Emplacement and high-temperature evolution of gabbros of the 16.5°N oceanic core complexes (Mid-Atlantic Ridge): insights into the compositional variability of the lower oceanic crust

Sanfilippo A.1,2*, Dick H.J.B.2, Marschall H.R.2,3, Lissenberg C.J.4, Urann, B.2

1- Dipartimento di Scienze della Terra e dell’Ambiente - Università degli Studi di Pavia, Via Ferrata 1, Pavia, Italy
2-Department of Geology and Geophysics - Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
3- Institut für Geowissenschaften, Goethe Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
4- School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK

*Corresponding Author: Alessio Sanfilippo (alessio.sanfilippo@unipv.it)

Key Points:

- Lower crust at the 16.5°N region of the Mid-Atlantic Ridge has a bimodal composition.
- Thermodynamic models show that this distribution is expected in regions where small gabbroic bodies are intruded into mantle peridotites.
- Deformation related to detachment faulting commenced under high-temperature conditions (>1000 °C) as recorded by ultramylonites.
This study reports the composition of the oceanic crust from the 16.5°N region of the Mid-Atlantic Ridge (MAR), a spreading ridge segment characterized by a complex detachment fault system and three main oceanic core complexes (Southern, Central and Northern OCC). Lithologies recovered from the core complexes include both greenschist facies and weathered pillow basalt, diabase, peridotite and gabbro, while only weathered and fresh pillow basalt was dredged from the rift valley floor. The gabbros are compositionally bimodal, with the magmatic crust in the region formed by scattered intrusions of chemically primitive plutonic rocks (i.e. dunes and troctolites), associated with evolved oxide-bearing gabbros. We use thermodynamic models to infer that this distribution is expected in regions where small gabbroic bodies are intruded into mantle peridotites. The occurrence of ephemeral magma chambers located in the lithospheric mantle enables large proportions of the melt to be erupted after relatively low degrees of fractionation. A large proportion of the dredged gabbros reveal evidence for deformation at high-temperature conditions. In particular, chemical changes in response to deformation and the occurrence of very high-temperature ultramylonites (>1000 °C) suggest the deformation related to the oceanic detachment commenced at near-solidus conditions. This event was likely associated with the expulsion of interstitial, evolved magmas from the crystal mush, a mechanism that enhanced the formation of disconnected oxide-gabbro seams or layers often associated with crystal-plastic fabrics in the host gabbros. This granulite-grade event was soon followed by hydrothermal alteration revealed by the formation of amphibole-rich veins at high-temperature conditions (~900°C).
1. INTRODUCTION

Detachment faults, first reported as low-angle normal faults at the MARK area of the MAR (Dick et al., 1981, Karson and Dick, 1983), are common at slow-spreading ridges. These long-lived faults terminate at the foot of the rift valley wall, and produce a smooth surface with corrugations parallel to the rifting direction (Cann et al., 1997). They expose large sections of lower oceanic crust and abyssal mantle, commonly termed “megamullions” or oceanic core complexes (OCCs) (Cann et al., 1997; Tucholke et al., 1998). The detachment faults operate for up to several million years and exhume lower crust and mantle rocks, which are continuously accreted and emplaced into the rift mountains from beneath a volcanic carapace (Dick et al., 2008). Detachment faulting can account for 60–100% of the plate separation in some ridge sections and may dominate a region for several millions of years (Tucholke et al. 1998; Smith et al., 2006, 2008; Schroeder et al., 2007; Baines et al., 2008; Escartin et al., 2008; MacLeod et al., 2009). In particular, Escartin et al. (2008) and Smith et al. (2008) estimated that close to 50% of the Mid-Atlantic Ridge (MAR) from 12.5ºN and 35ºN is characterized by detachment faults, indicating that a substantial portion of the seafloor in the central portion of the MAR may form by such asymmetric spreading. Recently, some investigators have suggested the proportion of seafloor formed by detachment faulting could be even higher, if more fault surfaces are hidden under basaltic rafted blocks (e.g., Reston and Ranero, 2011). Detachment faulting is now known as a major mechanism of crustal accretion at slow-spreading ridges (Smith et al., 2014; Parnell-Turner et al., 2018).

The nucleation and growth of detachment faults is dependent on many factors, including rheological differences between gabbros and serpentinized mantle peridotites, spreading rate, and magma budget (e.g., Cannat et al., 2006; Ildefonse et al., 2007; Escartin et al., 2008). For instance, numerical modeling suggests that detachment faults form at intermediate levels of magma supply (e.g.: Cannat et al., 2006) at slow- and ultraslow-spreading ridges when the ratio of magmatic accretion to tectonic extension (M) lies between 0.3 and 0.5 (Tucholke et al., 2008; Olive et al., 2010; Hansen et al. 2011). This is consistent with the common occurrence of gabbroic lithologies exposed along the fault surfaces at oceanic core complexes.
In addition, it is likely that the mechanics of detachment faulting in amagmatic environments differs from magmatic ones, where the fault roots into a significant crystal mush zone beneath the rift valley and synmagmatic deformation can enhance fault longevity and control fault geometry (Dick et al., 2000; Natland and Dick, 2001).

OCCs offer a unique opportunity to unravel the composition of the lower crust of ridge segments formed at slow spreading ridges, although these observations are pertinent to the sections exposed through detachment faulting; to what extent these observations apply to the lower oceanic crust at symmetrically-spreading segments is uncertain. The large compositional variability of the gabbros at OCCs worldwide suggests that the lower crust in these sections is not that of the classic Penrose model (Conference Participants, 1972). At the 660-km2-gabbro massif at Atlantis Bank on the SW Indian Ridge ([I]ODP Holes 735B, 1105A and U1473) most of the gabbros recovered by seafloor sampling and drilling (up to 1.5 km) are olivine-gabbros interspersed with highly evolved (oxide-bearing) gabbros, representing crystallization from nothing close to a primary magmatic liquid (Dick et al., 2000; MacLeod et al., 2017). In contrast, the 1.4 km deep Hole U1309D at the Atlantis Massif OCC, another large OCC exposed along the Mid-Atlantic Ridge, contains a much broader range of lithologies, with large amounts of primitive gabbros such as troctolite, many gabbro sensu-stricto (olivine <5 vol.%) and subordinate oxide-gabbros (>2% oxide) (Blackman 2006, 2010). Large amounts of troctolites and olivine gabbros also constitute the isolated intrusions in mantle peridotites at the Kane Megamullion, a large detachment system south of the Kane Fracture Zone in the Atlantic (Dick et al., 2008), which nonetheless differ from the Atlantis Massif by the absence of olivine-free gabbro but show a high amount of oxide gabbro. Finally, ODP Leg 209 drilled a series of holes from 14°43’ to 15°44’N straddling the 15°20’ Fracture Zone, providing a view of the lithostratigraphy to the south of the 16.5° N core complexes. Notably, gabbro is rare, and the lower crust has a “bimodal” distribution similar to that of the Kane area, with large amounts of troctolite and dunite and
oxide gabbro and oxide gabbro-norite the most abundant lithologies. As a whole, the
compositional variability of gabbros recovered at OCCs suggests a variable, complex crustal
architecture, which emphasizes the need to characterize the lower crust at ridge segments
formed at different magma supplies, ridge geometries and tectonics, as part of interpreting
crustal petrogenesis.

This study aims at exploring the architecture and the composition of the lower crust
exposed along the 16.5°N region of the MAR. This segment is characterized by a complex
detachment fault system developed in a magma-poor regime: unlike the thick gabbroic
sections exposed at the Atlantis massif and Atlantis Bank OCCs, oceanic core complexes
identified in the 16.5°N MAR region are formed by scattered gabbroic intrusions within a
partly serpentinized mantle (Cannat and Casey, 1995, Cannat et al. 1997. This region is
characterized by a strong lateral crustal heterogeneity and an active detachment faulting
system (Smith et al., 2014; Parnell-Turner et al. 2016). As such, the MAR 16.5°N is similar
to the Kane and the 15°20’ Fracture Zones, and is an ideal case to explore the petrological
processes driving the formation of the lower crust in regions of low magma supply and active
detachment. Here we present microtextural observations, major element mineral
compositions and discuss the process of emplacement and early deformation histories of
these rocks. We use thermodynamic modeling to explore the cause of the bimodal
lithological variability of the lower crust in this region, proposing that a close relationship
between magma supply, eruption rate and deformation-driven melt extraction may explain
the lithological variability of the lower oceanic crust exposed through detachment faulting.

2. THE 16.5 °N REGION OF THE MID-ATLANTIC RIDGE

The study area is located between 16° and 17°N and exposes an ~120 km stretch of the
slow-spreading Mid-Atlantic ridge (Fig. 1). This region encompasses two spreading segments
that strike ~012°, perpendicular to the inferred spreading direction (DeMets et al., 2010). The
spreading axis is characterized by a well-developed neovolcanic zone and by a remarkably high
rate of teleseismic and hydrophone-recorded seismicity (Smith et al., 2003). The area has also
been identified as a region of active detachment faulting, mostly concentrated on the west side
RV Knorr Cruise 210 Leg 5 conducted bathymetric, dredging and AUV surveys focused on the neovolcanic zone and western rift mountains (see Smith et al., 2014; Parnell-Turner et al., 2018). Based on the occurrence of corrugated surfaces, different core complexes were identified: I) the Southern Core Complex (SCC), a classic, domed, detachment fault with a slope of 13º and corrugation wavelengths between 400 and 1600 m; II) the Central Core Complex (CCC), characterized by two distinctive ridge-parallel, linear ridges (East and West Ridges, Fig. 1), interpreted to be the breakaways of detachment faults that underwent significant rotation (Macleod et al., 2009; Smith et al., 2006; Smith et al., 2008; Parnell-Turner et al. 2018); and III) The Northern Core Complex (NCC). Compared to the South and Central complexes, where the detachment faults intersect the valley floor with a well-developed axial volcanic ridge, the NCC is flanked by a deep axial rift valley, covered by lava flows, but lacking a neovolcanic ridge. This feature suggests that the formation of the NCC was accompanied by limited volcanic activity compared to the Southern Core Complex.

During the RV Knorr Cruise 210 Leg 5 dredging program, we sampled both the footwall of the detachment faults and the volcanic rocks exposed on the associated ridge axis (72 dredges in total). Overall, ~5,800 kg of basalt, diabase, gabbro (s.l.), and peridotite samples were dredged in 63 locations (see Table S1 of the supplementary material). However, the proportions of different rock types vary significantly across the area (Fig. 2). Pillow basalt is the most abundant dredged lithology at all the three core complexes. They have been collected from both the crests of the complexes (i.e. detachment breakaway zone) and as the hanging wall debris resting on the detachment fault footwall. Mantle peridotites (harzburgites to dunites) are abundant in the CCC, whereas only gabbroic rocks were collected at the NCC. A very limited amount of gabbroic lithologies (~1 kg in total) were recovered at the southern and central core complexes, limited to small intrusions within mantle peridotites. The main characteristics of these areas are reported in Smith et al. (2014) and Parnell-Turner et al. (2018). Here we focus our analyses on the NCC and its surrounding areas, capitalizing on the abundance of gabbroic lithologies there to infer lower crustal formation and evolution.
2.1. Northern core complex and its surroundings

The gabbros we studied were mainly collected at the Northern Core Complex. This complex is delineated by a detachment fault, which is locally masked by several rafted blocks of volcanic crust. Smith et al. (2014) suggested that these blocks were produced by short-lived steep-dipping normal faults formed close to the rift axis that merged at depth with the primary detachment fault (see Reston and Ranero, 2011). Each fault block is covered by volcanic hummocks and flows similar to those on the valley floor. The median valley adjacent to the NCC is narrow (3–4 km) and deep (~4,500 m), and is characterized by smooth, likely sedimented surfaces covering flat-topped lava flows and hummocks. Although there is no neovolcanic axial ridge, the occurrence of volcanic ridges and hummocks emerging from the sediments at the west side of the median valley and the flows on the rift valley floor suggest that this segment was volcanically active in the recent past. Several dredges were deployed at the central portion of the NCC, recovered 579 kg of fresh pillow basalts from the terrace of the rafted block (D52, D56, D57, D65).

237 kg of gabbroic rocks were recovered in 10 of 14 dredge hauls (i.e., D49 to D55, D59, D60, D63, D64, D67, D69, D70, D72) deployed along a ridge around the complex (from the southern shoulder to two narrow ridges in the north). Gabbros in this locations are associated with 157 kg of peridotite sampled in 8 dredges and 513 kg of fresh pillow basalts found in 6 dredges. Dredged gabbros were described macroscopically during the expedition. Each member of the Shipboard Party was responsible for one or more aspects of the description (e.g., rock-type, textures, mineral modes and habits) to ensure consistency throughout the dredged hauls. Only primary minerals were considered to define the initial modal proportion; completely altered rocks are referred to as metagabbros (Table S1 of supplementary material).

Representative sample images are displayed in Figure 3. Preliminary onshore analyses followed the shipboard observations in order to test the accuracy of the definition of rock types and deformation intensity. Samples reviewed for the present study provided a good correspondence with the shipboard observation, although minor interstitial phases such as orthopyroxene and
amphibole had been commonly underestimated (see textural description). This generally did not affect the classification of the rock types, which is based on major mineral phases. The proportions (wt.%) of different gabbroic rocks collected from each dredge are reported in Figure 2, which shows that the lower crust exposed at NCC displays a bimodal distribution, i.e., high proportions of primitive plutonic rocks (i.e., dunites and troctolites >60 wt.%) associated with evolved gabbronorites to oxide gabbros (~30 wt.%). Intermediate rocks such as olivine gabbros (olivine >5 vol.%; clinopyroxene >10 vol.%; oxides <2 vol.%) and gabbros *sensu strictu* (olivine <5 vol.%; oxides <2 vol.%) and gabbronorite (olivine< 5 vol.%; orthopyroxene >5 vol.%) are very limited, as they are to the south. Interestingly, troctolites were mainly collected in two dredges (D59, D60; Fig. 2) otherwise characterized by large proportions of serpentinitized dunites and pyroxene-bearing peridotites, and by the absence of volcanics. The exposure of mantle peridotites, dunites and troctolites and rarity of basalts are typical of sequences thought to represent crust-mantle transitions, such as the OPD Site 895 at Hess Deep (Dick and Natland, 1996), the Adam Dome at the Kane FZ (Dick et al., 2008), the breakaway area of the Godzilla Megamullion (Sanfilippo et al, 2013; 2016a), and the Uraniwa Hills at the Central Indian Ridge (Sanfilippo et al., 2015; 2016b).

3. MAIN PETROGRAPHIC FEATURES OF MAR 16.5º N GABBROS

3.1 Igneous textures

Troctolites have euhedral to subhedral olivine and plagioclase, locally showing sub-rounded grain boundaries and a poikilitic texture (Fig. 4a). Clinopyroxene commonly occurs as films or discrete grains interstitial to olivine and plagioclase. Large clinopyroxene oikocrysts (up to 7 mm) are locally present within the olivine-plagioclase matrix, commonly including euhedral to irregular plagioclase and olivine chadacrysts (Fig. 4b). Clinopyroxene oikocrysts show film-like apophyses interstitial to olivine and plagioclase, locally associated with orthopyroxene films. In a few cases, oikocrystic clinopyroxene reaches 10 vol.% of the rock, forming spatially defined Ol-gabbro domains. Pargasitic brown amphibole is common within the troctolites as films or interstitial discrete grains locally reaching 0.1 mm (Fig. 4c). One
troctolite contains large amphibole oikocrysts up to 3 mm. These oikocrysts include rounded plagioclase chadacrysts, having irregular grain boundaries taken as evidence of partial dissolution (Fig. 4d). Fe-Ti oxides are locally present in troctolites, but are restricted to within the interstitial brown amphibole at the rim of olivine or plagioclase.

Gabbros and gabbronorites consist of plagioclase and pyroxenes commonly showing a subophitic texture. Olivine is absent or restricted to small grains (<0.5 mm) rounded in shape. Small (<0.1 mm) irregular grains of Ti-Fe oxides and apatite are locally included in the pyroxenes or at the rim of pyroxene-plagioclase crystals. Orthopyroxene in gabbronorites occurs in large, subequant crystals with subhedral habit, as distinguished from intergranular rims commonly found in olivine gabbros. Pargasitic brown amphibole is rare in these rocks, and present as <0.05 mm-thick films around clinopyroxene.

Oxide gabbros (>2% oxide) have been found as i) coarse (up to 20 cm) grained massive samples and as ii) medium/fine-grained centimeter-sized seams crosscutting either gabbros or gabbronorites. In both cases, oxide gabbros are mostly constituted by granular plagioclase, clinopyroxene and locally orthopyroxene, and abundant (up to 15 vol.%) Ti-Fe oxides. Olivine is absent from all of these rocks, whereas accessory phases such as zircon and apatite are commonly present. Brown pargasitic amphibole is ubiquitous within the oxide gabbros, occurring as interstitial grains to coronas surrounding opaque minerals or as blebs within partly exsolved clinopyroxene. Coarse-grained oxide gabbros contain irregular oxide-rich patches up to 10 mm wide separating, and in some cases, surrounding aggregates of disrupted plagioclase and clinopyroxene grains. The oxide-rich domains locally include small plagioclase and/or apatite grains (0.1-0.5 mm), subhedral to rounded in shape. The oxide-gabbro seams are typically found as medium to fine-grained, centimeter-sized layers parallel to the foliation in the host rock. They have a planar aspect and well-defined sutured contacts with the host gabbros, although oxide minerals can be locally dispersed in the host rock a few millimeters from the contact.
3.2 Textures indicative of high-temperature deformation

Metamorphic grade and crystal-plastic fabric intensity were documented for each sample, which were cut perpendicular to the foliation where possible. Approximately 40% of the gabbros preserve textures indicative of shearing and recrystallization under hyper- to subsolidus conditions. Deformation intensity was classified on a scale from 0 to 5 (0, undeformed; 1, slightly deformed; 2, sheared; 3, protomylonitic; 4, mylonitic and 5, ultramylonitic) based on the foliation, grain size and relative proportions of neoblasts and porphyroclasts. The distribution of the deformation intensity for the different rock-types (Fig. 5) suggests that the higher grade crystal-plastic deformation (grades 3 to 5) is equally recorded by primitive and evolved gabbros, while oxide gabbros and gabbronorites seem to be on average more deformed than troctolites (~50% and ~30% of the total, respectively) at lower grades.

3.2.1-Granulite grade deformation

Protomylonites and mylonites generally appear to be indistinguishable on the basis of mineral proportions from their protoliths, which is not the case for ultramylonites (Fig. 6a; b). Protomylonites are defined by the occurrence of a porphyroclastic texture that locally grades into mylonites having alternating bands of neoblastic plagioclase, olivine and/or clinopyroxene (Fig. 3). The mylonitic zones are up to decimeter wide, although we cannot determinate the original thickness because undeformed portions of the same rock are not recovered. The most common metamorphic assemblage includes recrystallized olivine, pyroxenes and plagioclase. Depending on the protolith, spinel (in troctolites) or Ti-Fe oxides (in gabbros and oxide gabbros) are also found as neoblastic phases. Olivine, pyroxenes and plagioclase porphyroclasts are kinked, folded, and displaced by subgrain boundaries. Equant to subequant neoblasts surround porphyroclasts of the same mineral, suggesting subgrain boundary rotation and recrystallization under high-temperature conditions (Miranda and John, 2010; Hansen et al., 2013). Trace amounts of pargasitic amphibole are locally found within the neoblastic assemblage, as small (<0.1 mm) grains in textural equilibrium with the major phases. Samples showing this metamorphic assemblage will be referred to hereafter as
“gabbro granulites”, in analogy with the definition of similar rocks from other oceanic core complexes worldwide (see Dick et al., 2000; Blackman et al., 2006; 2011; Ildefonse et al., 2007; Dick et al., 2008; Miranda and John, 2010; Hansen et al., 2013; MacLeod et al., 2017).

3.2.2-Ultramylonites

The mylonites locally grade into 5 to 10-mm thick, very fine-grained (<0.1 mm) ultramylonitic bands. These bands are always found in the median portions of the mylonites, and have sub-planar shape and sharp boundaries towards the host rock (Fig. 3). Unlike the mylonites, which are mineralogically indistinguishable from the magmatic protolith, the ultramylonites have a distinct mineralogical composition. We found ultramylonites developed from different protoliths ranging from troctolites (Fig. 6a) to oxide gabbros (Fig. 6b). These two end-members will be described hereafter.

i) Figure 6a shows a ~5-mm thick ultramylonite located within a troctolite mylonite. The host protomylonite and the mylonite are formed by olivine and plagioclase porphyroclasts mantled by a neoblastic assemblage of plagioclase and olivine, locally including clinopyroxene and brown amphibole (Ti-pargasite). Spinel porphyroclasts are also present and partly recrystallized along the main foliation planes. In contrast, olivine and spinel are absent in the ultramylonite band, which is mainly formed by a very fine-grained (<0.1 mm) assemblage of plagioclase and brown amphibole (Ti-pargasite) and rare clinopyroxene. Both clinopyroxene and brown amphibole are locally replaced by green amphibole and chlorite in a coronitic texture.

ii) Figure 6b shows an up to ~5-mm thick ultramylonite band located within an oxide-gabbro mylonite. The host mylonite is characterized by plagioclase and clinopyroxene porphyroclasts immersed in a neoblastic assemblage of plagioclase, clinopyroxene and Ti-Fe oxides (~5-10 vol.%). Pale to green amphibole (hornblende) statically replacing the neoblastic clinopyroxene is abundant, whereas brown amphibole is absent. In contrast, the ultramylonite band is characterized by a very fine-grained assemblage of plagioclase and brown amphibole (Ti-pargasite) locally associated with minor clinopyroxene, and by the absence Ti-Fe oxides. Similar to the ultramylonite located in the troctolite, green
amphibole and chlorite locally replace the brown amphibole and the clinopyroxene. Taken as a whole, despite the fact that the two ultramylonites developed from different magmatic protoliths, the ultramylonites are texturally and mineralogically indistinguishable, consisting of a fine-grained neoblastic assemblage of plagioclase, brown amphibole and, more rarely, clinopyroxene.

3.3 Textures indicative of high-temperature alteration

Deformed gabbros locally show traces of alteration at high-temperature conditions (amphibolite facies). This process is mainly indicated by i) the occurrence of amphibole-rich veins crosscutting the foliation in the host gabbros at high angle; ii) the occurrence of pale-brown amphibole (hornblende) statically replacing the clinopyroxene. These textures are well exemplified in Figure 3e-3f, which shows a sheared gabbronorite crosscut by an undeformed amphibole-rich vein, at high angle with the main foliation in the host rock. Hornblende in the veins shows a fibrous texture and is elongated parallel to the vein wall. Plagioclase close to the contact with the vein is statically recrystallized in a fine-grained assemblage. Clinopyroxene in the host gabbro is almost totally replaced by single grains or aggregates of hornblende spatially locally associated with very fine-grained (<0.05 mm) albitic plagioclase (Fig. 3f). Similar textures are also found where irregular veins crosscut the gabbros, leading to the formation of hornblende at the expense of clinopyroxene, and fine-grained plagioclase replacing the coarse plagioclase of magmatic origin. In almost all of the samples, hornblende is locally rimmed or partially replaced by green amphibole and chlorite, as a response to lower-temperature greenschist facies alteration.

4. MAJOR ELEMENT MINERAL COMPOSITIONS

Major element mineral compositions of selected 16.5°N gabbros were obtained using a JEOL JXA-8200 electron microprobe (Dipartimento di Scienze della Terra, Universita`degli Studi di Milano, Italy) at 15 kV accelerating voltage and 15 nA beam current. Counting time was 30 s on the peak and 10 s on the backgrounds. Natural silicates were utilized as standards and data
reduction was carried out using the CITZAF package (Armstrong 1995). Undeformed and variably deformed samples ranging from troctolites to oxide gabbros were selected for the microprobe study, in order to cover the main chemical variability of the rock-types. Representative analyses of olivine, plagioclase, pyroxene and amphibole of selected samples are reported in supplementary material in Tables S2 to S6. Four samples were also mapped using a Zeiss Sigma HD field emission gun SEM installed at Cardiff University. This machine is equipped with dual 150-mm² Oxford Instruments X-Max N energy dispersive silicon drift detectors, which enable high count rates (>1,000,000 cps) to be obtained. The data were background corrected using Oxford Instruments AZtec software prior to the production of element maps.

Olivine in troctolites has high forsterite (Fo) contents (86 to 88 mol.%), and relatively constant NiO (0.20–0.25 wt.%) and MnO (0.19–0.25 wt.%) contents. There is no compositional difference between porphyroclastic and neoblastic olivine. Plagioclase anorthite content varies from An₈₁ in troctolites to An₄₆ in oxide gabbros. Chemical analyses and element maps clearly show that high-temperature deformation is associated with a decrease in anorthite in plagioclase neoblasts compared to porphyroclasts in the same rock. This is well illustrated in Figure 7a, where compositional maps for Na contents of a sheared troctolite are shown. In particular, the lower Na (and higher Ca, not shown) of the fine-grained neoblasts clearly indicates lower An contents (~78 mol.%) compared to that of the porphyroclasts (~81 mol.%). Similarly, an even greater variation in plagioclase anorthite component characterizes the troctolite mylonite–ultramylonite association (Fig. 7b). Here, the plagioclase in the ultramylonite has lower Ca (and higher Na) compared to that in the mylonite, resulting in a decrease from An₈₁ in the mylonites to An₆₅ in the ultramylonite. A unique exception is represented by the mylonite–ultramylonite association in the oxide gabbro-norite (Fig. 7c), where compositional maps show higher Ca and lower Na contents of the plagioclase in the ultramylonite (An₆₅) compared to that in the host mylonite (46 mol.%). Finally, a decrease in anorthite component is apparent in recrystallized plagioclase associated with the formation of the amphibole-rich vein in Figure 7d. Here, the neoblastic plagioclase at the Amphibole-
vein/gabbro contact and the plagioclase in the vein has higher Na and lower Ca compared to the plagioclase porphyroclasts, resulting in An$_{53}$ for the former and \simAn$_{58}$ for the latter. Note that very high Na and low Ca characterize the fine-grained plagioclase associated with veins and microcracks crosscutting the magmatic phases (An$_{20}$ to An$_{35}$).

Clinopyroxene shows a wide compositional range with Mg# (100\timesMg/(Mg+Fe)) varying from 89 in oikocrystic clinopyroxene in troctolites to 65 in oxide gabbros. Clinopyroxene in troctolites is distinct from that in gabbros by generally higher Cr$_2$O$_3$ and Al$_2$O$_3$ contents (0.4–1.5 wt.% compared to <0.2 wt.% in the gabbros), but high TiO$_2$ contents (Fig. 8). Chemical mapping suggests that clinopyroxene neoblasts in sheared to mylonitic rocks are nearly indistinguishable from the porphyroclasts in the same sample. The only exception is the clinopyroxene in oxide gabbro mylonites/ultramylonite shown in Figure 7c, which has a sharp change in chemical composition from the mylonite (Mg# = 64–67; Cr$_2$O$_3$ = 0.01–0.02 wt.%) to the ultramylonite (Mg# = 73; Cr$_2$O$_3$ = 0.5 wt.%). With the exception of this ultramylonite, there is a positive correlation between Mg# in clinopyroxene and anorthite content in coexisting plagioclase from each sample (Fig. 9a).

Orthopyroxene Mg# is well correlated with Mg# of coexisting clinopyroxene (Fig. 9b). Similar to clinopyroxene, orthopyroxene from our sample suite is characterized by (i) high Mg# and Cr$_2$O$_3$ contents (87–89; 0.4–0.6 wt.%, respectively) in troctolites and progressively lower (75–58; 0.01–0.04 wt.%) in gabbro/gabbronorite/oxide gabbro, and (ii) lack of correlation between TiO$_2$ and Mg#. The composition of the coronitic to interstitial orthopyroxene in the troctolites suggest a magmatic rather than a metamorphic origin, similar to the granular orthopyroxene in the gabbroronites.

Amphibole is a ubiquitous phase in our samples. There is a clear chemical distinction between the green to pale-brown amphibole statically replacing clinopyroxene (Type I) and the brown amphibole forming poikilitic to interstitial grains in undeformed samples or found as neoblasts within the granulites (Type II; Fig. 10). Type I amphibole occurs in two forms: i) green amphibole with very low AlIV (<0.39 atoms per formula unit, apfu), TiO$_2$ (<0.41 wt.%) and alkalis [(K+Na)<0.12 atoms per formula unit, apfu], mainly consisting in actinolite and
tremolite (Fig. 10); ii) pale-brown amphibole, having higher AlIV (0.83–1.29 apfu), TiO$_2$ (0.3–1.4 wt.%) and alkalis (0.49–0.78 apfu) and mostly represented by hornblende (Fig. 10b). Pale-brown hornblende also constitutes the amphibole-rich veins. These amphiboles have AlIV (1.24–1.41 apfu) and alkalis (0.51–0.82 apfu) partly overlapping those in the amphibole coronas, but have higher TiO$_2$ contents (3.0–3.3 wt.%). TiO$_2$ contents of the hornblende in the vein decrease towards the rim. Chlorine in hornblende coronas and hornblende in veins varies between 0.1–0.2 wt.% (Fig. 10b, c).

In contrast, Type II amphibole is brown to reddish brown, and mostly consists of Ti-pargasite. Within the undeformed troctolite and gabbro samples, this amphibole has high AlIV (1.74–1.82 apfu) and alkalis (0.61–0.79 apfu) and very high TiO$_2$ contents (4.2–4.9 wt.%) and high Mg$^+$ (Fig 10d). Chlorine is lower than the detection limit of the microprobe analyses (~0.1 wt.%) (Fig. 10b, c). Similar to the hornblende in the amphibole veins crosscutting the gabbros, the large amphibole oikocryst in troctolites show a sharp decrease in AlIV and TiO$_2$ from the core towards the rim. Amphibole neoblasts in mylonites and ultramylonites are chemically similar to the magmatic amphibole in undeformed samples. They have high AlIV (1.50–1.82 apfu) and alkalis (0.62–1.80 apfu), low chlorine (<0.1 wt.%), and highly variable TiO$_2$ contents (1.5 to 4 wt.%). The neoblastic amphiboles in the two ultramylonites are overall similar to both the magmatic amphibole and the neoblastic amphibole in the mylonite. The amphibole in the troctolitic ultramylonite tends to have higher AlIV and TiO$_2$ contents and Mg$^+$ than the amphibole in the oxide gabbro ultramylonite (Fig. 10b; d).

5. DISCUSSION

5.1-Bimodal distribution of gabbros from the 16.5° N region of Mid-Atlantic Ridge: a quantitative model to explain the compositional variability of the lower oceanic crust

The composition of the gabbroic rocks collected from the 16.5° N region of the MAR indicates a lower oceanic crust most likely formed by scattered intrusions of chemically primitive gabbros (i.e. troctolites), mainly associated with evolved gabbronorites and oxide-rich gabbros. Intermediate rocks such as olivine-gabbros and gabbro sensu stricto are restricted to <3 wt.% of the ~356 kg of gabbros sampled in the region (Fig. 2). This bimodal distribution is
remarkably different to that of the gabbroic section drilled at Hole U1309D (Blackman et al., 2006; 2011), formed in a relatively robust magmatic center along the Mid-Atlantic Ridge (Godard et al., 2009). It also contrasts sharply with the Atlantis Bank gabbro massif on the SW Indian Ridge, which is dominated by moderately fractionated olivine gabbro that grades into subordinate highly evolved oxide gabbros (e.g.: Dick et al., 2000; MacLeod et al., 2017).

Motivated by the similarity of the gabbros exposed in the 16.5°N region with those of the Kane Megamullion and in the vicinity of the 15°20’Fracture Zone, hereafter we examine how magma supply and melt extraction may control the overall composition of the crustal sections exposed through detachment faulting. We calculate the relative amount of different gabbroic lithologies (i.e. dunites, troctolites, olivine gabbros, gabbros and oxide gabbros) crystallized during a fractional crystallization process using the thermodynamic program MELTS (Ghiorso and Sacks, 1998; Ghiorso et al., 2002). In order to take into account that part of the initial liquid mass is erupted as basalt on the seafloor, we performed this calculation in different steps, allowing a proportion of the liquid to be subtracted at each step of the crystallization process (parameters and results of the model in Tables S7, S8, S9 of the supplementary files). The starting liquid (Liq 0) is a primary melt formed by ~10 % melting of a DMM peridotite source (Mg# ~72; Kinzler and Grove, 1993). After a defined amount of differentiation (for the sake of simplicity fixed at ΔMg# ~4), a precise mass of liquid (Liq 1) is subtracted and the remaining composition of Liq 1 is used as initial composition for the next step of differentiation. The mass of liquid subtracted is calculated by scaling the melt mass in proportion to the compositional distribution of the erupted basalts, which is thereby a fundamental input of our model. We cannot use the observed compositional variability of basalts sampled exclusively in the 16.5°N region, considering that the genetic relationships between the basalts along axis and the gabbros exposed through detachment faulting is not obvious and that basalt sampling is inevitably fragmentary. It has been previously noted that the compositional distribution of basalts at the MOR is globally dependent on the spreading rates (Melson et al., 1976; Sinton and Detrick, 1992). In particular, basalts erupted at slower-spreading ridges tend to be more primitive compared to those erupted at fast-spreading ridges (Fig. 11). The large-scale
compositional variability of the basalts can thereby be considered meaningful, and allows us to compare the results of our model with different lower crustal sections exposed along the same ridge segment. Here, we used the overall compositional distribution of the basalts erupted along the 10–35°N segment of the MAR, which comprises ~2,700 glass analyses selected from the PetDB database (reference Lehnert paper), making the necessary assumption that the distribution is constant for all the modeled scenarios. An explanation of the model is reported in Figure 12.

The solid composition is calculated at each step from the total mass of crystallizing phases given by the program (Fig. 13a; b). The crystallizing phases are restricted to olivine, plagioclase, clinopyroxene and Fe-Ti oxide, following the fractionation trends inferred for a MORB melt (see Grove et al., 1993). Minor phases such as orthopyroxene and amphibole are not considered in the model because they occur as interstitial phases, likely related to crystallization from intercumulus melt. This is in contrast to the primitive orthopyroxene-bearing cumulates that have been sampled in different locations along the mid-ocean ridge system. The orthopyroxene from these rocks has primitive compositions and may represent crystallization from melts more depleted that typical MORB (e.g., Ross and Elthon 1995) either derived from melting an hydrated mantle (Nonnotte et al. 2005) or from melt residual by interaction with mantle peridotites (see also discussion in Gillis et al. 2014). However, it should be noted that gabbronorites having granular orthopyroxene as a cumulus phase were rarely sampled in this study, and that these rocks do not contain olivine and have relatively evolved mineral compositions, plotting in the field of the orthopyroxene-free gabbros (Figs 8 and 9).

For the sake of simplicity, we hence grouped the gabbronorites with the gabbros sensu stricto in our model. The total mass of initial liquid subtracted by eruption \((M_e) \) with respect to that crystallized \((M_c) \) is referred to as \(M_e/M_c \). At \(M_e/M_c = 0 \) the melt is totally retained in the lower crust and the mass of gabbro crystallized corresponds to that of pure fractional crystallization. At high \(M_e/M_c \) the melt is preferentially erupted and the relative mass of crystallized gabbros decreases.

The proportion (mass %) of gabbros crystallized at different \(M_e/M_c \) (0 to ~7:3) is
shown in Figure 13, where the chemical and modal compositions of the crystallizing
assemblages and the distribution of the resulting erupted basalts are shown at steps of ΔMg# 4.
Remarkably, the olivine and clinopyroxene crystallized from the computed melt fits the
composition of the natural samples from this study very well. As was expected, this model
shows that at increasing M_e/M_c, a large proportion of the melt is erupted on the seafloor during
the first phase of crystallization. Hence, the crystallizing assemblage tends to be progressively
more primitive, i.e.: olivine ± plagioclase assemblages are preferentially formed until the melt
is exhausted (Fig. 13e). At the same time, at high M_e/M_c ratios most of erupted melts are
restricted to basalts with very primitive compositions.
This simple scenario is highly improbable, however, as it implies that the liquid mass
is entirely extracted from the cumulate at each step of differentiation. Studies of oceanic
gabbros indicate that variable amounts of interstitial melt are retained within the crystal mush
(e.g.: Meyer et al., 1989; Natland and Dick, 2001). Hence, we assume that a proportion of
the initial melt is retained at each step of the crystallization process, following a separate
liquid line of descent (see Fig. 12). We must consider that the interstitial melts can crystallize
within the cumulus matrix at the closure of the magmatic system (e.g.: Tribuzio et al., 2000;
Borghini and Rampone, 2007) or can migrate through the crystal mush driven by buoyancy
differences or by compaction (e.g.: Dick et al., 2000; Natland and Dick, 2001). In both cases,
textural and geochemical evidence in gabbros suggest that these melts tend to partly
assimilate the crystal matrix, causing geochemical modification ascribable to assimilation–
 fractional-crystallization (AFC) processes (e.g.: Coogan et al., 2000; Borghini and Rampone,
2007; Gao et al., 2007; Lissenberg and Dick, 2008; Drouin et al., 2009; Sanfilippo et al.,
2013; Lissenberg and MacLeod, 2016). The chemical response to these processes has been
modelled following equations from DePaolo (1981). These equations replicate the variations
in trace element compositions of the reacting melts and of the phases crystallized from it (see
Coogan et al., 2000; Gao et al., 2007; Borghini and Rampone, 2007; Lissenberg et al., 2013;
Sanfilippo et al., 2015; Lissenberg and MacLeod, 2016). They have been successfully used to
test AFC hypotheses in well-constrained melt-rock reaction scenarios, such as the conversion
of dunite to troctolite (e.g., Rampone et al., 2016 and reference therein) or troctolite to olivine-gabbro (Lissenberg and Dick, 2008). When applied to the scale of the entire oceanic crust, a process of assimilation would introduce a number of independent variables (i.e., the modal amount of mineral phases involved; the chemical compositions of the reactants; the mass assimilate/mass crystallized ratios; see discussion in Lissenberg et al., 2013). Such a model could not be reproduced by the MELT model used here.

As a simplification, at each step we subtracted a certain amount of melt proportional to the melt density (Fig. 13d), considering that a maximum of 30% of liquid can initially be trapped in the solid framework before migrating upwards due to compaction by density driven flow (Morse, 1979; Meyer et al., 1989). Then we calculate the gabbros crystallized from the total mass of trapped melts (Fig. 12). The mass of gabbro resulting from this calculation was then added to that of the gabbros previously obtained. Note that owing to an increase in melt density with the chemical evolution, our model supposes that the amount of melt potentially trapped in the crystal framework increases at decreasing liquid Mg#. This causes a dependence of the amount of trapped melt on the Me/Mc ratio, with a more extensive melt entrapment occurring at low Me/Mc ratios (Fig. 13e).

As expected, this calculation shows that the relative amount of evolved lithologies (mainly oxide-gabbro) increases in all the modelled scenarios (Fig. 13e). In particular, at high Me/Mc ratios, most of the initial liquid is erupted on the seafloor before the melts reach saturation in clinopyroxene, thereby preventing the formation of moderately evolved gabbros (olivine-gabbros and gabbros sensu stricto). However, at the same time, the occurrence of trapped liquid enables the local formation of evolved lithologies as this melt migrates due to upward compaction and lateral density driven flow (gabbronorites to oxide gabbros). As a consequence, at high Me/Mc ratios the model is able to produce a bimodal distribution of the gabbros, characterized by large proportions of primitive lithologies and lack of intermediate compositions.

It is noteworthy, however, that the model fails to reproduce the large amount of oxide gabbros present in the 16.5°N region. There are several factors that can account for this. Most
Oxide gabbros appear to be formed by interstitial melts expelled from the cumulate matrix and by upward compaction and/or high temperature deformation into narrow zones of the crystal mush often associated with shear zones along the detachment fault surface (Dick et al., 2000; Natland and Dick, 2001; Macleod et al., 2017). Moreover, it has been recently observed that in addition to an upward increase in oxide gabbros at the Atlantis Bank gabbro massif, that the body is laterally zoned to more evolved cumulates that comprise the entire section from the base of the crust to the dike-gabbro transition at the distal end of the body near the bounding Atlantis II Transform (MacLeod et al., 2017). This shows that density driven lateral flow by either direct intrusion or permeable flow plays a major role in the architecture of the lower oceanic crust. Thus, as seen at the Kane Megamullion (Dick et al., 2008) and Atlantis Bank (MacLeod et al., 2017), while dunite and troctolitic dikes are rare in mantle massifs adjacent to major magmatic centers at slow spreading ridges, oxide gabbro dikes are widely distributed lithology. Thus, the amount of oxide gabbros can be biased by dredging and drilling in areas of low magma flux, with highly centralized magmatic centers and intervening relatively amagmatic regions, as from 13° to 17°N on the MAR (e.g.: Mendel et al., 1997, Sauter et al., 2001, Standish et al., 2008). Finally, we emphasize that any AFC process would tend to increase the incompatible element composition of the interstitial melt (see Lissenberg and MacLeod, 2016 and reference therein), producing melts anomalously enriched in incompatible elements compared to a melt evolving through fractional crystallization. This suggests that a melt produced by AFC would potentially enriched the melt in Ti, bringing the saturation in Fe-Ti oxides forward, and producing higher amounts of oxide-bearing lithologies. This is another possible reason why our model seems to underestimate the amount of oxide-gabbros compared to the natural occurrences.

Although fairly simplistic, in combination with insight provided by field mapping into ocean crust architecture, this model provides insight into why a bimodal distribution of the lower oceanic crust may be expected in regions where a high proportion of liquid produced in the mantle is erupted on the seafloor, with a minor proportion of intrusive rocks. This scenario recalls the “plum-pudding model” suggested for slow-spreading ridges (Cannat, 1993, Cannat
et al., 1995; 1997), which proposes that the lower oceanic crust might consist of small gabbroic
plutons scattered within the lithospheric mantle (see also Kelemen et al., 2004; Dick et al.
2008; 2010).

The outcomes of our model are consistent with the compositional heterogeneity of the
lower oceanic crust along the MAR (Fig. 13). For instance, a lower oceanic crust mainly
consisting of primitive gabbros and highly evolved lithologies is expected at regions
characterized by scattered injections intruded within mantle peridotites, such as the region
considered here or the 15°20’N fracture zone drilled during Leg 209 (Kelemen et al., 2004).

On the other hand, a lower oceanic crust mostly composed of moderately evolved gabbros
associated with primitive lithologies (troctolites and dunites) and minor oxide gabbro is
expected in areas of a thick crust and moderate melt supply. This can be the case for relatively
robust magmatic segments as for instance the Atlantis Massif OCC (Blackman et al., 2007;
2011; Ildefonse et al., 2007; Godard et al., 2009; Drouin et al., 2009; 2010) or the crustal
transect exposed at the Adam Dome of the Kane megamullion (Dick et al., 2008) (Fig. 12d).

5.2 Emplacement and crystal-plastic deformation of the NCC gabbros

Clinopyroxene in the 16°30’N gabbros are characterized by different combinations of
Mg# and TiO₂ contents (Fig. 8). In particular, they show two distinct chemical trends in
troctolites (Trend 1) and gabbros/gabbronorites/oxide gabbros (Trend 2). The
clinopyroxenites following Trend 1 show a sharp increase in TiO₂ at nearly constant Mg#;
whereas those following Trend 2 display a gradual increase in TiO₂ at decreasing Mg#
followed by (from Mg# ~70) a renewed decrease in TiO₂. These chemical trends are typical
for clinopyroxene from abyssal gabbros (see Coogan, 2007) and respectively explained as
(Trend 1) evidence for magmatic metasomatism (i.e., melt–rock reactions) in a troctolitic
matrix (see also Lissenberg and Dick, 2008; Suhr et al., 2008; Drouin et al., 2009; Sanfilippo
and Tribuzio, 2013; Sanfilippo et al., 2013; 2015a; b; Lissenberg and MacLeod, 2016);
(Trend 2) evidence for progressive magmatic differentiation followed by saturation in Fe-Ti
oxides to form the oxide gabbros. The gradual decrease in clinopyroxene Mg# versus
plagioclase An contents, and the variability of the Cpx suggest that the
troctolite/gabbro/oxide-gabbro series crystallized from cogenetic melts evolving through
fractionation of Ol, Pl, Cpx and, finally, Ti-Fe oxides. Despite this, it seems obvious that the
crystallization of Cpx in the troctolites also involved interactions between the olivine and
plagioclase matrix and an evolved interstitial melts. This is consistent with the occurrence of
large brown amphibole occurring as interstitial to oikocrystic grains within the troctolites
(Fig. 4c,d). This amphibole locally shows poikilitic textures with inclusions of irregular
plagioclase chadacryst and small Ti-Fe oxides, and is characterized by high TiO₂, (K+Na)
and Al, and negligible Cl contents (Fig. 10). The poikilitic texture and the chemical
compositions are reconcilable with a magmatic origin, indicating the crystallization of late-
stage melts enriched in water and incompatible elements (see also Tribuzio et al., 2000;
Coogan et al., 2001; Borghini and Rampone, 2007). Hence, in agreement with the extensive
literature data for abyssal gabbros (e.g., Lissenberg et al., 2008; Suhr et al., 2008; Drouin et
al., 2009; Renna and Tribuzio, 2010; Sanfilippo et al., 2013; 2015; Lissenberg and MacLeod,
2016; Rampone et al., 2016), the enrichments in TiO₂ in the high-Mg# clinopyroxene and the
occurrence of magmatic amphibole with poikilitic texture testify that the 16.5°N troctolites
underwent a process of magmatic metasomatism by an interstitial, evolved melt. Below, we
show that evolved melts were also locally present at the onset of the deformation related to
the detachment faulting.

A large proportion of the 16.5°N gabbros show textures associated with a process of
deformation under high-temperature conditions (Fig. 3). In particular, most samples have
olivine, plagioclase, and clinopyroxene recrystallized in polygonal aggregates that are often
associated with brown amphibole and Ti-Fe oxides. The amphibole neoblasts in all deformed
troctolites (sheared, mylonites, and ultramytonites) are compositionally identical to the
magmatic amphibole in the undeformed samples. In addition, the occurrence of deformed
amphibole porphyroclasts in a sheared troctolite and the textural equilibrium with the other
neoblastic phases (olivine, plagioclase and clinopyroxene) clearly indicate that the formation
of pargasitic amphibole in this sample predated the “anhydrous” granulite-facies deformation
The edenite-richterite amphibole-plagioclase thermometer of Holland and Blundy (1994) on adjacent grains of amphibole and plagioclase was selected to infer the temperature of recrystallization (Fig. 14). In one mylonitic troctolite, the amphibole-plagioclase thermometry was also confirmed by two-pyroxene thermometry (Lindsley and Frost, 1992), which yielded similar temperature estimates (see Fig. 14). Independent of rock-type, the amphibole-plagioclase thermometer provided high temperature estimates for the granulite-grade deformation, varying between 930 °C and ~1010 °C. These estimates fall in the range of temperature estimated by Mehl and Hirth (2008), who showed that granulite-facies deformation in gabbros from Hole 735B occurred at temperatures as high as 946 ±70 °C. These data suggest that the crystal-plastic deformation, which caused dynamic recrystallization and formation of neoblasts of olivine + clinopyroxene ± brown amphibole in the troctolites took place at hyper-solidus conditions (close to the solidus temperature of the magmatic system). The high equilibration temperatures (1004 ± 20 °C; Fig. 14) estimated on the basis of the coexistence of clinopyroxene–orthopyroxene in one troctolite mylonite confirm this hypothesis. We must note that these temperatures are very close to the stability limit of pargasitic amphibole at low pressures, which is considered to be at temperatures <1000 °C (Koepke et al., 2004; 2005; 2007). Hence, one possibility is that the temperature estimates for the mylonites give the crystallization temperature of an amphibole formed by a melt present during the deformation process. The chemical modifications in the neoblastic plagioclase of the sheared troctolite in Figure 7a, which has lower anorthite compared to that of the porphyroclasts (An$_{78}$ and An$_{81}$ respectively) may also suggests that the granulite facies deformation in the mylonites might have occurred in the presence of interstitial melt. Although this idea would need to be better constrained by a more thorough chemical characterization of the porphyroelastic and neoblastic minerals in the mylonites, the occurrence of melts at the onset granulite-grade deformation is consistent with the composition of the two ultramylonites shown in Figure 6. Both cases show a clear variation in the neoblastic assemblage crystallized during the strain localization from the proto-
mylonite to the ultramylonite zone. In particular, although they are hosted in mineralogically different mylonites, both ultramylonites are formed by anorthitic plagioclase (An$_{65}$ to An$_{82}$), Ti-rich pargasitic amphibole (TiO$_2$ 1.7–3.7 wt.%), and minor clinopyroxene (Mg# 75 to 85). In contrast to the host rocks (oxide gabbro and troctolite), they do not contain olivine, spinel or Ti-Fe oxides (Figs 6; 7). Felsic rocks containing plagioclase and amphibole are often found in abyssal and ophiolitic gabbrs as crosscutting veins or discrete bodies associated with oxide-rich gabbbros (Dick et al., 2000; Koepke et al., 2004; 2007; Tribuzio et al., 2014; MacLeod et al., 2017). These rocks are interpreted as the product of crystallization of silica-rich melts produced by extreme fractional crystallization of MOR-type basalt and/or partial melting of hydrothermally altered gabbro (see discussion in Tribuzio et al., 2014). Hence, one can argue that the ultramylonites represent the recrystallization of felsic material originally located within the host rock and mylonitized during the deformation event. However, this is at odds with the high anorthite in plagioclase (An$_{83}$-An$_{65}$) and Mg# in clinopyroxene and amphibole (Mg# 75–85 and 67–80 respectively) in the ultramylonites. In addition, the composition of the amphibole in the ultramylonite formed from a troctolite progenitor is similar to that of the amphibole in the host rock (Figure 10b). The temperature estimates for the amphibole-plagioclase couples in the ultramylonite furnish very high values ranging from 930 °C and ~1020 °C, comparable to those in the host mylonites (Fig. 14). Based on these data, it is plausible that the ultramylonite layers may represent melt-rich zones developed during the same deformation event as the host granulite-facies mylonites. The peculiar mineralogical and chemical compositions of these layers indicate that the melt had a hybrid composition, i.e., high Mg/Fe and Ca/Na ratios, but rich in silica, incompatible elements and water. The ultramylonite hosted in an oxide-gabbro, has plagioclase showing a strong increase in anorthite component (~82 mol.%) compared to that in the host mylonite (~46 mol.%). The high anorthite is also ascribable to the occurrence of a water-bearing melt during the crystallization of the neoblastic plagioclase (Berndt et al., 2005). Further investigation will shed light on the nature of this hybrid melt and the mechanism that allowed the strain localization to form the ultramylonite.
In summary, our data suggest that the granulite facies deformation event recorded by the gabbros occurred shortly after the crystallization of the magmatic phases. This event may have possibly enhanced the expulsion of the liquid from the crystal framework, allowing the formation of oxide-rich seams within the gabbros and/or discrete oxide-rich horizons often associated with high-temperature deformation. A similar process has been proposed by Natland and Dick (2001) to explain the close association of oxide-rich layers and granulite-grade mylonites in gabbros from Hole 735B at Atlantis Bank. We note though that thermometry estimates of the mylonites analyzed by Miranda and John (2010) from Hole 735B yielded temperatures <910ºC generally lower than those reported in the present study. Nonetheless, the occurrence of high-temperature ultramylonites likely formed in the presence of melt suggests a complex interplay between deformation and melt percolation that has also been proposed for mylonitic rocks drilled at the inside-corner high of the MAR at 23ºN (Agar and Lloyd, 1997).

5.3 Hydrothermal alteration

Distinctive black hornblende-rich veins locally crosscut the gabbros at high angle to the high-temperature metamorphic foliation of the host rock. These vein-filled fractures represent formation during brittle deformation that is also related to the crystallization of hornblende pseudomorphs after the magmatic clinopyroxene in the host rock, indicating the host gabbros enjoyed migration of hydrous fluids from the vein into the gabbro. This process also accounts for the formation of secondary plagioclase (albitic in composition) crystallizing within microcracks connecting the different amphibole pseudomorphs. Both the vein and clinopyroxene pseudomorph hornblende in the gabbros have appreciable Cl contents (0.1–0.2 wt.%) similar to that in hydrothermal amphiboles in other abyssal gabbros (Coogan et al., 2001; Cortesogno et al., 2004; Tribuzio et al., 2016). This suggests that both amphibole types formed by interaction with water-rich fluids likely derived from seawater (see also Alt and Bach 2006). However, the amphibole from the veins has lower Mg# (70–77) and higher TiO₂ contents (3.0–3.3 wt.%) compared to the coronitic hornblende.
adjacent to the veins in the gabbro (Mg\# = 75–81; TiO_2<1.5 wt.%), approaching the Ti and Al of the magmatic pargasite in the troctolites (Fig. 10). The chemical map in Figure 7d shows that the hornblende statically replacing the pyroxene is associated with fine-grained plagioclase having very low anorthite contents (20–25 mol.%) and is typically found in microcracks. Temperature estimates based on plagioclase-amphibole pairs yield amphibolite facies temperatures of ~700 °C (Fig. 14). This suggests that the hornblende replacing the clinopyroxene likely formed by interaction of the magmatic phases with seawater-derived fluids (Coogan et al., 2001), which caused the recrystallization of Na-rich plagioclase within cracks and microveins (see also Tribuzio et al., 2016). On the other hand, the high Ti and Al in the hornblende from the veins suggest that magmatic components were likely still present within the fluids forming these veins. This is in agreement with the high temperature (920–970 °C) indicated by the plagioclase-amphibole thermometers on a euhedral plagioclase contained in the vein. The occurrence of magmatic components in the hornblende-rich veins was also inferred for the amphibole-rich veins crosscutting gabbro at Atlantis Bank (Alt and Back, 2006) and in the Ligurian ophiolites (Tribuzio et al., 2014) and related to fluids exsolved from highly evolved melts residual from the magmatic differentiation process.

In summary, the microtextures and the chemical variability of the amphibole forming the hydrothermal hornblende offer a snapshot to the retrograde evolution of this portion of the lower crust exhumed by a detachment fault. In line with previous studies on abyssal and ophiolitic gabbros, we propose that a magmatic component was still present during the first stages of hydrothermal alteration at the ductile-brittle transition. This stage was followed by further cooling, by the ingress of seawater along cracks and by the static replacement of the magmatic phases by green hornblende and albitic plagioclase.

6. CONCLUSIONS

The lower oceanic crust exposed in the 16.5 °N region of the Mid-Atlantic Ridge formed in a detachment fault system characterized by a moderate to low magma supply. Dredge hauls indicate a bimodal composition of the lower crust that is formed by a high proportion of
dunites and troctolites associated with evolved gabbronorites and oxide gabbros, and a lack of intermediate rock types. Using a thermodynamic model, we infer that a similar bimodal distribution of the lower oceanic crust is expected in regions where gabbroic intrusions are scattered within partly serpentinized mantle peridotite. The formation of these “ephemeral” magma chambers within the mantle lithosphere causes a high eruption rate, which in turn allows most of the melt to be erupted after moderate degrees of fractionation. This idea is also consistent with the evidence that small amounts of melt were present at the onset of the high-temperature deformation related to the oceanic detachment. The development of porphyroclastic to mylonitic fabrics occurred at near-solidus conditions (~1000 °C) and was likely associated with the expulsion of interstitial, evolved melts from the crystal matrix. This mechanism enhanced the formation of disconnected oxide-gabbro seams or layers often associated with crystal-plastic fabrics in the host gabbros. The high-temperature deformation was followed by hydrothermal alteration marked by the formation of amphibole-rich veins at high-temperature conditions (~900 °C). This study suggests that the compositional variability of the lower oceanic crust formed at the 16.5 °N region of the Mid-Atlantic Ridge is the consequence of the complex interplay between low melt supply and high-temperature deformation representing the deep expression of the detachment fault.

ACKNOWLEDGMENTS

The geochemical data used in this study and the parameters of the model are included as Tables in the Supplementary Material. The data published will be contributed to the Petrological Database (www.earthchem.org/petdb). We thank the captain and crew of the R/V Knorr for their help and enthusiasm during our cruise to the 16.5° core complexes. Deborah Smith served as best chief scientist ever. Hans Schouten and Joe Cann kept HJBD in line and together with Vincent Salters, Ross Parnell-Turner, Fuwu Ji, Dana Yoerger, Camilla Palmiotto, A. Zheleznov, H. L. Bai, and Will Junkin interpreted the geophysical data and described the rock samples on which this paper is based. A.S was financially supported with an InterRidge fellowship and by the Societa’ Italiana di Minerlogia e Petrografia. HRM acknowledges
support from the Wilhelm und Else Heraeus Stiftung. HJBD acknowledges support from the
National Science Foundation grants MG&G 1155650 and MG&G 1434452, and discussions
and assistance in the laboratory from Ma Qiang. Fuwu Ji, Joe Cann, Deborah Smith, Hans
Schouten, and Ross Parnell-Turner assisted in dredging, sample description, and provide the
authors with considerable insight into the geologic and geophysical data collected during the
Knorr Cruise 210 Leg 5. Comments by E. Rampone, G Ceuleneer and an anonymous reviewer
improved the quality of the manuscript.
FIGURE CAPTIONS

Figure 1. Bathymetric map of the Mid-Atlantic Ridge, 16.5°N area studied by cruise, R/V Knorr, KNR210-5 (Smith et al., 2014). The location of Southern, Central and Northern Core complexes are also indicated.

Figure 2. (A) Location of the dredges collected during the cruise, R/V Knorr, KNR210-5 (Smith et al., 2014). Large pie diagrams refer to the dredges where gabbros or peridotites were collected, dredge numbers are indicated. (B) Compositional variability of all lithologies and plutonic rocks from Southern, Central (CC) and Northern Core Complexes (NCC).

Figure 3. Photographs of cut hand specimens of six different plutonic rocks recovered by dredging during R/V Knorr cruise 210-5. Some of the samples show high-temperature crystal-plastic deformation with protomylonitic, mylonitic and ultramylonitic fabrics. In one case, the high-temperature deformation fabrics are cross-cut by lower-temperature brittle fractures and amphibole veins. CPF refers to crystal-plastic fabric as defined in the text.

Figure 4. Microphotographs of selected samples. (A) Olivine oikocrysts showing rounded grain boundaries against plagioclase in an undeformed troctolite; (B) Large clinopyroxene oikocryst including subrounded olivine and plagioclase chadacryst in a troctolite; Ti-pargasitic amphibole in a sheared troctolite (CPF 1) showing interstitial (C) and oikocryst (D) habitus; (E) Sheared gabbronorite cut by amphibole vein with diffuse boundaries. Clinopyroxene locally shows partial replacement by amphibole (CPF 2); (F) Hornblende corona statically replacing clinopyroxene in the vicinity of the amphibole vein in (E). Ol, olivine; Pl, plagioclase; Cpx, clinopyroxene; Ti-Prg, Ti-pargasite; Hbl, hornblende.

Figure 5. Histogram of deformation intensity of plutonic rocks collected during R/V Knorr cruise 210-5 (see text for detail).

Figure 6. Macroscopic occurrence and microphotographs of the amphibole-plagioclase ultramylonites and host mylonites. (A) Troctolite showing a gradual increase in deformation intensity from protogranular to mylonite to ultramylonite (UM), (B) Scanned thin-section image of the ultramylonite band crosscutting an oxide-gabbro mylonite. Note that the texture and the mineralogical composition of the two ultramylonites are almost identical, although they are developed in highly different magmatic protoliths.

Figure 7. FEG-SEM compositional maps of selected samples. (A) Na, Ca and Mg map of a sheared troctolite clearly showing an increase in Na and decrease in Ca in the neoblastic plagioclase compared to the coexisting porphyroclasts. (B) Cr, Ca, Mg, S and Ti maps of the troctolite mylonite including a Amp-Pl ultramylonitic band. The maps show a decrease in Ca in plagioclase in the ultramylonite compared to the mylonite and the distribution of Ti-bearing phases (i.e., amphibole) and Cr-bearing phases (i.e., spinel) between the two lithologies. (C) Na and Ti map of the oxide-gabbro mylonite including a amphibole-plagioclase ultramylonitic band. The maps show a sharp decrease in Na in plagioclase in the ultramylonite compared to the mylonite and the lack of Ti-Fe oxides in the ultramylonite. (D) Detail of a Na, Mg and Fe map of a gabbro crosscut by an amphibole vein. Note that hornblende replacement is widespread in the vicinity of the amphibole vein, and that Na-rich plagioclase is associated with micro-cracks and late fractures.

Figure 8. Variations in TiO$_2$ (A) and Cr$_2$O$_3$ (B) versus Mg/(Mg+Fe$^{2+}$) (mol.%) in clinopyroxenes from the 16.5°N gabbros. Symbols are grouped per rock-type and indicate single spot analyses (core and rim). The composition of clinopyroxenes from gabbros from other lower crustal sections exposed along the Mid-Atlantic Ridge are also depicted (Ross and Elthon, 1993; Nonnotte et al., 2005; Coogan et al., 2002; Suhr et al., 2008; Drouin et al., 2009; Lissenberg and Dick, 2008; Dick et al., 2010).
Figure 9. Covariations in clinopyroxene \(\text{Mg}/(\text{Mg}+\text{Fe}^2+) \) (mol.%) versus \(\text{Ca}/(\text{Ca}+\text{Na}) \) (mol.%) in plagioclase and \(\text{Mg}/(\text{Mg}+\text{Fe}^2+) \) (mol.%) in orthopyroxene coexisting in selected gabbros. Dashed arrows indicate the chemical variation in clinopyroxene and plagioclase in the ultramylonite compared to the host oxide-gabbro mylonite. Data are averaged per sample, error bars represent one standard deviation of the mean value.

Figure 10. Compositions of amphibole from selected gabbros. (A) Variations in alkali (Na+K) and TiO\(_2\) (wt.%) versus Al\(^{IV}\) (apfu) in amphibole from selected gabbros. (B) Same plot as A including only core analyses of pargasite and brown hornblende. (C) Chlorine (wt.%) versus Al\(^{IV}\) (apfu) in amphibole; detection limit of EPMA analyses is also indicated. (D) Variations in TiO\(_2\) (wt.%) versus \(\text{Mg}/(\text{Mg}+\text{Fe}^2+) \) (mol.%) in pargasite and brown-hornblende (core analyses). Each symbol represents a single spot analysis.

Figure 11. (A) Compositional distribution of basalts from Gakkel Ridge (~500 glass analyses); Mid-Atlantic Ridge 10–35 °N (~1300 glass analyses); East Pacific Rise 9–13 °E and East Pacific Rise 9–13 °N (~230 glass analyses) and East Pacific Rise 14–20 °N (~1050 glass analyses). Data compiled from PetDB (Lehnert et al., 2000). (B) Average compositions and standard deviation of Na\(_2\)O (Klein and Langmuir, 1987) versus \(\text{Mg}/(\text{Mg}+\text{Fe}^2+) \) of the basalts in (A). The average full spreading rates of the regions are also indicated (see also Sinton and Detrick, 1992 and Coogan, 2007).

Figure 12. Visual explanation of the quantitative model. M1 is the primary melt with \(\text{Mg}/(\text{Mg}+\text{Fe}) \approx 72 \) and mass 100g. M2 to M13 are melts produced by the model at steps of \(\text{Mg#} \approx 4 \). The mass of melt at each step is calculated as indicated by the italic numbers. B1 to B12 are melt extracted at each step of the model. Their mass is scaled to reproduce the actual compositional variability of melts erupted at the MAR (10-35°N). G1 to G13 are gabbros produced by the model, and forming the “cumulate”. T1 to T12 are melts trapped at each step and subtracted form the total melt mass. \(\text{T}_{\text{tot}} \) is the sum of T1 to T12 and is used to calculate the proportion of gabbros crystallized from trapped melts (“trapped”). The “Total” lower crust composition is given by the sum of gabbros crystallized as “cumulate” + “trapped” (see text for details).

Figure 13. Liquid \(\text{Mg}/(\text{Mg}+\text{Fe}) \) (mol.%) compositions versus (A) olivine Fo (black line and red circles) and clinopyroxene \(\text{Mg}/(\text{Mg}+\text{Fe}) \) (blue line and blue circles); (B) mass of gabbros (%) crystallized at each step of the thermodynamic model at different mass erupted /mass crystallized ratios (\text{Me/Mc}); (C) trapped melt (%) and (D) liquid density calculated at each step of the crystallization process. (E) Compositional variability of gabbros resulted from the thermodynamic model. The origin represents the mass of gabbros neglecting eruption, on the x-axis are depicted the model outcomes for different Me/Mc ratios if melt entrapment is ignored. The effect of melt entrainment is shown in the pie diagrams displayed vertically. The vertical displacement of each diagram depends on the total amount of trapped melt, as represented on the y-axis. The grey dashed line connects model results for different trapped melt compositions (see text for details). The compositional variability of the gabbros dredged at the MAR 16.5°N region, and those from the hole U1309 at the Atlantis Massif (Blackman et al., 2011) are also reported. (F) Compositional variability of the basalts erupted at different Me/Mc ratios compared to the basalts from the MAR 10–35°N segment.

Figure 14. Temperature estimates calculated using the edenite richterite amphibole-plagioclase thermometer (Holland & Blundy, 1994) assuming a pressure of 200 MPa. Mean values and standard deviations are given for individual textural amphibole-plagioclase types for each sample.
REFERENCES

Agar, S.M., G.E. Lloyd (1997), Deformation of Fe-Ti oxides in gabbroic shear zones from the
Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, TX,

Alt, J. C., W. Bach (2006), Oxygen isotope composition of a section of lower oceanic crust,
2006GC001385.

Blackman, D. K., B. Ildefonse, B. E. John, Y. Ohara, D. J. Miller, C. J. MacLeod, and
Expedition 304/305 Scientists (2006), Oceanic core complex formation, Atlantis Massif,
Proceedings of Integrated Ocean Drilling Program, 304/305, 304, 605 pp., Ocean Drill.

Blackman DK, Ildefonse B, John BE et al. (2011) Drilling constraints on lithospheric accretion
and evolution at Atlantis Massif, Mid-Atlantic Ridge 30°N, J Geophys Res, 116,25

Buck, W. R., L. L. Lavier and A. N. B. Poliakov (2005), Modes of faulting at mid-ocean ridges,

Borghini G., E. Rampone (2007), Postcumulus processes in oceanic-type olivine-rich
cumulates: the role of trapped melt crystallization versus melt/rock interaction, Contrib
Mineral Petrol 154:619–633

Cann, J. R., D. K. Blackman, D. K. Smith, E. McAllister, B. Janssen, S. Mello, E. Avgerinos,

Cannat, M. (1993), Emplacement of mantle rocks in the seafloor at mid-ocean ridges, J.

Stages of Magmatism in Serpentinized Peridotites from the 15 degree N Region, in: Vissers,
R., Nicolas, A. (Eds.), Mantle and Lower Crust Exposed in Oceanic Ridges and in

Tivey (2013), Mylonitic deformation at the Kane oceanic core complex: implications for the
rheological behavior of oceanic detachment faults, Geochemistry, Geophysics, Geosystems,
14, 3085–3108.
Holland, T., J. Blundy (1994), Non-ideal interactions in calcic amphiboles and their bearing on
Ildefonse, B., D. K. Blackman, B. E. John, Y. Ohara, D. J. Miller, and C. J. MacLeod (2007),
Oceanic core complexes and crustal accretion at slow-spreading ridges, Geology, 35, 623–
Karson, J. A., Dick H. J. B. (1983), Tectonics of ridge-transform intersections at the Kane
Fracture Zone. Marine Geophysical Researches 6, 51-98.
Kinzler R.J., T.L. Grove (1993), Corrections and further discussion of the primary magmas of
mid-ocean ridge basalts, 1 and 2, J Geophys Res, 98, 22339–22347.
Klein EM, C.H. Langmuir (1987), Global correlation of ocean ridge basalt chemistry with axial
depth and crustal thickness, J Geophys Res, 92, 8089–8115
Koepke J., Berndt, S.T. Feig and F. Holtz (2007), The formation of SiO2-rich melts within the
84.
database structure for rocks, Geochemistry, Geophysics, Geosystems 1,
Lindsay, D. H., and B. R. Frost (1992), Equilibria among Fe-Ti oxides, pyroxenes, olivine, and
Lissenberg C.J., H.J.B. Dick (2008), Melt–rock reaction in the lower oceanic crust and its
implications for the genesis of mid-ocean ridge basalt, Earth Planet Sci Lett, 271, 311–325
Lissenberg C.J., K.A. Howard, C.J. MacLeod, M. Godard (2013), Pervasive reactive melt
migration through fast-spreading lower oceanic crust (Hess Deep, equatorial Pacific Ocean),
Earth Planet Sci Lett 361:436–447
Lissenberg, C. J., C. MacLeod (2016), A reactive porous flow control on Mid-ocean Ridge
d magmatic evolution, J Petrol, 57, 2195–2220
Achenbach, and M. Harris (2009), Life cycle of oceanic core complexes, Earth Planet Sci.
MacLeod, C.J., Dick, H.J.B., Blum, P., and the Expedition 360 Scientists, Southwest Indian
Ridge Lower Crust and Moho, Proceedings of the International Ocean Discovery Program,
360: College Station, TX (International Ocean Discovery Program).
Mehl, L., and G. Hirth (2008), Plagioclase preferred orientation in layered mylonites:
Evaluation of flow laws for the lower crust, J. Geophys. Res., 113, B05202,
Melson W.G., T.L. Vallier, T.L. Wright, G. Byerly and J. Nelson (1976), Chemical diversity of
abyssal volcanic glass erupted along Pacific, Atlantic, and Indian Ocean sea-floor spreading
centers. In: The Geophysics of the Pacific Ocean Basin and Its Margin (AGU, Washington),
p 351–367
variations along a super slow-spreading center: The Southwest Indian Ridge (57 degrees E-
Meyer P.S., H.J.B. Dick, G. Thompson (1989), Cumulate gabbros from the Southwest Indian
Ridge, 548S^478160E: implications for magmatic processes at a slow spreading ridge.
Contrib Miner Petrol, 103:44–63
Miranda E.A., and B.E. John (2010), Strain localization along the Atlantis Bank oceanic
detachment fault system, Southwest Indian Ridge, Geochemistry, Geophysics, Geosystems,
11(4):Q04002.
Morse SA (1979), Kiglapait geochemistry II. Petrography, J Petrol, 20, 591-624

Sanfilippo A., Tribuzio R (2013) Origin of olivine-rich troctolites from the oceanic lithosphere: a comparison between the Alpine Jurassic ophiolites and modern slow spreading ridges,

(2015), Hybrid troctolites from Mid-Ocean ridge, inherited mantle in the lower crust, Lithos, 232, 124–130

Stolper E. and D. Walker (1980), Melt Density and the Average Composition of Basalt, Contrib. Mineral. Petrol. 74, 7-12

Tribuzio R., M.M. Renna, L. Dallai and A. Zanetti (2014), The magmatic–hydrothermal transition in the lower oceanic crust: Clues from the Ligurian ophiolites, Italy, Geochimica et Cosmochimica Acta 130, 188-211

Figure 4.
Figure 5.
Figure 6.
Figure 7.
a) Sheared troctolite

- Na
- Ca
- Mg

- Pl neo (An~78)
- Pl porp (An~81)
- Cpx
- OI

5 mm

b) Troctolite / Amp-PI Ultramylonite

- Cr
- Ca
- Mg
- S

- Troctolite mylonite (An~81)
- Amp-PI UM (An~65)

5 mm
c) Ox-gabbro / Amp-PI Ultramylonite

- Na
- Mg
- Fe

- Ox-gabbro Mylonite (An~46)
- Amp-PI UM (An~82)

5 mm
d) Amp-vein on gabbronorite

- Na
- Ti

- Amp-vein
- vein PI (An~53)
- magmatic PI (An~58)
- secondary PI (An~25)
- Opx
- Hbl

5 mm
Figure 10.
Figure 12.
Figure 13.
magmatic

granulite-facies mylonite

Am-Pl ultramylonite

Am vein cross-cutting gabbro

Static replacement of Cpx porphyroclasts

Troctolites
- 60-30
- 60-27a
- 60-27c

Gabbro
- 49-18

Ox-gabbro
- 55-44

Cpx-Opx (L&F, '92)

Am-Pl temperature (°C at 200 MPa)