Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Extensible metadata management framework for personal data lake

Alrehamy, Hassan 2018. Extensible metadata management framework for personal data lake. PhD Thesis, Cardiff Uuniversity.
Item availability restricted.

[img]
Preview
PDF - Accepted Post-Print Version
Download (3MB) | Preview
[img] PDF - Supplemental Material
Restricted to Repository staff only

Download (2MB)

Abstract

Common Internet users today are inundated with a deluge of diverse data being generated and siloed in a variety of digital services, applications, and a growing body of personal computing devices as we enter the era of the Internet of Things. Alongside potential privacy compromises, users are facing increasing difficulties in managing their data and are losing control over it. There appears to be a de facto agreement in business and scientific fields that there is critical new value and interesting insight that can be attained by users from analysing their own data, if only it can be freed from its silos and combined with other data in meaningful ways. This thesis takes the point of view that users should have an easy-to-use modern personal data management solution that enables them to centralise and efficiently manage their data by themselves, under their full control, for their best interests, with minimum time and efforts. In that direction, we describe the basic architecture of a management solution that is designed based on solid theoretical foundations and state of the art big data technologies. This solution (called Personal Data Lake - PDL) collects the data of a user from a plurality of heterogeneous personal data sources and stores it into a highly-scalable schema-less storage repository. To simplify the user-experience of PDL, we propose a novel extensible metadata management framework (MMF) that: (i) annotates heterogeneous data with rich lineage and semantic metadata, (ii) exploits the garnered metadata for automating data management workflows in PDL – with extensive focus on data integration, and (iii) facilitates the use and reuse of the stored data for various purposes by querying it on the metadata level either directly by the user or through third party personal analytics services. We first show how the proposed MMF is positioned in PDL architecture, and then describe its principal components. Specifically, we introduce a simple yet effective lineage manager for tracking the provenance of personal data in PDL. We then introduce an ontology-based data integration component called SemLinker which comprises two new algorithms; the first concerns generating graph-based representations to express the native schemas of (semi) structured personal data, and the second algorithm metamodels the extracted representations to a common extensible ontology. SemLinker outputs are utilised by MMF to generate user-tailored unified views that are optimised for querying heterogeneous personal data through low-level SPARQL or high-level SQL-like queries. Next, we introduce an unsupervised automatic keyphrase extraction algorithm called SemCluster that specialises in extracting thematically important keyphrases from unstructured data, and associating each keyphrase with ontological information drawn from an extensible WordNet-based ontology. SemCluster outputs serve as semantic metadata and are utilised by MMF to annotate unstructured contents in PDL, thus enabling various management functionalities such as relationship discovery and semantic search. Finally, we describe how MMF can be utilised to perform holistic integration of personal data and jointly querying it in native representations.

Item Type: Thesis (PhD)
Date Type: Completion
Status: Unpublished
Schools: Computer Science & Informatics
Date of First Compliant Deposit: 15 February 2019
Last Modified: 18 Feb 2019 11:17
URI: http://orca-mwe.cf.ac.uk/id/eprint/119636

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics