Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Investigation of the catalytic performance of palladium-based catalysts for hydrogen production from formic acid decomposition

Sanchez Trujillo, Felipe Juan 2018. Investigation of the catalytic performance of palladium-based catalysts for hydrogen production from formic acid decomposition. PhD Thesis, Cardiff University.
Item availability restricted.

[img]
Preview
PDF - Accepted Post-Print Version
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (13MB) | Preview
[img] PDF - Accepted Post-Print Version
Restricted to Repository staff only

Download (326kB)

Abstract

The objective of this work is to present formic acid as a suitable compound to be used in a hydrogen economy. Catalytic decomposition of formic acid at mild conditions is evaluated as a model reaction for hydrogen generation, making emphasis on the productivity, reusability of the catalysts, and quantification of concomitant CO evolved from the reaction. Characterisation of the fresh and used catalysts is performed to study the activity/structure relationship and investigate the possible reasons for its deactivation. Computational calculations are used to support experimental data and correlate productivity and CO evolution with the elementary steps of the reaction and the most common surfaces of the catalyst. Synthesis of materials with different surface properties and preparation methods is a fundamental part of this work. In Chapter 3, a commercial Pd/C catalyst is used as a reference to establish the reaction conditions that lead to a kinetically limited reaction. Reusability tests and subsequent characterisation of the used catalyst in conjunction with computational studies are performed to investigate its stability. Continuous flow experiments are carried out as a preliminary test to improve the reusability. Following the identification of the main parameters and characteristics of the catalysts involved in formic acid decomposition, in Chapter 4, materials with different properties (graphitisation degree and acid/base surface functionalisation) are synthesised by two preparation methods (sol-immobilisation and impregnation) using carbon nanofibers as supports. Once the optimal preparation method is identified, a set of parameters are modified in Chapter 5 to investigate the effects it has on the structure and morphology of the catalysts. Besides this optimisation, two supports (activated charcoal and titania) are investigated and an initial study of bimetallic catalysts and its properties is explored. Chapter 6 presents the main consequences of these results and a set of possibilities to continue this research.

Item Type: Thesis (PhD)
Date Type: Submission
Status: Unpublished
Schools: Chemistry
Subjects: Q Science > QD Chemistry
Date of First Compliant Deposit: 13 December 2018
Last Modified: 17 Dec 2018 15:03
URI: http://orca-mwe.cf.ac.uk/id/eprint/117629

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics