Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Simulation of hydrogen distribution due to in-vessel severe accident in WWER-1000 NPP containment: a comparison of CONTAIN and MELCOR codes results

Noorikalkhoran, Omid ORCID: https://orcid.org/0000-0001-6540-1663 and Gei, Massimiliano ORCID: https://orcid.org/0000-0003-3869-7504 2018. Simulation of hydrogen distribution due to in-vessel severe accident in WWER-1000 NPP containment: a comparison of CONTAIN and MELCOR codes results. Presented at: 26th International Conference on Nuclear Engineering, London, UK, 22-26 Jul 2018. 2018 26th International Conference on Nuclear Engineering: Thermal-Hydraulics and Safety Analyses. , vol.6B ASME, V06BT08A071-V06BT08A071. 10.1115/ICONE26-82635

Full text not available from this repository.

Abstract

During a severe accident or Beyond Design Basis Accident (BDBA), the reaction of water with zirconium alloy as fuel clad, radiolysis of water, molten corium-concrete interaction (MCCI) and post-accident corrosion can generate a source of hydrogen. In the present work, hydrogen distribution due to in-vessel reaction (between zircaloy and steam) has been simulated inside a WWER-1000 reactor containment. In the first step, the thermal hydraulic parameters of containment have been simulated for a DECL (Double Ended Cold Leg) accident (DBA phase) in both short and long time and the effects of spray as Engineering Safety Features (ESFs) on mitigating the parameters have been studied. In the second step, it has been assumed that the accident developed into an in-vessel core melting accident. While in pre-phase of core melting (severe accident phase), hydrogen will be produced as a result of zircaloy and steam reaction (BDBA phase), the hydrogen distribution has been simulated for 23 cells inside the reactor containment by using CONTAIN 2.0 (Best estimate code) and MELCOR 1.8.6 codes. Finally, the results have been compared to FSAR results. As it can be seen from the comparisons, both CONTAIN and MELCOR codes can predict the results in good agreement with FSAR (ANGAR code) results. CONTAIN shows peak pressure around 0.36 MPa in short-term and this amount is about 0.38 and 0.4 MPa for MELCOR and ANGAR (FSAR) results respectively. All these values are under design pressure that is around 0.46 MPa. Cell 20 has the maximum mole fraction of hydrogen in long-term about 9.5% while the maximum amount of hydrogen takes place in cell 22. The differences between the results of codes are because of different equations, Models, Numerical methods and assumptions that have been considered by the codes. The simulated Hydrogen Distribution Map (HDM) can be used for upgrading the location of HCAV systems and Hydrogen Mitigator features (like the recombiners and ignitors) inside the containment to reduce the risk of hydrogen explosion.

Item Type: Conference or Workshop Item (Paper)
Status: Published
Schools: Engineering
Publisher: ASME
ISBN: 9780791851494
Funders: EU commission
Last Modified: 24 Oct 2022 07:56
URI: https://orca.cardiff.ac.uk/id/eprint/116361

Actions (repository staff only)

Edit Item Edit Item