An in-vitro animal bone model study to predict spiral fracture strength of long bones in the young infant

S.S. Malik, S. Malik, R. Shenoy, M.D. Jones, P.S. Theobald

Introduction: The risk of fracture from a non-accidental injury is highest in the infant age group. A spiral fracture of the long bone can occur equally from accidental and non-accidental causes, meaning the clinical judgement of non-accidental injury in an infant is particularly challenging. This study aimed to assist in differentiating accidental, from non-accidental, injury in infants, by establishing whether correlation exists between geometry and torsional strength in the immature long bone.

Methods: Immature porcine third and fourth metacarpals (n = 21) were imaged with a dual energy x-ray absorptiometry (DEXA) scanner to measure their linear bone mineral content (BMCL), bone mineral density (BMD) and section modulus (Z). The specimens were then subjected to a torque of one degree per second until failure. The failure strength and the three DEXA measures were analyzed for a correlation.

Results: The mean failure strength of 11 successful tests was 13.71Nm (+/-SD 2.42Nm), with correlation to BMCL, BMD and Z described by $r^2 = 0.81, 0.283$ and 0.75 respectively.

Conclusion: This study is a novel attempt at estimating torsional strength of long bones in a specific paediatric age group using a size-matched animal bone model. It found a strong correlation between bone and fracture strength parameters over the BMCL range of 0.59–0.77 g/cm.2

Keywords: Infant, Long bones, Non-accidental injury, Spiral fracture, Torsional fracture strength
injury, but it is now recognised that this fracture can equally occur from innocent injuries and that other fracture patterns may be more common in child maltreatment. In addition, fractures of the mid-diaphysis of long bones have a relatively low specificity for non-accidental injury as compared with fractures such as ribs, skull fractures and classic metaphyseal lesions. Therefore, the clinical judgement of non-accidental injury in a child <1 year with a long bone spiral fracture is particularly challenging.

This study aims to assist in differentiating accidental, from non-accidental, injury in infants, by establishing whether correlation exists between geometry and torsional strength in the immature long bone. This is achieved by investigating dual energy x-ray absorptiometry (DEXA) derived bone strength parameters and experimentally determined spiral fracture strength, using a representative animal model.

2. Methods

2.1. Selection of animal bone model

The porcine bone model is considered to be an appropriate substitute to human paediatric bone and has been used extensively in research similar to this study. It has equivalent DEXA findings due to similarities in bone size, mass, mineralisation and organisation. Table 1 shows the radiographic measurements of length of the humerus, femur and tibia in an infant up to the age of 6 months. The third and fourth porcine metacarpal bones were found to have a similar length to these measurements and were chosen as the bone model on the basis that the cross-sectional dimensions of an immature bone are a function of the length.

2.2. Specimen preparation

A total of 21 specimens were harvested from fresh pig feet, donated from a commercial abattoir. As these feet were acquired as a consequence of routine slaughter for the food industry, they were exempt from the local ethics process. The metacarpal bones were cleared of all soft tissues and inspected for any previous fractures and obvious defects that could potentially affect the results. The specimens were then wrapped in tissue paper and labelled and stored at 4°C in a fridge.

2.3. DEXA scan

The specimens were imaged with the QDR Explorer Dual Energy Bone Densitometer (Hologic, USA). Each specimen was placed on a 26 mm plexiglass sheet to simulate the attenuation characteristics of the soft tissues, as previously established by Pierce et al. A lumbar spine acquisition protocol (survey mode) was used, and the scan was analysed using sub-regional spine analysis. The length of one specimen was determined in terms of the number of lines in the image, and correlated with the actual length measured with digital calipers. A 1.5 cm region of interest (ROI), centered on the mid-point of the whole bone, was analysed for BMC (g) and projected area (cm²) (Fig. 1). These measurements were used to calculate the following indices of bone strength:

| Table 1 Radiographic measurements of lengths of long bones in an infant up to the age of 6 months (cm). |
|---|----------------|----------------|----------------|
| 0 months | 2 months | 6 months |
| Humerus | 6.37 | 7.20 | 8.77 |
| Femur | 7.65 | 8.65 | 11.18 |
| Tibia | 6.14 | 6.95 | 8.89 |

- BMC (g/cm) was calculated by dividing BMC by the height (h, cm) of ROI i.e. 1.5 cm
- BMD (g/cm²) was calculated by dividing BMC by the projected area
- Section modulus (Z, cm³) was calculated using the approximation method of Martin and Burr. This method models the mid-diaphysis as a hollow circular section and assumes that the density of mineral fracture of bone (p, g/cm³) is 3g/cm³ and fraction of mineral in cortical bone (K, %) is 35%. According to the method, firstly the cortical cross-sectional area (A, cm²) is expressed by:

\[A = \frac{BMC}{Kp} \]

A is then applied in the equation to derive the cross-sectional moment of inertia (I, cm⁴). This equation also requires the effective mid-diaphysis periosteal diameter (D, cm) value, which is calculated by dividing the projected area h i.e. 1.5 cm. I is expressed by:

\[I = \frac{A}{4\pi} \left(\frac{D^2}{2} - A \right) \]

Finally, Z is expressed by:

\[Z = \frac{2I}{D} = \frac{A}{2\pi D} \left(\frac{D^2}{2} - A \right) \]

Z is an engineering based measure of whole bone resistance to torsion. It takes into account the distribution of material with the bone cross-section and is also a meaningful predictor of bone strength.

2.4. Torsion test

The specimens were thermally equilibrated prior to testing by standing for 2 h in the laboratory (17–19°C). The porcine metacarpal bone has a growth plate at the distal end, and a common problem in torsion testing of immature bone is the failure of growth plate before the bone is fractured, because the connective tissues are weaker than the cortical bone. Therefore, a 3 mm diameter bicortical hole was drilled adjacent to the growth plate and a metal pin was inserted across the bone, creating a pair of extensions, which once fixed in the potting material prevented torsion being applied across the growth plate during the test. Fourteen specimens were tested with this preparation. The technique was then adapted and a 1.5 mm unicortical hole with only one metal pin extension was found to be equally effective in resisting growth plate torsion. Seven specimens were tested with the modified preparation.

The proximal and distal ends of each metacarpal bone were then embedded in steel jigs filled with Woods metal. Once potting was complete, each specimen was mounted into an MTS 858 Mini Bionix® II Test Machine (MTS Systems Corporation, USA) with torsional and axial loading capabilities (Fig. 2). It was ensured that the specimens were vertically aligned in the machine, so that the torque was applied to the long axis of the bone and did not induce a bending moment. The working length (cm) of each specimen was measured with a ruler; this was defined as the bone length exposed between the embedded ends.

Axial load was maintained at zero and a torque of one degree per second was applied. Torque (Nm) and angular displacement (deg) were recorded at 10 Hz and the test was stopped at specimen failure. After the test, the specimens were recovered and examined to determine whether the fracture line included the hole of the ‘derotational’ pin, whilst the angle of spiral fracture to the
longitudinal axis of the bone was also measured.

2.5. Statistics

All data were collected and analysed using Excel spreadsheets (Microsoft Corp, Seattle, WA) and GraphPad Prism® 5.01(GraphPad software Inc.). Correlation between parameters was assessed with Pearson’s test and the r squared values calculated. Significance in differences between two correlation coefficients was calculated using a Fishers r-to- z transformation. p < 0.05 was considered significant.

3. Results

All 21 specimens failed with a spiral fracture. None of the specimens failed at the growth plate, but the fracture involved the drill hole in eight of fourteen specimens tested with a 3 mm bicortical hole with a metal pin and two of seven specimens tested with 1.5 mm unicortical hole with a metal pin. Although the derotational pin and pin holes were embedded in the potting material and did not contribute to the working length of bone, the results of the specimens in which the fracture line involved the drill hole were excluded from the analysis, due to the uncertainty of whether the fracture initiated from the stress riser created by the hole.

The remaining 11 metacarpal bones had a mean length of 7.40 cm (+/-SD 0.32 cm) and a mean mid-diaphysis periosteal diameter of 1.68 cm (+/-SD 0.09 cm). Table 2 shows their DEXA-derived indices of bone strength. The mean working length was 2.90 cm (+/-SD 0.39 cm). Fig. 3 shows the load-displacement curve for specimen no. 1, which is typical of all the specimens tested. There is an initial linear region of elastic deformation, then a non-linear region of plastic deformation that reaches a maximum failure load at which the bone fails. The gradient of the initial linear region indicates the torsional stiffness, and the maximum torque before failure indicates the structural strength of the whole bone. The angular deformation was converted from degrees to radians for calculating torsional stiffness. The area under the curve indicates the energy absorbed to failure. This was calculated using the trapezoidal method. Table 3 shows the torsional strength test results for these specimens. The mean angle of the spiral fracture to the long axis of the bone was 30.40° (+/-SD 5.86°).

The correlations of the different DEXA-derived indices of bone strength with maximum torque are shown in Figs. 4–6. There was a strong correlation between BMCL and maximum torque (r² = 0.805, Fig. 1. A drawing of a typical porcine third and fourth metacarpal with DEXA measurements indicated. A 1.5 cm height ROI centred over the mid-diaphysis was analysed for projected area and BMC.
p = 0.0002). There was also a strong correlation between Z and maximum torque \((r^2 = 0.751, p = 0.0006) \). The difference between the correlation coefficients was not significant \((p = 0.78) \), indicating that both indicators predicted strength equally well. There was only a weak correlation between BMD and maximum torque, which was not significant \((r^2 = 0.283, p = 0.092) \).

4. Discussion

This study used an immature porcine metacarpal bone model to replicate spiral fracture of a long bone in a young infant. It is a novel approach to predicting torsional strength of long bones in a specific paediatric age group using a size-matched animal bone model. Within the limitations of the in-vitro testing techniques, the findings of this study provide an estimation of the likely torsional strength of the long bones in the young infant. The mean maximum torsion load for the animal bone model was 13.71Nm (SD±2.42Nm). All specimens experienced a spiral fracture that was representative of the fracture pattern clinically found in paediatric torsional trauma situations. The angle of the spiral fracture was 30.40° (SD±5.86°), which is consistent with the findings of previous experimental studies\(^{10,12}\) and with the fracture angle observed clinically.\(^{13}\)

This study found that Z was comparable to, but not better than, BMC\(_c\) in the ability to predict whole bone torsional strength. These findings are similar to the work of Sarin et al.\(^{14}\) who also compared the same correlations in the femora of different species, covering a BMC\(_c\) range of 0.91–6.1 g/cm. The BMC\(_c\) range of the specimens tested in the present study was 0.59–0.77 g/cm. This study therefore extends the BMC\(_c\) range over which the DEXA-derived strength indicators have been validated in an in-vitro torsional strength test. In the work by Sarin et al.,\(^{14}\) the correlation of BMC\(_c\) and Z with strength was \(r^2 = 0.87 \) and \(r^2 = 0.86 \), respectively. In the present study, the correlation of BMC\(_c\) and Z with strength was \(r^2 = 0.81 \) and \(r^2 = 0.75 \), respectively. Although the relative ability of the two indices to predict torsional strength was the same as previously reported, both indices had a lower correlation with strength. The difference in the indicators’ correlation with strength in the two studies is explained by the differences in the cross-sectional geometry, especially circularity and wall thickness, of the bones tested in the two studies, and the different values of fraction of mineral in cortical bone, K, used in the calculations of the studies. Sarin et al.\(^{14}\) estimated K to be 42%, whereas the present study used

<table>
<thead>
<tr>
<th>Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>The DEXA-derived indices of bone strength [mean (+/-SD)] (n = 11).</td>
</tr>
<tr>
<td>(\text{BMCL (g/cm}^2))</td>
</tr>
<tr>
<td>0.72 (0.08)</td>
</tr>
</tbody>
</table>

Fig. 2. A specimen embedded in the steel jigs and positioned in the test machine.

Fig. 3. Load deformation curve for specimen 1.
the K value of 35%, as estimated by Martin and Burr and used by other researchers. Based on the engineering principles, Z might be expected to be a better predictor of torsional strength than BMCL. Z takes into account the contribution of the cross-sectional geometry to the whole bone structural strength. These geometric effects are critical in children, because in the growing skeleton the bone cross-sectional geometry is a function of its length. Therefore, as the paediatric bone increases in length, there is a compensatory increase in the cross-sectional dimensions to maintain strength. On the other hand, BMCL is also linearly related to the bone cross-section area. The calculations for deriving Z contain empirical constants, r and K, which would weaken the accuracy of Z compared with BMCL, which is directly related to the cross-sectional area. The small sample size assessed in this study may not have enough power to differentiate between the two parameters of strength.

The embedment of the bone ends in the jig containers for placement in the torsional strength test machine resulted in a considerably reduced working length as compared with the bone length. Ho et al. used the same specimen potting technique in their torsional strength test of mature porcine femora. Table 4 shows a comparison between the bone length and working length of specimens tested in the two studies. This methodology for specimen placement in the torsional strength test machine is associated with a considerable loss of bone length for the actual test. In the present study the percentage working length of the specimens is even shorter because the skeletally immature specimens had to be embedded deeper to protect the growth plate. However, according to the engineering principles the torsional strength of a material is related to the material and cross-sectional properties, but is independent of its length (the angular deformation before failure increases with working length but the material fails at the same maximum torsional load). In the present study, the short working length limited the effect of the changing cross-sectional geometry along the bone length on the results obtained.

Several assumptions were made in this study that have a bearing on interpretation of the findings. It was assumed that the cross-section geometry of the porcine bone model is comparable to the cross-sectional geometry of the long bones in the infant. Osteological research provides information on the cross-sectional morphology of the tibia, femur and humerus of the infant. The tibia has a triangular cross-section at the proximal end and diaphysis due to the distinct anterior crest, and square or rhomboid cross-section at the distal end. The femur is always longer than tibia at any developmental stage, and has a rounder cross-section than that of tibia. As the linea aspra develops, it adapts the shape of a teardrop rather than triangular like the tibia. The humerus is round at the proximal end and diaphysis, and is flattened at the distal end. In early infancy the epiphyses of these long bones are similar in size and shape. Fig. 7 shows the computed tomography image of the mid-diaphysis of one of the specimens tested. The

Table 3: Torsional strength test data [mean (+/-SD)] (n = 11).

<table>
<thead>
<tr>
<th>Max torque (Nm)</th>
<th>Angular deformation (deg)</th>
<th>Torsional stiffness (Nm/rad)</th>
<th>Energy absorption (Nm.deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.71 (2.42)</td>
<td>19.15 (4.66)</td>
<td>60.89 (15.21)</td>
<td>191.38 (67.41)</td>
</tr>
</tbody>
</table>

Fig. 4. The correlation of BMC with maximum torque.

Fig. 5. The correlation of Z with maximum torque.

Fig. 6. The correlation of BMD with maximum torque.

Please cite this article in press as: Malik SS, et al., An in-vitro animal bone model study to predict spiral fracture strength of long bones in the young infant, Journal of Clinical Orthopaedics and Trauma (2018), https://doi.org/10.1016/j.jcot.2018.10.001
cross-sectional geometry, being approximately circular, is generally similar to that of the long bones of the infant. Further work is also required to show the correlation between this methodology and the long bones in an infant.

Additional limitations of the study include that single torque of one degree per second was tested, adopted from previous studies. However, this torque is not based on any specific clinical evidence, and the effect of a change in torque has not been studied. The in-vitro experiments produce specific fractures under controlled loading conditions, but the fractures seen clinically are produced by complex loading conditions and therefore the experimental findings have limited applicability. Also, the tested specimens had the soft tissues removed and the effect of the surrounding soft tissues on bone torsional strength properties has not been studied. The experiment technique successfully produced spiral fractures in the specimens, but almost half of the tested specimen had to be excluded from the main analysis because their fractures involved the drill hole for the derotational metal pin. The adapted technique of using a 1.5 mm unicortical hole filled with a derotational pin showed promise in reducing the proportion of fractures affected by the drill hole.

5. Conclusions

This exploratory study used an immature porcine metacarpal bone model to replicate a long bone spiral fracture in an infant. It is a novel attempt at characterising torsional strength of long bones of an infant using a size-matched animal bone model. The study found a strong correlation between bone and fracture strength parameters over the BMC range of 0.59–0.77 g/cm. Further studies are required to allow application of these findings to the long bones of the infant.

Acknowledgements

We thank Dr Chee Gan and the radiology staff at the University Hospital of Wales, Cardiff, for performing the radiological studies.

References

Table 4

A comparison between bone length and working length of specimens tested in this study and a study by Ho et al.16.

<table>
<thead>
<tr>
<th></th>
<th>Present study</th>
<th>Data from Ho et al.16</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of specimens tested</td>
<td>11</td>
<td>40</td>
</tr>
<tr>
<td>Bone length [mean (+/SD)]</td>
<td>7.40 (0.33)</td>
<td>19.24 (0.44)</td>
</tr>
<tr>
<td>Working length [mean (+/SD)]</td>
<td>2.9 (0.39)</td>
<td>10.27 (0.3)</td>
</tr>
<tr>
<td>Mean working length as a proportion of bone length</td>
<td>39.19%</td>
<td>53.38%</td>
</tr>
</tbody>
</table>