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Abstract 

The extent of New Zealand’s freshwater fish-parasite diversity has yet to be fully revealed, with 

host-parasite relationships still to be described from nearly half the known fish community. Whilst 

advancements in the number of fish species examined and parasite taxa described are being made; 

some parasite groups, such as nematodes, remain poorly understood. In the present study we 

combined morphological and molecular analyses to characterize a capillariid nematode found 

infecting the swim bladder of the brown mudfish Neochanna apoda, an endemic New Zealand fish 

from peat-swamp-forests. Morphologically, the studied nematodes are distinct from other 

Capillariinae taxa by the features of the male posterior end, namely the shape of the bursa lobes, 

and shape of spicule distal end. Male specimens were classified in three different types according to 

differences in shape of the bursa lobes at the posterior end, but only one was successfully 

molecularly characterized. Molecular analysis indicated that the studied capillariid is distinct fromm 

other genera. However, inferences about the phylogenetic position of the capillariid reported here 

will remain uncertain, due to the limited number of Capillariinae taxa molecularly characterized. 

The discovery of this new capillariid, which atypically infects the swim bladder of its host who 

itself inhabits a very unique ecosystem, overlays the very interesting evolutionary history of this 

parasite, which for now will remain unresolved. 
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Introduction 

Understanding parasite diversity and distribution patterns, and what drives them, has long resonated 

with parasitologists and ecologists alike (Morand, 2015). Despite this, our understanding of host-

parasite associations remains limited for many vertebrates, and where described, often at low 

taxonomic resolution (Poulin & Leung, 2010; Poulin & Presswell, 2016). In New Zealand’s 

freshwater fish community for example, host-parasite relationships have been studied in 

approximately half of the 40 recognised host species (Hine, 2000; NIWA, 2017), with parasite taxa 

often identified to genus at best. Whilst such low resolution may be partly attributed to the global 

loss of taxonomic classification expertise (Poulin & Leung, 2010), taxonomic classification prior to 

the widespread use of molecular techniques, or the fish species themselves only being identified 

relatively recently (McDowall & Waters, 2003); for many freshwater fish species, their parasite 

communities have yet to be examined. Advancements in the number of host species examined 

continue to be made (e.g. Kelly et al., 2009; Poulin et al., 2012), with molecular approaches often 

aiding the verification of cryptic parasite taxa (e.g. Blasco-Costa et al., 2017). Although 

considerable progress has been achieved in regard to trematodes (e.g. Blasco-Costa et al., 2016, 

2017), other parasite groups, such as nematodes, remain poorly described (2/14 taxa described to 

species, Moravec & Taraschewski, 1988; Hine, 2000; Luque et al., 2010). 

 

One such under-studied fish species is the brown mudfish Neochanna apoda, an endemic New 

Zealand fish occupying small (~1.6 m3) pools in peat-swamp-forests, formed predominantly by 

sporadic tree-fall events (Eldon, 1968; White et al., 2015a,b). Whilst nationally threatened, this fish 

species thrives (e.g. 250 fish/m3, White et al., 2016) in these isolated pools, which are characterised 

by frequent and unpredictable droughts, high acidity (~3.5 pH) and low oxygen (White et al., 

2015a, 2016); conditions lethal to most fish species (Alabaster & Lloyd, 1982). Mudfish move 
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between pools (up to 112 m, White et al., 2015b) during high rainfall events which flood the forest 

floor and create connections among isolated pools. Typically, these pools contain isolated mudfish 

populations, however sympatric populations with banded kokopu Galaxias fasciatus may occur in 

pools within flood plain habitats, where environmental conditions are less stressful to other fish 

species (White et al., 2015a). The increasing environmental severity gradient from flood plain to 

forest pool habitats, which limits the distribution of banded kokopu in the peat-swamp-forest 

landscape, also has the potential to influence the parasite meta-community structure. 

 

To date, our understanding of parasite infections of Neochanna fishes (five New Zealand and one 

Australian species) has been largely limited to external observations (O’Brien, 2005) and incidental 

reports of parasites encountered during stomach or gonad examinations (Eldon, 1978). Of the five 

parasite taxa known from brown mudfish, two nematode taxa, Hedruris spinigera Baylis, 1931 

(family Hedruridae) and an unidentified rhabditoid, have been detected in the stomach (Eldon, 

1978). In the present pilot study, several nematode specimens were recovered from the swim 

bladder of brown mudfish, Westland, New Zealand. These specimens were morphologically distinct 

from previously described nematode taxa from this host species, and from the only nematode 

species known to infect the swim bladder of New Zealand freshwater fish, Anguillicola 

novaezelandiae Moravec & Taraschewski (1988). Instead, the new specimens were found to more 

closely resemble capillariid nematodes, of the subfamily Capillariinae Railliet, 1915 (Nematoda: 

Capillariidae, following Moravec 2001; Nematoda: Trichuridae, following Gibbons, 2010). The 

subfamily Capillariinae includes over 300 described species parasitizing a large number of hosts, 

including fishes, mammals and birds (Moravec, 2001). While the classification of Capillariinae is 

considered one of the most difficult among nematodes (Moravec, 1982; Anderson, 2000), Moravec 

(1982) proposed what is now the most accepted systematic of the group. According to this 

classification, one important morphological feature showing interspecific differences in these 
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nematodes is the structure of the posterior end of the male. Currently, there are 27 genera assigned 

to this subfamily according to morphological characteristics (Gibbons, 2010), and only a few have 

been genetically characterized. 

Here, using a combination of morphological and molecular approaches, we characterized the new 

nematodes parasitizing the swim bladder of brown mudfish. We also investigated the distribution of 

this parasite in relation to pool habitat types (i.e. floodplain or forest) utilised by this host. 

 

Material and methods 

Collection and nematode isolation 

Forty-six brown mudfish were collected during November 2013 from the Saltwater Forest, 

Westland, New Zealand (43°07’S, 170°26’E) from four ‘floodplain’ pools (occasionally flooded 

from adjacent streams; 18 fish) and three ‘forest’ pools (isolated from permanent water sources; 28 

fish). Mudfish were captured using unbaited gee minnow traps set overnight, with up to 10 

individual fish per pool retained for parasitological examination. Fish were euthanized in an 

overdose of 2-phenoyethanol (approximately 1 g L-1), then either frozen (-20°C) or preserved in 

10% buffered formalin until all internal organs were examined for parasites in the laboratory. 

Nematodes obtained from the swim bladder were placed in 95% ethanol. Fixed specimens were 

mounted on temporary slides with a glycerol:water (1:1) solution. Morphological study consisted of 

microscopic examination of the different specimens at different magnifications using a light 

microscope (Olympus CX41, Olympus Australia Pty Ltd, Notting Hill Victoria, Australia). All 

specimens were photographed using a digital Olympus DP25 camera as means of morphological 

vouchering information, and measured in ImageJ (Schneider et al., 2012). Studied specimens are 

deposited at the parasite collection of the Evolutionary and Ecological Parasitology group at 

University of Otago (New Zealand). All measurements are in µm unless otherwise stated, and are 

given as range with average in parentheses. 
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DNA extraction and sequencing 

Extractions of new capillariids genomic DNA were performed from six specimens (two females and 

four males representing the three male morphs, see below). DNA was isolated using the PureLink® 

Genomic DNA Kit (Invitrogen, Invitrogen New Zealand Ltd, Auckland, New Zealand) according to 

the manufacturer’s protocol. We amplified two nuclear fragments: a 873 bp of the 18S ribosomal 

DNA (18S) and 455 bp of the ribosomal DNA first internal transcribed spacer (ITS1). The 18S was 

amplified using the primers Nem 18S F and Nem 18S R from Floyd et al. (2005), while the ITS1 

was amplified with the primers rDNA2 (Vrain et al., 1992) and rDNA1.58 s (Cherry et al., 1997). 

Polymerase chain reactions (PCR) were performed in a total volume of 20 µl, comprising 4 µl of 

MyTaq TM Red reaction buffer (Bioline (Aust) Pty Ltd, Alexandria, New South Wales, Australia), 

primers at 0.5 µM each, MyTaq TM Red DNA Polymerase (Bioline) at 0.025 units/µl and 

approximately 10 ng of DNA template. The PCR reactions consisted of 35 iterations of the 

following cycle: 30 s at 95ºC, 30 s at 54–58ºC (for 18S and ITS1, respectively) and 1 min at 72ºC, 

beginning with an additional denaturation step of 3 min at 95ºC, and ending with a final extension 

at 72ºC for 10 min. PCR amplicons were purified and sequenced by a commercial facility 

(Macrogen Corporation, http://www.macrogen.com/). 

 

Phylogenetic analysis 

Sequence chromatograms of the New Zealand mudfish capillariid were edited and trimmed in 

Geneious v 8.1.4 (http://www.geneious.com/; Kearse et al., 2012). Nematode 18S sequences 

comprising Capillaria, Aonchotheca, Baruscapillaria, Eucoleus, Trichuris and other non-identified 

Trichocephalida sequences were downloaded to Geneious, providing a total of 22 sequences for 

analysis (Table 1). Since for the ITS1 fragment, maximum query coverage with other Capillariinae 

nematode available sequences was of 34%, phylogenetic analysis was only performed for the 18S 

http://www.macrogen.com/
http://www.geneious.com/
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fragment. Adoncholaimus, Mylonchulus and Mermis were used as outgroups (Table 1). The 18S 

dataset was aligned using MAFFT (Katoh et al., 2002), in Geneious employing the E-INS-i 

algorithms (with default parameters). Final alignment consisted of 910 bp including gaps. 

To determine the phylogenetic position of the studied capillariid nematode, a Bayesian inference 

method was employed in MrBayes v 3.2.2 (Ronquist et al., 2012). A reversible-jump Markov chain 

Monte Carlo (MCMC) was implemented to integrate over the pool of all 203 possible reversible 

4×4 nucleotide models. A model a priori was specified, allowing for the estimation of base 

frequencies, the proportion of invariable sites and rate-variation across sites with a gamma 

distribution. Ten million MCMC generations were sampled every 1000th step, with the first 25% 

discarded as burn-in. Two independent runs were carried out, each with one cold and three heated 

chains (T=0.04) and pooled the samples after burn-in was removed. Mixing and convergence of 

each run were monitored through the statistics provided in MrBayes [values of standard deviation of 

partition frequencies (<0.01), potential scale reduction factors (PSRF) (1.00), effective sample sizes 

(ESS) (>200)] and in Tracer v1.6 (Rambaut et al., 2014). Estimates of evolutionary divergence for 

the 18S pairwise uncorrected differences (p-distance) between and within defined lineages were 

made in MEGA v 6 (Tamura et al., 2013). Newly reported sequences from this study were 

submitted to GenBank under the accession numbers: 18S: XXXX (18S) and XXXX (ITS1) 

(AFTER ACCEPTANCE). 

 

Results 

Mudfish were found to be infected with nematode and acanthocephalan parasites in the swim 

bladder and intestinal regions. While acanthocephalans were found in mudfish populations from 

both ‘forest’ and ‘floodplain’ pools (to be described elsewhere, Paterson et al., in prep), nematodes 

infecting the swim bladder were only found in ‘floodplain’ pools. Twenty-two percent of the 

mudfish from ‘floodplain’ pools were infected with nematodes, with intensity ranging between one 
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to three nematodes per fish. In total, nine nematodes (six males and three females) were found, 

though only five were complete specimens. The nematode specimens of the present material were 

identified as belonging to the family Capillaridae (following Moravec 2001; Trichuridae, following 

Gibbons, 2010) subfamily Capillariinae based on the presence of an oesophagus consisting of a 

long glandular section, i.e. the stichosome (collection of a long chain of glandular cells, the 

stichocytes), and by the shape of the male posterior end. Morphological variability was observed at 

the male posterior end, namely in the thickness and extension of the lateral projections of the 

pseudobursa. Three different male morphotypes were provisionally defined. Male morph 1 (three 

specimens) was found infecting only one brown mudfish, whereas male morph 2 (one specimen) 

and morph 3 (two specimens) were found in the same host specimen. 

 

Morphological description 

General (based on 5 complete specimens and 4 incomplete specimens): Capillarinae Railliet, 1915. 

Nematodes with rounded extremities, with anterior end narrower than posterior. Oral aperture 

terminal. Stichosome composed of one raw of elongate stichocytes with small nuclei, subdivided 

into transverse annuli (Fig. 1a). 

Male: Body 3.83 - 4.58 ( 4.05, n=4) mm long. Length of the entire oesophagus 1.38-1.61 (1.49, n = 

2), representing 37% of the body length. Muscular oesophagus 239.51-278.10 (258.80, n = 2) long, 

stichosome 1.1-1.37 (1.24, n = 2) mm long, composed of 30 stichocytes (n=1). Well sclerotized 

spicule, 368.24 - 446.43 (409.43, n=5) µm long, with a tronchanter-like shape at proximal end (Fig. 

1h,k), and with narrower and incised-like shape distal end (Fig. 1g). Spicular sheath without spines. 

Male cloacal aperture subterminal. Excretory pore at the level of the proximal end of spicule (when 

fully retracted). Caudal lateral alae absent. Membraneous bursa of male supported on either side by 

one medium round lobe, each lobe provided with a projection ventrally bent (Fig. 1f,g,i,j,l,m). Male 

morph 1 (n=3; Fig. 1f-h) with a membranous bursa supported by 2 lateral lobes, each with 1 
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elongate papilla and a dorsal ventrally bent projection extending beyond the papilla, but not 

reaching the posterior border of bursa (Fig. 1g). Male morph 2 (n=1, Fig. 1i-j) with a small 

membranous bursa with a bell-like shape (Fig. 1j), with 2 sessile rounded papillae, and 2 dorso-

lateral projections (Fig. 1i). Male morph 3 (n=2; Fig. 1l-m), with a membranous bursa, with 2 

sessile papillae, and 2 digitiform ventrally bent projections. 

Female (gravid): Body 7.80 mm (n=1) long. Length of the entire oesophagus 2.43mm (n=1), 

representing 31.15% of the body length. Muscular oesophagus 242.75 long, stichosome 2.19 mm 

long, composed of 37 stichocytes. Vulva situated at the level of the oesophago-intestinal junction, 

with vulva lips not elevated (Fig. 1b,c). Vulvar appendage not observed. Ovary extending 

posteriorly to the junction of the intestine and rectum, with anus located subterminal (Fig. 1e). 

Uterus containing numerous eggs arranged in one row near the vulva and two to three rows more 

posteriorly (Fig. 1d). Eggs (n= 6) with 58.35 - 62.94 (61.71) in length and 25.94 - 31.23 (27.73) in 

width. Barrel-shaped eggs appearing with two layers; a hyaline inner layer and outer layer thicker 

with a fine reticular engrave structure (Fig. 1d). 

 

Remarks 

Capillariid generic identification is based on specific morphological elements, namely the structure 

of the posterior end of the male. We followed Moravec (1982) and Gibbons (2010), and restricted 

the taxonomic discussion to those found in fishes only. Several genera were easily excluded based 

on the features of stichosome, characters of the male caudal region and female features, i.e. 

Capillaria Zeder, 1800, Gessyella Freitas, 1959, Schulmanela Ivashkin, 1964, Freitascapillaria 

Moravec, 1982, and Piscicapillaria Moravec, 1987. At a general level of the male pseudobursa, the 

studied specimens share some features with Paracapillaria Medonça, 1963, but the latter present 

large sessile papillae. Paracapillaroides Moravec, Salgado-Maldonado and Caspeta-mandujano, 

1999 also present some resemblance at the level of pseudobursa, but it presents a spinose spiculer 
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sheath, which is not observed on the mudfish capillariid specimens. While on basis of shape of the 

spicule distal end and location in host the new specimens may represent a new species or even a 

new genus, we refrain from providing a formal description due to low number of examined 

specimens, together with the uncertainties surrounding the male morphs. In particular, it was 

uncertain whether the observed morphological variability of the three male morphs also represent 

genetic variability and if so, if those specimens are or not closely related. In the latter case, we 

would need to determine to which morph the female morphology described here corresponds to. 

However, the national conservation status of the host species of the studied nematode restricted the 

collection of additional specimens in order to clarify such uncertainties. 

 

Phylogenetic analysis 

The DNA of a single male (morph 1) was successfully amplified and used for phylogenetic 

inference of capillariid found in New Zealand mudfish. A phylogenetic inference tree based on the 

18S nucleotide sequences is shown in Fig. 2. The molecular analysis supported the morphological 

identification, placing the 18S sequence obtained in this study together with other sequences 

identified as belonging to the subfamily Capillariinae, but forming a separate clade. Among the 

Capillarinae available taxa, the new capillariid seems genetically more closely related to the 

Pearsonema clade (3.4% uncorrected p-distance). This observed genetic divergence is higher than 

the one observed among other genera, namely between Pearsonema and Aonchotheca clades (2.6% 

uncorrected p-distance). 

 

Discussion 
 
On the basis of both morphological and phylogenetic assessments, the nematodes specimens found 

infecting the swim bladder of the brown mudfish were identified as belonging to the subfamily 

Capillariinae. At the morphological level, the new nematodes are distinct from other Capillariinae 
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taxa by the shape of spicule distal end and the shape of the bursa lobes in males. Morphological 

variation at male posterior end was observed, however we were unable to determine if such 

variation was an artefact of specimen preservation, or reflects genetic variability within these new 

nematodes, since only male morph 1 was successfully molecularly characterized. While presenting 

unique morphological features, we found some similarities between the overall morphological 

features of the specimens reported here and other capillariid parasites of fishes, i.e. Paracapillaria 

and Paracapillaroides. Only a few Capillariinae taxa have been molecularly characterized, so we 

were unable to properly assess to which level morphological similarities between the mudfish 

capillariid and other taxa, also match phylogenetic relatedness.  

According to Moravec and Justine (2010), eight Capillariinae genera are known to parasitize fish, 

but none are documented in the swim bladder as observed in the present study. The only recorded 

trichinelloid nematode found in the swim bladder (Gibbons, 2010), genus Huffmanela Moravec, 

1987, belongs to a different family (Trichosomoididae Hall, 1916), and is also morphologically 

distinct from the specimens reported here. Following Moravec's (1982) hypothetical evolution of 

capillariids based on the structure of the male caudal end and spicule sheath, Capillaria was one of 

the most basal divergences, and Pearsonema was more closely related to Barruscapillaria than to 

Aonchotheca. In the reported inferred phylogeny, and similar to the one estimated by Tamaru et al. 

(2015), Aonchotheca is more closely related to Pearsonema. While our results and Tamaru et al. 

(2015) seem to some extend support the validity of Moravec's (1982) taxonomic classification, we 

highlight the need for thorough analysis of the morphological evolution of this nematode subfamily. 

We highly recommend that new species descriptions provide a molecular characterization together 

with the detailed morphological assessment. As several unreported species may await discovery, 

inferences regarding the evolutionary history of capillariid nematodes will remain challenging if 

such efforts are not undertaken. 

Although the life cycle of the studied capillariid remains unknown (i.e. whether it requires a 



12 

facultative intermediate invertebrate host), its apparent restricted distribution to ‘floodplain’ pools 

despite the considerable mobility of its mudfish host (White et al., 2015b), suggests this nematode 

may be less tolerant to the environmental extremes (e.g. drought, high acidity, hypoxia) of the 

‘forest’ pools. Whilst mudfish are capable of surviving periods of drought (over thirty days without 

water; White et al., 2016) by burrowing into the soft peat pool substrate and maintaining a low 

metabolic rate via cutaneous respiration (Urbina et al., 2014a,b), the environmental extremes of 

‘forest’ pools may be lethal to infective stages of this capillariid. Thus adaptations to the harsh 

environmental conditions in addition to pool isolation may enable brown mudfish to escape some of 

their enemies, both in the form of parasites and their predators (e.g. banded kokopu). 

It remains to be determined whether other mudfish species also harbour this, or related capillariid 

species given the paucity of parasitological knowledge currently available for the Neochanna genus 

in general. However, the unique habitat niche occupied by brown mudfish in combination with the 

non-overlapping distribution of mudfish species, suggest that this capillariid is likely to have 

evolved in isolation together with its host. Furthermore, recent parasitological investigations 

suggested that other parasite taxa also found in mudfish may be genetically distinct to those 

infecting other New Zealand freshwater fish species (Paterson & Hernadez-Ortez pers comm.). 

Regarding the capillariid reported herein, future studies should assess host specificity of the new 

taxa, i.e. whether other fish species (e.g. banded kokopu) in the flood plain habitat are also hosts of 

this nematode, and assess the diversity of other capillariid present in New Zealand to assess their 

phylogenetic relatedness. Only then can a proper inference of this parasite’s evolutionary history be 

made. 

 

In this study we described a new capillariid nematode parasitizing the swim bladder of brown 

mudfish in New Zealand. Our findings highlight the potential diversity of parasite assemblages 

which has likely lain hidden in this very unique ecosystem, and establishes a baseline for future 
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studies. The findings of the study also highlights the necessity of a more collaborative approach 

between parasitologists and researchers from other fields, in our case fish biologists, which could 

promote the discovery of host-parasite relationships in New Zealand. 
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Tables 

Table 1. Nematode sequence data included in the phylogenetic analysis with respective family, 

geographic location, host identity, organ where it is located in the host and GenBank accession 

number. 

 

GI, gastrointestinal tract 
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Figure legends 

Figure 1. Morphology of the new capillariid from brown mudfish Neochanna apoda. (a) stichocytes 

at middle part of the stichosome; (b) general view of adult female; (c) vulvar region, lateral view; 

(d) egg; (e) posterior end of female, lateral view; Male morph 1: (f) posterior end of male, lateral 

view; (g) posterior end of male, ventral view; (h) spicule anterior end; Male morph 2: (i) posterior 

end of male, lateral view; (j) posterior end of male, ventral view; (k) spicule anterior end; Male 

morph 3: (l) posterior end of male, lateral view; (m) posterior end of male, ventral view; (n) spicule 

anterior end. S, spicule; Vu, vulva; An, anus. 

 

Figure 2. Phylogenetic relationships of the new capillariid from brown mudfish Neochanna apoda 

based on Bayesian analysis of 18S rRNA gene sequences. Values represent Bayesian posterior 

probabilities (values below 0.75 not represented). Sequence newly reported in this study is in bold, 

and other sequences are presented with the respective GenBank accession number in parentheses. 

(see Table 1 for additional details). 
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Figure 1. 
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Figure 2. 
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