The Association of Maternal Thyroid Autoimmunity During Pregnancy with Child IQ

Arash Derakhshan¹, Tim I.M. Korevaar¹, Peter N. Taylor², Deborah Levie¹, Deborah Levie¹, Monica Guxens³, Scott M. Nelson⁴, Henning Tiemeier⁵, Vincent W.V. Jaddoe⁶, Robin P. Peeters¹

¹ Academic Centre for Thyroid Disease, Erasmus Medical Centre, Rotterdam, The Netherlands.
² Thyroid Research Group, Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff, UK
³ ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
⁴ School of Medicine, University of Glasgow, Glasgow, United Kingdom.
⁵ Department of Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, The Netherlands.
⁶ The Generation R Study Group, Erasmus Medical Center, Rotterdam, The Netherlands.

Short title: Thyroid Autoimmunity During Pregnancy and Child IQ

Key words: Thyroperoxidase antibody; pregnancy; child; IQ

Corresponding author and contact information:

Tim I.M. Korevaar

E-mail: t.korevaar@erasmusmc.nl

Funding:

Disclosure: The authors have nothing to disclose.
Abstract

Context: During the first 18-20 weeks of pregnancy, the fetus depends on the placental transfer of maternal thyroid hormones, particularly for its brain development. During this time, high concentrations of human chorionic gonadotropin (hCG) stimulate the thyroid to ensure adequate thyroid hormone availability. Thyroperoxidase antibody (TPOAb) positivity, which is a major risk factor for gestational thyroid dysfunction, is associated with adverse pregnancy outcomes. We have recently shown that TPOAb positive women have an impaired thyroidal response to hCG stimulation.

Objective: To study the association of maternal TPOAb positivity during pregnancy with child IQ.

Design, Setting, Participants: This study was embedded in two prospective birth cohorts: Generation R (Rotterdam, the Netherlands) and the Avon Longitudinal Study of Parents and Children (ALSPAC; Avon, United Kingdom). Mother-child pairs with available data on TPOAbs in early pregnancy (≤18 weeks of gestation) and offspring IQ were included (N=3637, Generation R and N=2396, ALSPAC).

Intervention: None.

Main Outcome Measures: Child IQ at 5 to 10 years of age.

Results: In Generation R, TPOAb positivity was associated with a 2.0 ±0.9 point lower mean child IQ (P=0.03). Sensitivity analyses showed negative effect estimates already from TPOAb concentrations considerably lower than currently used manufacturer cut-offs. In ALSPAC, neither TPOAb positivity nor TPOAb concentrations below manufacturer cut-offs were associated with child IQ (TPOAb positivity: 0.7 ±1.0, P=0.45). Adjustment for maternal TSH or FT4 concentrations or urinary iodine/creatinine ratio did not change the results.

Conclusion: TPOAb positivity during pregnancy was associated with lower child IQ in Generation R but not in ALSPAC. Further studies are needed to elucidate if differences between the study populations, in particular maternal iodine status, could be the underlying cause for these differences.
We investigated the association of TPO antibody positivity during early pregnancy with child IQ and demonstrate that TPO antibody positive mothers have children with lower IQ in one of the two studied cohorts.

**Introduction**

Thyroperoxidase antibody (TPOAb) positivity occurs in about 5.6-22.1% of all pregnant women worldwide and its prevalence differs according to maternal iodine intake, ethnicity, parity and smoking (1-4). TPOAb positivity reflects thyroid autoimmunity, which typically results in higher serum thyroid stimulating hormone (TSH) concentrations, lower serum free thyroxine (FT4) concentrations and ultimately hypothyroidism (5,6). Human chorionic gonadotropin (hCG) is a pregnancy-specific hormone that exerts thyrotropic activity via its weak affinity for the TSH receptor (7,8). During pregnancy, high hCG concentrations lead to an increase in FT4 concentrations by up to 50% (9). This increase in thyroid hormone availability safeguards sufficient thyroxine transfer to the developing fetus (7). We recently showed that TPOAb positivity severely impairs the thyroidal response to hCG stimulation, and this could affect early fetal development (10).

The fetal thyroid gland is not functionally mature until the 18th to 20th week of pregnancy; therefore, fetal thyroid hormone availability during early development largely depends on the placental transfer of maternal thyroid hormones (7,11). In humans, neurogenesis starts from approximately the 5th week of pregnancy and thyroid hormone receptors are detected in the fetal brain from the 8th week of pregnancy (11). Various critical processes of fetal brain development that reach peak activity before the 18th to 20th week of pregnancy are regulated by thyroid hormone (12,13). Interestingly, the specific period during which early brain development is dependent on maternal thyroid hormone overlaps with the timeframe during which high hCG concentrations increase maternal thyroid hormone concentrations (roughly 6-15 weeks of pregnancy) (14,15).
The current guidelines of the American Thyroid Association (ATA) state that for TPOAb positive women, levothyroxine treatment can be considered when TSH concentrations are above 2.5 mU/l (4). This recommendation is predominantly based on studies showing that TPOAb positivity is associated with a higher risk of miscarriage and premature delivery (16-21). Although some studies show that low maternal thyroid function is associated with suboptimal child neurodevelopmental outcomes, such as lower IQ, autism and schizophrenia (22-26), studies on the association of maternal TPOAb positivity with child neurodevelopment remain sparse. Some studies indicate that maternal TPOAb positivity is associated with lower child IQ and a higher risk of autism or problem behavior (27-32); however, the majority of these studies were either retrospective, had a small sample size, were unable to adjust for potential confounders and/or did not investigate the combination of TPOAb positivity with a TSH concentration above 2.5 mU/l.

Considering that an attenuated thyroidal response to hCG stimulation in TPOAb positive women likely leads to a relative form of thyroid hormone shortage during early pregnancy, when fetal brain development depends on maternal thyroid hormone, we hypothesized that TPOAb positivity is associated with lower child IQ. Therefore, the main aim of the current study was to investigate the association of maternal TPOAb positivity during pregnancy with child IQ in two large, prospective, population-based cohorts.

**Methods**

This study was embedded in two prospective birth cohorts: Generation R (Rotterdam, the Netherlands) and the Avon Longitudinal Study of Parents and Children (ALSPAC), United Kingdom.

**Study design and participants**

In Generation R, 7069 women with a delivery date between April 2002 and January 2006 were enrolled during early pregnancy (≤18 weeks) in hospitals and midwife practices in the Rotterdam area (33). Blood samples were drawn in 6398 of these women and 5793 had enough material for measurement of TPOAbs. When the children reached 5 years of age, all enrolled mothers and children
were invited to visit the research center at the Erasmus MC Sophia Children’s Hospital in Rotterdam, where 3753 (64%) children underwent IQ assessments. The general study design, all research aims, and the specific measurements in the Generation R Study have been approved by the Medical Ethical Committee of the Erasmus Medical Center, Rotterdam, Netherlands. Written informed consent was obtained from all participants and/or the children’s parents or guardians.

In ALSPAC, eligible women were those living in the former Avon area in southwest England, United Kingdom, with an expected delivery date between April, 1991, and December, 1992. In total, blood samples were available in 7501 pregnant women, of which 4947 were enrolled during early pregnancy (≤18 weeks) (34) with 4916 women having TPOAb measurements. Subsequently, all participants were invited to attend a research clinic where trained psychologists measured the IQ of 2552 children. The study website contains details of all the data that are available through a fully searchable database www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/. Ethical approval for the study was obtained from the ALSPAC Ethics and Law Committee and the Local Research Ethics Committees.

Laboratory Measurements

In Generation R, maternal blood samples collected in early pregnancy were stored at -80°C. Maternal TPOAbs were measured using the Phadia 250 immunoassay (Phadia AB, Uppsala, Sweden) and considered positive when the serum concentrations were >60 IU/ml. FT4 and TSH were measured using chemiluminescence assays (Vitros ECI Immunodiagnostic System Ortho Clinical Diagnostics, Rochester, NY). The intra- and interassay coefficients of variation were <4.1% for TSH at a range of 3.97–22.7 mU/L and <5.4% for FT4 at a range of 14.3–25.0 pmol/L. Details of the urinary iodine and creatinine measurement are reported elsewhere (35).

In ALSPAC, TPOAb, FT4 and TSH were measured in stored serum samples using an Abbott Architect i2000. Inter- and intra-assay coefficients of variation were less than 5% for all analytes. TPOAbs were considered positive when the serum concentrations were ≥6 IU/ml. Details on urinary iodine and creatinine measurements are reported elsewhere (36).
Outcomes

In Generation R, non-verbal child IQ was evaluated using two subtests of a Dutch non-verbal intelligence test, the Snijders-Oomen Niet-Verbale Intelligentie Test when the children were 5 to 8 years of age. The test generally evaluates a range of intelligence functions without relying on language skills and is therefore suitable for assessing the cognitive abilities of ethnic minorities’ children and children with verbal communication problems (37). The two subtests were mosaics (evaluating spatial visualization abilities) and categories (evaluating abstract reasoning abilities) and the correlation between subtests with complete test were: r=0.86. Raw test scores were converted into non-verbal IQ scores using normal values tailored to exact age. Research staff who did the IQ tests were unaware of any other mother-child measurements and outcomes.

In ALSPAC, child IQ was measured in a research clinic using a well-validated age-adjusted shortened form of the Wechsler Intelligence Scale for Children (WISC) which provides a well-standardized assessment of performance and verbal intelligence when children were 7 to 10 years of age (36,38). WISC assessments were administered by trained psychologists. To compare analyses to Generation R, the performance component of child IQ was used as the primary outcome, supplementary analyses were also performed for the verbal component.

Statistical analysis

We used multivariable linear regression analyses to investigate the association of maternal TPOAb positivity with child IQ. We have recently shown that thyroid function and the response to hCG stimulation is already lower from concentrations below currently used TPOAb positivity cut-offs as provided by assay manufacturers (39). Therefore, we also performed sensitivity analyses to evaluate the effects of cut-offs below the currently used manufacturer-based cut-offs. TPOAbs were categorized at 20, 30, 40, 50 and 60 IU/ml in Generation R (corresponding to population-based percentiles: 90.6, 92.2, 93, 93.6 and 94.1, respectively). To enable comparison between cohorts, population-based cut-offs equivalent to the cut-offs in Generation R were defined in ALSPAC (14.2, 29.6, 41.4, 54.8 and 63.1 IU/ml, respectively). The effect estimates for these cut-offs were compared
with TPOAb <10 IU/ml (population-based percentile of 83) in Generation R and the corresponding percentile (<4.16 IU/ml) in ALSPAC. The severely skewed distribution of (log-transformed) TPOAb concentrations did not allow for reliable analyses using TPOAb concentrations as a continuous exposure. Outliers of IQ were defined and excluded based on ±2.5*(median absolute deviation).

Based on the current ATA guidelines (4), we additionally investigated the group of TPOAb positive women with a TSH concentration >2.5 mU/L (N=118 (3.4 %) and N=52 (2.46 %), in Generation R and ALSPAC, respectively). Because maternal iodine status is a well-known determinant of both thyroid autoimmunity and child IQ (3,36), in a subset of mothers with available early pregnancy iodine data (N=753 in Generation R and N=1065 in ALSPAC) we investigated the possible effects of maternal iodine status on the association of TPOAbs with child IQ by: 1) studying the association of TPOAbs with maternal urinary iodine/creatinine ratio (UICr) using a linear regression model; 2) additionally adjusting all analyses for maternal UICr; and 3) stratify analyses in both cohorts according to a UICr below and above 150 µg/g. Furthermore, we also investigated if the association of maternal TPOAbs with child IQ would be (partially) mediated via changes in maternal thyroid function by additionally adjusting all models for maternal FT4.

All analyses were adjusted for maternal age, body mass index, parity, smoking status, education level, ethnicity, gestational age at the time of blood sampling, child sex and birth weight. We used multiple imputation by chained equations to deal with missing data of covariates (40). The maximum percentage of missing data was 10.3% in Generation R and 3.7% for ALSPAC. The number of imputations were based on the percentage of missing data using at least 1 imputation per percent of incomplete cases (41). All statistical analyses were performed using Statistical Package of Social Sciences version 21.0 for Windows (SPSS, Chicago, IL) or R statistical software version 3.3.2 (packages mice and rms; https://www.r-project.org/).

**Results**

After exclusions, the final study population comprised 6033 mother-child pairs (Generation R: N=3637; ALSPAC: N=2396, Figure 1). Mother-child characteristics of the study population are shown in Table 1. In Generation R, the prevalence of TPOAb positivity was 5.9%, the mean
gestational age at blood sampling was 13.4 (SD 1.9) weeks and the study population was mainly of Dutch ethnicity (57.3%). In ALSPAC, the prevalence of TPOAb positivity was 12.8%, the mean gestational age at blood sampling was 10.9 (SD 3.1) weeks and the study population was mainly of Caucasian ethnicity (98.5%). In both cohorts, there was no difference in maternal TPOAb positivity or thyroid function between mother-child pairs with or without IQ data available (Supplemental Tables 1 and 2).

In Generation R, maternal TPOAb positivity was associated with lower mean child IQ (-2.0 ±0.9 points, P=0.03; Table 2). Subsequent sensitivity analyses showed that mean child IQ was already lower at TPOAb cut-offs below the currently used manufacturer-based cut-off for TPOAb positivity (Table 2). In ALSPAC, neither TPOAb positivity nor TPOAb cut-offs below the manufacturer-based cut-off were associated with child IQ (TPOAb positivity: 0.7 ±1.0 points; P=0.45; Table 2). The combination of TPOAb positivity with a TSH above 2.5 mU/l was not associated with child IQ in Generation R (P for interaction=0.52) while this combination was associated with a higher mean child IQ in ALSPAC (P for interaction=0.09; Supplemental Table 3). All results remained essentially unchanged after adjusting for maternal FT4 concentrations (Table 2), UICr (Supplemental Table 4) or hCG concentrations (Generation R only; data not shown).

The median maternal UICr differed considerably between Generation R and ALSPAC (median (IQR): 277 (194-383) vs. 117 (80-190), P<0.001). In ALSPAC, but not in Generation R, higher TPOAb concentrations or TPOAb positivity were associated with higher maternal UICr, although these analyses did not reach statistical significance in the smaller subgroups (Supplemental Table 5). Sensitivity analyses indicated that the association of maternal TPOAb positivity with child IQ may differ according to maternal iodine status, although we lacked adequate statistical power for this analysis (Supplemental Table 6).

Discussion

In this study, we investigated the association of TPOAb positivity during early pregnancy with child IQ in two large prospective population-based cohorts. We show that TPOAb positivity as defined by currently used manufacturer-based cut-offs was associated with lower mean child IQ in the
Netherlands (Generation R) but not in the United Kingdom (ALSPAC). Furthermore, the association of TPOAbs with lower child IQ in the Netherlands was already present from TPOAb cut-offs below the currently used manufacturer-based cut-offs. Additional adjustment for maternal FT4 concentrations or UICr did not change the results but sensitivity analyses indicated a potential role for iodine status as an effect modifier.

The peak activity of fetal brain development overlaps with the period during which the fetus is dependent on the placental transfer of maternal thyroid hormones (8,11,13). However, TPOAb positive women have an impaired response to the thyroidal stimulation by hCG and low maternal thyroid hormone availability is associated with lower child IQ (42-45). In the current study, TPOAb positivity was associated with lower child IQ in Generation R. We speculate that the lower IQ in children of TPOAb positive mother could be a reflection of the lack of hCG mediated increase in FT4 concentrations during early pregnancy. Alternatively, TPOAb positivity could be associated with lower child IQ because it reflects a higher general susceptibility to autoimmunity. Thyroid autoimmunity is associated with higher T helper cytokines and an increased natural killer cell activity (46) and maternal autoimmunity or a familial history of autoimmune disorders has been associated with a higher risk of child autism (47,48). Another possible explanation could be a direct effect of TPOAbs on the brain. TPOAbs can cross the placenta and have been detected in the cerebrospinal fluid of patients with Hashimoto’s encephalitis, possibly contributing to the pathogenesis of the disease by binding to cerebellar astrocytes or causing vasculitis (49,50).

Although TPOAb positivity was associated with a lower child IQ in Generation R, there was no association in ALSPAC, for which point estimates even suggested that TPOAb positivity is associated with a higher child IQ. The discrepancy between the two cohorts could be caused via different mechanisms. First of all, there is a large difference in iodine status of pregnant women between the Netherlands (more than sufficient) and United Kingdom (mild deficient), as was also reflected by the UICr analyses in the current study. Both low and high iodine intake are a risk factor for low maternal thyroid hormone availability and also increase the risk of thyroid autoimmunity (3,51). Previous studies show that low maternal UICr is not associated with child IQ in Generation R, while in
ALSPAC low UICr is associated with lower child IQ (36,52). In this study, higher TPOAb concentrations and TPOAb positivity were associated with higher maternal UICr in ALSPAC, although the size of the subset with available data did not allow these analyses to reach statistical significance. Taken together, this suggests that the difference between Generation R and ALSPAC, and also the positive point estimates in ALSPAC, could be due to the fact that TPOAbs coincide with a higher iodine concentrations in ALSPAC. Unfortunately, data on UICr was only available in a small subset for both studies, precluding adequate analyses to investigate the role of UICr as an underlying cause for the differences between the two cohorts. However, stratified analysis did show that in Generation R, the association of TPOAb positivity with lower child IQ was driven predominantly by women with a UICr ≥150 µg/g. This indicates that in Generation R, low iodine status is not the underlying mechanism. In addition, in studies from iodine sufficient populations, TPOAb positivity has been associated with impaired child cognition, autism and behavioral problems (27,30,31) whereas a Scottish study with 40% of women being iodine deficient did not find an association with neurodevelopmental outcomes (29).

Second, while in Generation R serum samples were collected between 2002 and 2005 and TPOAbs were measured in 2006, ALSPAC samples were collected between 1991 and 1992 and measured in 2016. A study from Finland shows that in stored serum samples, there is a strong positive association of storage time with TPOAb concentrations, with storage time explaining 19.7% of the total variation in TPOAb concentrations (53). This indicates that TPOAb concentrations in ALSPAC are much more likely to be subject to measurement error than those in Generation R. Although it is unknown whether the extent of the increase in TPOAb concentration by storage time is differential on factors that may affect IQ, the difference in storage time may hamper the comparisons between Generation R and ALSPAC in the current study.

The current ATA guidelines recommend that treatment can be considered in TPOAb positive women if the TSH concentration is >2.5 mU/l (18), however, no recommendations are currently provided for the definition of TPOAb positivity. In the current study, the association of TPOAb positivity with lower child IQ in Generation R did not differ according to a TSH below or above 2.5 mU/l.
Furthermore, two recent studies identified that any potential beneficial effects of levothyroxine treatment in TPOAb positive women or women with subclinical hypothyroidism, only occurs in women with a TSH above 2.5 mU/l (namely 4.0 mU/l) (20,21). Therefore, further studies are required to investigate from which TSH threshold the risk of adverse outcomes in TPOAb positive women starts to increase. In addition, a previous study from our group showed that TPOAb concentrations already below currently used manufacturer cut-offs are associated with a higher TSH and a higher risk of premature delivery (39). In the current study, we also showed that TPOAb cut-offs below the currently used manufacturer-based cut-offs for TPOAb positivity were associated with a lower child IQ. Taken together, this suggests that the clinically relevant cut-off for TPOAb positivity may differ from the currently used manufacturer-based cut-offs and that future studies should focus on identifying the optimal threshold for TPOAb positivity.

To the best of our knowledge, this is the first study to assess the association of early pregnancy TPOAb positivity with child IQ in two large prospective, population-based cohorts. We were able to study this association in two study populations with a different population iodine status with detailed data that allowed us to adjust the models for important confounders and run additional sensitivity analyses.

A potential limitation of this study is that data on maternal iodine status was not available for all mothers which left us with inadequate statistical power for sensitivity analysis investigating the potential role of iodine intake. Further studies are needed to investigate the role of maternal iodine status in the association of thyroid autoimmunity with child cognitive development. In addition, the number of TPOAb positive women with a TSH >2.5 mU/l was small, hampering an adequately powered analyses for this group.

In conclusion, we demonstrate that TPOAb positivity during early pregnancy is associated with lower child IQ in a Dutch, iodine sufficient population, but not in a mildly iodine deficient population from the United Kingdom. In addition, TPOAb cut-offs below the current manufacturer-based cut-offs were associated with lower mean child IQ in the Netherlands. Further studies are needed to investigate the association of TPOAbs with child neurodevelopment outcomes in different populations.
populations, and evaluate whether factors that affect thyroid autoimmunity, such as iodine status,
might possibly modify this association.

References:


13. Rovet JF. The role of thyroid hormones for brain development and cognitive function. Endocrine development 2014; 26:26-43


29. Williams FLR, Watson J, Ogston SA, Visser TJ, Hume R, Willatts P. Maternal and umbilical cord levels of T4, FT4, TSH, TPOAb, and TgAb in term infants and neurodevelopmental outcome at 5.5 years. The Journal of Clinical Endocrinology & Metabolism 2013; 98:829-838


Leyhe T, Müssig K. Cognitive and affective dysfunctions in autoimmune thyroiditis. Brain, behavior, and immunity 2014; 41:261-266


