⊥/J < 0.151, which agrees yet again with the predicted behavior of the spin-half,

NN KAFM at J⊥/J = 0.

The final route by which magnetic order may emerge from magnetic disorder is to include

interactions between spins over greater distances than nearest-neighboring spins via the J1–

J2 model [2, 20, 49–52] and / or the J1–J2–J3 model [53–57], which is given by

H = J1

∑

⟨i,j⟩

si · sj + J2

∑

⟨⟨i,k⟩⟩

si · sk + J3

∑

⟨⟨⟨i,l⟩⟩⟩

si · sl . (7)

The summation ⟨i, j⟩ runs over all NN bonds, ⟨⟨i, k⟩⟩ runs over all next-nearest-neighbor

(NNN) bonds, and ⟨⟨⟨i, l⟩⟩⟩ runs over all next-next-nearest-neighbor (NNNN) bonds. (In

each case, bonds are counted once and once only.) For the spin-half model with J3 = 0,
√
3 ×

√
3 order is stabilized by ferromagnetic NNN interactions (J2 < 0) and q = 0 order

is stabilized by antiferromagnetic NNN interactions (J2 > 0). Initial CCM results [52]

suggest however that the magnetically disordered regime survives for a finite range of J2

centered around the NN KAFM, namely, −0.070 <∼ J2/J1
<∼ 0.127; a result that is also
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supported by other approximate methods [49, 51]. The addition of antiferromagnetic NNNN

bonds (J3 > 0) (with ferromagnetic NN and NNN bonds J2, J3 < 0) was explored in [55].

The existence of ferromagnetic ordering,
√
3 ×

√
3 ordering, as well as non-coplanar states

of magnetic order (CUBOC-1 and CUBOC-2), and finally a large magnetically disordered

regime, were posited in Refs. [55, 56]. A complete picture of the ground-state phase diagram

of the spin-half J1–J2–J3 model is presented in Ref. [55].

Generalizations of the spin-half NN KAFM are realized physically by magnetic materials

such as herbertsmithite ZnCu3(OH)6Cl2 [3, 58], haydeeite Cu3Mg(OH)6Cl2 [59], vesignieite

BaCu3V2O8(OH)2 [60], kapellasite Cu3Zn(OH)6Cl2 [61], volborthite Cu3V2O7(OH)2·2H2O

[58, 62], and francisite Cu3Bi(SeO3)2 [63]. Hence, the study of such models where magnetic

order may “emerge” from the disorder of the pure spin-half NN KAFM are crucial in

understanding these materials. Furthermore, we have seen that these generalizations of

the spin-half NN model lead to fascinating behavior from a theoretical point-of-view also.

These generalized models also provide a useful tool in examining the disordered regimes

in the spin-half, NN KAFM because one may observe those limiting cases where magnetic

order is seen to vanish as a function of model parameters within the Hamiltonian. The

behavior of the ground and excited states can be examined up to and beyond any order-to-

disorder phase transitions. Finally, the NN KAFM model and its generalizations provide a

very important, interesting, and challenging set of systems by which approximate methods

of quantum many-body theory may be compared and contrasted.
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Rev. B 45(13), 7536 (1992).

[10] P. Müller, A. Zander, and J. Richter. Thermodynamics of the kagome-lattice Heisenberg

antiferromagnet with arbitrary spin S. Phys. Rev. B 98(2), 024414 (2018).

[11] A. Chubukov. Order from disorder in a kagomé antiferromagnet. Phys. Rev. Lett. 69(5), 832
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[40] O. Cépas and A. Ralko. Resonating color state and emergent chromodynamics in the kagome

antiferromagnet. Phys. Rev. B 84, 020413 (2011).

[41] A. L. Chernyshev and M. E. Zhitomirsky. Quantum Selection of Order in an XXZ

Antiferromagnet on a Kagome Lattice. Phys. Rev. Lett. 113, 237202 (2014).

[42] O. Goetze and J. Richter. Ground-state phase diagram of the XXZ spin-s kagome

antiferromagnet: A coupled-cluster study. Phys. Rev. B 91, 104402 (2015).

[43] Cenke Xu and J. E. Moore. Geometric criticality for transitions between plaquette phases in

integer-spin Kagome XXZ antiferromagnets. Phys. Rev. B 72(6), 064455 (2005).

9



[44] Y. C. He, and Y. Chen. Distinct Spin Liquids and Their Transitions in Spin-1/2 XXZ Kagome

Antiferromagnets. Phys. Rev. Lett. 114(3), 037201 (2015).

[45] W. J. Hu, S. S. Gong, F. Becca, and D. N. Sheng. Variational Monte Carlo study of a gapless

spin liquid in the spin-1/2 XXZ antiferromagnetic model on the kagome lattice. Phys. Rev. B

92(20), 201105 (2015).

[46] D. Schmalfuß, D. Ihle, and J. Richter. Does the spin-half Heisenberg antiferromagnet on the

stacked kagome lattice possess long range order? Phys. Rev. B 70, 184412 (2004).

[47] D. Guterding, R. Valent́ı, and H. O. Jeschke. Reduction of magnetic interlayer coupling in

barlowite through isoelectronic substitution. Phys. Rev. B 94, 125136 (2016).

[48] O. Götze and J. Richter. The route to magnetic order in the spin-1/2 kagome Heisenberg

antiferromagnet: The role of interlayer coupling. Euro. Phys. Lett. 114, 67004 (2016).

[49] T. Tay and O. I. Motrunich. Variational study of J1–J2 Heisenberg model on kagome lattice

using projected Schwinger-boson wave functions. Phys. Rev. B 84, 020404(R) (2011).

[50] R. Suttner, C. Platt, J. Reuther, and R. Thomale. Renormalization group analysis of

competing quantum phases in the J1–J2 Heisenberg model on the kagome lattice. Phys. Rev.

B 89(2), 020408 (2014).

[51] F. Kolley, S. Depenbrock, I. P. McCulloch, U. Schollwöck, and V. Alba. Phase diagram of the
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