
Fabrication of hybrid Fabry-Pérot microcavity 
using two-photon lithography for single-
photon sources 

F. ORTIZ-HUERTA,1,* L. CHEN,1 M. TAVERNE,1 J. P. HADDEN,3 M. 
JOHNSON,1,2 Y. L. D. HO,1 AND J. G. RARITY1 
1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical 
and Electronic Engineering, University of Bristol, Bristol BS8 1FD, UK 
2Quantum Engineering Centre for Doctoral Training, H. H. Wills Physics Laboratory and Department 
of Electrical and Electronic Engineering, University of Bristol, Tyndall Avenue, BS8 1FD, UK 
3School of Physics and Astronomy, Cardiff University, CF24 3AA, UK 
*fortiz.huerta@gmail.com 

Abstract: For an efficient single-photon source a high-count rate into a well-defined spectral 
and spatial mode is desirable. Here we have developed a hybrid planar Fabry-Pérot 
microcavity by using a two-photon polymerization process (2PP) where coupling between 
single-photon sources (diamond colour centres) and resonance modes is observed. The first 
step consists of using the 2PP process to build a polymer table structure around previously 
characterized nitrogen-vacancy (NV) centres on top of a distributed Bragg reflector (DBR) 
with a high reflectivity at the NV zero-phonon line (ZPL). Afterwards, the polymer structure 
is covered with a silver layer to create a weak (low Q) cavity where resonance fluorescence 
measurements from the NVs are shown to be in good agreement with analytical and Finite 
Difference Time Domain (FDTD) results. 
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1. Introduction 

Solid-state single-photon sources are considered one of the most promising candidates for 
single-photon emission [1]. Quantum dots (QDs) and colour centres in crystals are among the 
most studied, although colour centres in diamond such as NV and Silicon-Vacancy (SiV) 
centers have the main advantage of emitting single-photons at room-temperature, convenient 
for quantum photonic integration and applications. An ideal single-photon source should emit 
photons at a high-rate into a single mode, however, the rate of emission is limited by the 
spontaneous decay of the source and the light is emitted into the dipole emission pattern 
covering almost a full solid angle of 4�  [2]. Different ways have been developed through 
the years to increase the emission rate and reduce the angle of emission of the sources [3]. 
Geometrical approaches exist, such as solid immersion lenses (SILs) [4,5] along with cavity 
quantum electrodynamics (CQED) approaches that rely on the Purcell enhancement by using 
resonant structures to selectively enhance emission into relevant modes [6,7]. Tunable Fabry-
Pérot cavities with Bragg reflectors as mirrors [8–11] and photonic crystals [12–14] have also 
proved to be a viable option since small mode volumes can be achieved [15]. Using polymer 
to make structures for both approaches (geometrical and CQED) creates a new alternative for 
the realization of photonic and resonant devices of nearly arbitrary shape. By a process called 
two-photon polymerization (2PP), in which only the liquid polymer exposed to a specific 
wavelength gets solidified, solid immersion lenses [16] and resonant disks [17] have been 
fabricated with quantum dots and nanodiamonds inside the structures, respectively. These 
polymer structures hold the potential for the realization of a fully integrated quantum optical 
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chip incorporating single photon-emitters, SILs, resonant cavities, polymer waveguides [18] 
and polymer photonic crystals [19,20]. 

Here we present a new approach to build rapid and low-cost Fabry-Pérot cavities (with 
colour centres inside) combining the advantages of polymers, such as the ability to fabricate 
any geometrical shape desired, with the high-reflectivity of DBRs and metals to form a 
“hybrid” microcavity. The advantages and limitations of the newly developed hybrid Fabry-
Pérot microcavities will also be mentioned. 

2. Experimental setup 

To find and characterize NV centres, we worked with a homebuilt confocal microscope [Fig. 
1(a)]. The excitation beam consists of a Ventus ( )532  nm wavelength  continuous wave laser 
which is directed through a beam expander to collimate the beam and fill the back aperture of 
the objective. A silver mirror and a beamsplitter (10 : 90 ) both redirect the incident beam 
onto the microscope objective ( 0.9 NA ) which focuses the excitation light onto the sample 
that consists of DBR substrate coated with clusters of nanodiamonds containing NV centres. 
The substrate is attached to a piezo stage (tritor 101 SG controlled by a EDA3 from 
piezosystem jena) where the focused laser will raster scan typically around a 80x80  m∝  area 
[Fig. 1(b)]. The arriving counts can also be spectrally decomposed [Fig. 2(a)] through a 
spectrograph (Andor Solis, Shamrock 163) connected to a CCD camera (Andor Solis, 
Newton). We added a Hanbury Brown-Twiss (HBT) setup to our confocal microscope [Fig. 
1(a)] to measure the second order correlation function of our single-photon sources [Fig. 
2(b)]. A delay box (Model DB463, Ortec) is also added to one of the arms to compensate for 
electronic dead times, and the coincidence counts are taken with a time correlated single 
photon counting (TCSPC) module (PicoHarp 300, PicoQuant GmbH). 

 

Fig. 1. (a) Confocal microscopy setup raster-scans nanodiamonds located on top of a substrate. 
Spectral and spatial filtering is applied to detect exclusively the NV fluorescence. The HBT 
setup measures coincidence counts at detectors D3 and D4 (SPCM-AQRH-14-FC). (b) A 
15 15 m∝⋅  scan allows visibility of NV centres (inside yellow circles). Scan made with a 
0.15  m∝  stepsize and 10 s  integration time. 

An array of nanodiamonds (NDs) from Microdiamant was dropcast on top of a DBR, 
centered at 670 nm  with 15-pairs of alternating layers ( 2 5 2/ )Ta O SiO , to improve the 
collection efficiency of the NVs emission towards the objective lens through enhanced 
reflection of the surface of the DBR [Fig. 1(a)]. A clear antibunching behavior is shown in 
Fig. 2(b) where the second-order correlation function gives ( ) ( )2 0  1g < , indicating the 

presence of quantum emission [21] for the selected nanodiamond. Our ( ) ( )2  g �  is defined as 
[22]: 
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 ( ) ( ) ( ) ( )2 2 21 / ,Ng C� � � �= � �  (1) 

where ( )NC �  is the normalized coincidence counts and ( )/S S B� = +  contains the signal 

( )S  to background ( )B  ratio measured by the count rate next to the ND. We measured a 
( ) ( )2 0 0.7,g =  suggesting that more than one NV is being excited simultaneously inside the 

nanodiamond. A total of 102 kcounts/sec were detected for the selected ND [Fig. 2], with an 
excitation power of 170 W∝  before the objective. The ND-dimension is small compared to 
the wavelength ( )~ 30  nm  thus although there are likely 2-3 NVs inside the particle each can 
be thought of an individual dipole [23] located at the same position in the intracavity field. 
We then expect similar enhancement or inhibition of the fluorescence from each dipole due to 
this intracavity field [24,25]. 

 

Fig. 2. (a) Blue: Fluorescence spectrum of selected ND measured with our confocal 
microscope. Red: Smoothed data (b) Blue: Antibunching behaviour of selected ND showing a 

( ) ( )2 0  1g <  with a timebin of 0.25 ns  . Red: Smoothed data. 

3. Fabrication and measurements 

The printing of 3D micro-structures with a commercially available direct laser writing system 
(Photonic Professional, Nanoscribe GmbH) uses the 2PP process [Fig. 3(a)]. 

 

Fig. 3. (a) 2PP process, where the polymer exposed to the focal volume of the excitation beam 
(red) gets solidified through a two-photon absorption process. (b) Reference marks and two 
hybrid planar microcavities made with the 2PP process. 

This method consists of illuminating a liquid photopolymer photoresist with light at 780 
nm. When the photopolymer absorbs two photons simultaneously it triggers a chemical 
reaction that starts the solidification of the material. 
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