A guideline for the diagnosis and management of polycythaemia vera

A British Society for Haematology Guideline

Authors

McMullin MF1, Harrison CN2, Ali S3, Cargo C4, Chen F5, Ewing J6, Garg M7, Godfrey A8, Knapper S9, McLornan D2, Nangalia J10, Sekhar M11, Wadelin F12, Mead AJ13.

Authors’ affiliations

1, Centre for Medical Education, Queen’s University, Belfast.

2. Guy’s and St Thomas’ NHS Foundation Trust, London

3. Castle Hill Hospital, Hull and East Yorkshire Hospitals NHS Trust

5. The Royal London Hospital, Bart’s Health NHS Trust, London.

7. University Hospital of Leicester NHS Trust, Leicester (BSH representative)

9. Cardiff University School of Medicine

10. Wellcome Trust Sanger Institute, Hinxton, Cambridge, CB10 1SA.

12. Nottingham University Hospital, Nottingham.

13. MRC Weatherall, Institute of Molecular Medicine, University of Oxford.
Correspondence to

BSH Administrator, British Society for Haematology, 100 White lion Street, London N1, 9PF, UK. Email: bsgguidelines@b-s-h.org.uk

Keywords: Diagnosis, management, polycythaemia vera, risk stratification, cytoreductive therapy

Methodology

This guideline was compiled according to the BSH process at b-s-h.org.uk. The Grading of Recommendation Assessment, Development and Evaluation (GRADE) nomenclature was used to evaluate levels of evidence and to assess the strength of the recommendations. The GRADE criteria can be found at http://www.gradeworkinggroup.org.

Literature review details

The literature review was conducted on 2nd March 2017. Databases searched include MEDLINE(OVID), Embase (OVID) and CENTRAL(The Cochrane library) using search terms (and relevant MESH terms) polycythaemia vera, erythrocytosis, familial, high oxygen affinity haemoglobin, defects of oxygen sensing pathway, diagnosis, investigation, molecular, mutation, JAK2, MPL, CALR, bone marrow, red cell mass, erythropoietin, risk, management, treatment, cytoreduction, venesection, hydroxyurea, interferon, busulfan, pipobroman, radioactive phosphorus, aspirin, anagrelide, ruxolitinib, thrombosis, haemorrhage, pregnancy, pruritus, surgery and management. The search covered the period from 2005 the date of last version of the guideline, to February week 3 2017. Exclusions included articles not in English, studies not in humans, single case reports and case series of under 5 cases. A total
of 6062 articles were identified which with exclusions and duplications resulted in
1215 articles which were reviewed.

Review of manuscript

Review of the manuscript was performed by the British Society for Haematology
(BSH) Guidelines Committee General Haematology Task Force, the BSH Guidelines
Committee and the General Haematology Sounding Board of BSH. It was also on
the members section of the BSH website for comment. A patient representative from
MPN-Voice (www.mpnvoice.org.uk) participated in the guideline writing meeting. The
guideline has been reviewed by MPN-Voice; this organisation does not necessarily
approve or endorse the contents.

Introduction

The previous guideline was published in 2005 (McMullin, Bareford et al. 2005) with
an amendment in 2007 (McMullin, Reilly et al. 2007) to update the diagnostic criteria
following the discovery of the JAK2 mutation in patients with polycythaemia vera
(PV). Since that time there has been a considerable amount of research in the area
concerning diagnostics, risk stratification, new agents and reinvestigation of existing
agents. It was therefore decided to evaluate the literature to formulate guidance on
the diagnostic pathway for erythrocytosis, risk stratification of polycythaemia vera
(PV), management of PV including specific situations and the management of
secondary erythrocytosis. Here we provide evidence-based guidance on diagnosis,
risk stratification and management of PV. Our review of the evidence led us to some
differences in diagnostic criteria and risk stratification than have been proposed by
other international organisations. We discuss the reasons for this. An accompanying
guideline looks at management of specific situations in PV and management of secondary erythrocytosis.

The diagnostic pathway for investigation of an erythrocytosis

Patients with a persistently raised venous haematocrit (Hct) (>0.52 males, >0.48 females) should be investigated. As suggested in our previous guideline and confirmed in recent literature, Hct has been consistently shown to perform better in identifying patients with a raised red cell mass than haemoglobin concentration (Alvarez-Larrán, Pereira et al. 2012, Ancochea, Alvarez-Larrán et al. 2014).

Patients should be investigated according to the proposed algorithm (Fig. 1). Investigation requires knowledge of diagnostic criteria for both PV and potential secondary causes of erythrocytosis (Tables I and II). A detailed history, examination and stage 1 investigations (listed below) should identify a potential cause in the majority of patients, although a proportion will require more extensive testing and in some a cause cannot be found (idiopathic erythrocytosis). The potential for dual pathology should also be considered.

Initial assessment

Clinical History and Examination

A detailed clinical history and examination are essential and, in the absence of a molecular marker of disease, will determine further investigations and management. Particular attention should be paid to the drug history (prescribed and recreational), smoking, alcohol consumption and body habitus. Systematic questioning should elicit symptoms related to other potential secondary causes of erythrocytosis (see Table II). A proportion of patients, who have a clear secondary cause for their erythrocytosis, may not need any further investigations.
Stage 1 Investigations

Full blood count / blood film

The full blood count analysis will not only confirm a raised Hct but will also identify neutrophilia and thrombocytosis, which are common in JAK2 V617F-positive PV and part of the criteria for JAK2-negative PV (Table 1). As smokers have a significantly higher neutrophil count than non-smokers (Whitehead, Robinson et al. 1995) a neutrophilia is defined as >12.5 \times 10^9/l in this patient group.

A blood film should be reviewed in all patients to look for any atypical features. In those with confirmed PV, abnormalities such as circulating blasts, leucoerythroblastic features and monocytosis would be indications for bone marrow assessment.

Renal and Liver Function

A number of renal and hepatic diseases can cause erythrocytosis. Serum calcium levels should also be determined to exclude a parathyroid adenoma/carcinoma, which rarely causes secondary erythrocytosis.

Arterial oxygen saturation (SaO2) / carboxyhaemoglobin

Identifying tissue hypoxia, a cause of secondary erythrocytosis, can be achieved most simply by using pulse oximetry in the clinic. An SaO2 of <92% has been shown to be associated with an absolute erythrocytosis (Berlin 1975). Clinicians should however be aware of three situations of hypoxic erythrocytosis where this testing is unreliable and will give a normal result. These are carbon monoxide poisoning, high oxygen affinity haemoglobins and sleep apnoea syndrome. Those with suspected high oxygen affinity haemoglobins should undergo genetic testing as described below. In those with suspected sleep apnoea (heavy snoring with daytime
somnolence or increased body mass index \(>30 \text{ kg/m}^2\), referral should be made to a respiratory or sleep physician.

Carboxyhaemoglobin (COHb) levels are significantly higher in smokers compared with non-smokers and cigarette consumption has been shown to be directly related to COHb levels (Castleden and Cole 1975). Testing can therefore be performed at baseline where smoking is suspected.

Serum Ferritin

Low serum ferritin levels are common in PV patients and iron deficiency can mask the presentation of PV giving a misleadingly low Hct because iron deficiency limits erythropoiesis and hypochromic microcytosis develops.

Serum Erythropoietin

Erythrocyte production is controlled by the hormone erythropoietin (EPO). Measurement of serum EPO can provide information on potential causes of erythrocytosis and help stratify further testing (see Fig.1). EPO levels are commonly high in hypoxic conditions or when erythrocytosis is secondary to exogenous administration or endogenous overproduction. In contrast EPO levels are typically low in PV, although their diagnostic utility in this setting is limited in the era of JAK2 mutation testing (Ancochea, Alvarez-Larrán et al. 2014).

JAK2 V617F mutational analysis

The identification of JAK2 mutations in almost all PV patients has revolutionised the diagnosis of PV. The JAK2 V617F mutation can be found in over 95% of PV patients (James, Ugo et al. 2005) and an exon 12 mutation in most remaining patients (Scott, Tong et al. 2007). Testing for JAK2 V617F in peripheral blood is
sensitive and bone marrow samples are not required to identify this (Takahashi, Patel et al. 2013). Testing for JAK2 V617F is advised as a stage 1 investigation and should confirm the diagnosis the vast majority of PV patients. Separate guidance is available for assays used for detection of JAK2 mutations (Bench, White et al. 2013).

Further Investigations in JAK2 V617F-negative erythrocytosis

Further investigations are warranted in those patients with a persistent, significant erythrocytosis if JAK2 V617F studies are negative and a secondary cause is not immediately apparent (See Figure 1). Secondary causes must be considered since PV is rare in the absence of a JAK2 V617F mutation.

Red Cell Mass studies

Patients with Hct >0.60 (males) or >0.56 (females) can be assumed to have an absolute erythrocytosis, but in others red cell mass (RCM) studies can be helpful to confirm an absolute erythrocytosis. A RCM more than 25% above the mean predicted value is diagnostic of an absolute erythrocytosis (Pearson, Guthrie et al. 1995). Those with a raised Hct but a RCM within the normal range have an apparent erythrocytosis. A relative erythrocytosis, found in states of dehydration, can be confirmed when the RCM is within the normal range and plasma volume is below normal. Patients with a relative or apparent erythrocytosis require no further investigation. It is noted however that due to the many drawbacks of this test including cost and labour, access to RCM studies is variable nationally.

Abdominal Ultrasound

Radiological splenomegaly is a minor criterion for JAK2 V617F-negative PV (Table 1) and ultrasound is the simplest method for detection. Abdominal ultrasound can
also exclude secondary causes of erythrocytosis, particularly renal and hepatic pathology including hepatocellular carcinoma.

Further testing can be stratified according to the EPO level measured during stage 1 investigations.

Normal or low EPO level

JAK2 exon 12 analysis

Compared with JAK2 V617F, patients with exon 12 mutated- PV tend to be younger, with higher haemoglobin concentrations, lower white blood cell (WBC) and platelet counts, and isolated an isolated increase in erythropoiesis without granulocytic or megakaryocytic morphological abnormalities (Scott, Tong et al. 2007, Passamonti, Elena et al. 2011). In contrast to JAK2 V617F testing, a discrepancy between exon 12 mutant allele burden in bone marrow and peripheral blood has occasionally been described (Kjær, Westman et al. 2012).

Bone marrow biopsy

Bone marrow histology may be helpful in distinguishing PV from secondary erythrocytosis (Thiele, Kvasnicka et al. 2005). Bone marrow aspiration in PV typically reveals markedly increased erythropoiesis with moderate to marked increase in granulopoiesis and megakaryopoiesis; widely variable megakaryocyte size, including large forms with hyperlobated nuclei; and absent iron stores. The bone marrow trephine biopsy sections show hypercellularity; trilineage expansion of haemopoiesis (rarely preferentially erythroid) and normoblastic erythropoiesis. Granulocytic maturation may be left-shifted and disorderly; megakaryocytes show increased variation in size, often with a predominance of large forms with uneven or reduced
nuclear lobulation, and megakaryocyte clusters are common. Reticulin is increased in a minority of patients (up to WHO grade 1 in most cases).

Presence of an acquired genetic abnormality is a major criterion for JAK2- negative PV and the presence of an abnormal karyotype can therefore support this diagnosis. An acquired LNK mutation would also support the diagnosis. More recently mutations in a number of other genes, most commonly TET2 and DNMT3A, have been reported in PV (Delic, Rose et al. 2016) These gene mutations are not, however, disease specific and have also been reported in healthy individuals (Genovese, Kähler et al. 2014, Jaiswal, Fontanillas et al. 2014) limiting their application in the diagnostic setting, particularly when found in isolation.

High EPO level

A raised EPO level should lead to a thorough search for secondary causes of erythrocytosis (Table 2), which may require additional supplementary investigations (Figure 1).

Imaging

Further imaging (e.g. CT head and neck) is indicated in this setting if a cause for the high EPO has not been identified. Imaging should aim to exclude rare tumours such as a cerebellar haemangioblastoma, phaeochromocytoma, meningioma or a parathyroid tumour, all of which can rarely cause erythrocytosis.

Gene sequencing for congenital erythrocytosis

A number of germline mutations in genes involved in oxygen sensing, erythropoiesis and oxygen transport have now been implicated in patients with otherwise unexplained erythrocytosis. These include mutations in the EPO receptor and genes
in the oxygen sensing pathway (VHL, EGLN1, EPAS1), high oxygen affinity
haemoglobinopathies caused by mutations in the globin genes HBA1, HBA2, HBB,
and 2,3-bisphosphoglycerate deficiency as a result of BPGM mutations (Bento,
Percy et al. 2014). These patients can present with low, normal or high EPO levels;
high affinity haemoglobins and 2,3-BPG deficiency also cause a left shift of the
oxygen dissociation curve. In the past this group of mutations were detected by
Sanger sequencing of individual genes, in an order directed by EPO levels and P50
analysis, but this approach is labour-intensive and time-consuming (Bento, Percy et
al. 2014). More recently next generation sequencing-based targeted panels have
been developed to assess established and novel genes implicated in erythrocytosis
(Camps, Petousi et al. 2016), negating the need for P50 testing. A targeted panel
should be performed in patients in whom congenital erythrocytosis is suspected,
particularly young patients or those with a family history.

Diagnostic criteria for polycythaemia vera

Presentation

Polycythaemia vera (PV) presents at a median age of 60 years with a slight male
predominance. Patients can present with arterial or venous vascular occlusive
events, microvascular disturbances, or occasionally, haemorrhage. Splenic pain
and/or enlargement, pruritus, gout and constitutional symptoms such as fatigue may
be present. Alternatively, asymptomatic patients may be identified incidentally
following a full blood count. All patients who are newly diagnosed with PV should be
discussed in a multidisciplinary team setting.

The recommended diagnostic criteria for JAK2-positive and the very rare JAK2-
negative PV are given in full in table I.
Role of the bone marrow biopsy in JAK2 V617F-positive patients

Although the WHO classification considers histology to be useful in distinguishing PV from other myeloproliferative neoplasms (MPNs) (Arber, Orazi et al. 2016), several studies have reported high rates of non-consensus or failure to reach a histological diagnosis in patients with PV (Koopmans, Bot et al. 2011, Madelung, Bondo et al. 2013) (Alvarez-Larrán, Ancochea et al. 2014) Given the uncertain utility of bone marrow histology in the diagnosis of uncomplicated PV, it is not mandatory in all patients, but should be considered if there are atypical features such as marked splenomegaly or a history of splanchnic vein thrombosis where it is necessary to establish if there is an occult myeloproliferative neoplasm. The degree of baseline fibrosis can also be ascertained, which as discussed below may have a prognostic role. Bone marrow biopsy may nonetheless be useful in those patients likely to have a long disease history, as a baseline sample for comparison in the event of suspected disease transformation. Abnormal karyotype and other molecular abnormalities (e.g. TET2 mutations) have been reported in PV and some may have prognostic value (Delic, Rose et al. 2016, Cerquozzi, Barraco et al. 2017) but these tests are not required routinely at diagnosis.

Differentiation of JAK2 V617F-positive PV from other MPNs

In patients with a JAK2 V617F mutation, haemoglobin and/or Hct are currently used as a surrogate for RCM to distinguish between PV and essential thrombocythaemia (ET) (Arber, Orazi et al. 2016), but Hct has the better accuracy in predicting red cell mass (Alvarez-Larrán, Pereira et al. 2012, Ancochea, Alvarez-Larrán et al. 2014). Concerns have however been raised that distinguishing PV from ET based on blood
count thresholds alone may fail to identify a subgroup of patients with “masked” PV, who may be better managed as PV rather than ET.

The definition of masked PV has been inconsistent across studies. When using a raised RCM to define an erythrocytosis, studies have shown that a Hct threshold of 0.52 in males will fail to identify approximately 20% of male patients with a raised RCM, whilst the threshold of 0.48 in women is more sensitive (Alvarez-Larrán, Pereira et al. 2012). These “masked” PV patients were reported to have similar outcomes to those with “overt” PV when managed equivalently (Alvarez-Larrán, Angona et al. 2016).

By contrast, other studies have defined masked PV as those patients who did not meet the haemoglobin-based thresholds for PV but did meet the other WHO criteria, mainly bone marrow histology and JAK2 status. Patients meeting this definition had poorer outcomes in terms of myelofibrotic or leukaemic transformation and survival, but no difference in rate of thrombosis. Hct thresholds of 0.48/0.49 (females/males) were subsequently proposed to discriminate ET from PV in the WHO 2016 revision (Barosi, Tefferi et al. 2015).

The proposed BSH Hct-based thresholds have good specificity but will miss a minority of patients with a raised RCM. By lowering the Hct threshold it may be possible to identify patients with histology more typical of PV who may have certain adverse outcomes, but these findings have not yet been reproduced independently. It is unknown whether management of any of these patients using a strict Hct target benefits their vascular risk. However, in patients with a JAK2 V617F mutation and borderline Hct levels (especially males with Hct 0.48-0.52), the possibility of true erythrocytosis should be considered, especially if the patient is at high risk of
vascular events. Options in this group include performing a RCM study to clarify the
diagnosis or, pragmatically, managing the patient with a Hct target as for PV.

It should also be noted that Hct is a poor surrogate of red cell mass in patients who
have had splanchnic vein thrombosis (Lamy, Devillers et al. 1997), and these high-
risk patients are best managed with standard blood count targets regardless of blood
count parameters at diagnosis. Hct is also reduced by pregnancy and gestation-
specific ranges should be used when considering the distinction between PV and ET
in a patient presenting during pregnancy.

JAK2 V617F allele burden

Quantitative assessments of the *JAK2* V617F allele burden in peripheral blood
granulocytes have shown that this parameter tends to be higher in PV than ET. A
higher mutant allele burden correlates with certain clinical features at presentation
including higher haemoglobin levels, higher WBCs, lower platelet counts, lower
mean cell volume (MCV), lower serum ferritin and EPO, more splenomegaly and
more pruritus (Dupont, Massé et al. 2007, Tefferi, Strand et al. 2007, Vannucchi,
Antonioli et al. 2007, Passamonti, Rumi et al. 2010). However, there is no validated
threshold at which *JAK2* V617F allele burden can confirm or refute a diagnosis of PV
and this investigation is not recommended routinely.

Low level *JAK2* V617F allele burden

A low level *JAK2* V617F mutation (allele burden <1-3%) should be interpreted in the
context of clinical, haematological and other laboratory findings (Bench, White et al.
2013). If the result is reproducible and does not represent a false positive, this
finding may provide support for a diagnosis of a PV in a patient with otherwise
unexplained, significant erythrocytosis (Perricone, Polverelli et al. 2017). However,
the JAK2 V617F mutation has been identified in normal individuals, often at a low allele burden, with a frequency that increases with age (Genovese, Kähler et al. 2014, Jaiswal, Fontanillas et al. 2014). Caution is therefore warranted and comprehensive investigations should exclude an alternative secondary or congenital cause of erythrocytosis. The test should preferably be repeated within 3-6 months, and clinical assessment for other features of an MPN e.g. splenomegaly, bone marrow histological features, and screening for an additional mutation in JAK2 exon 12 may be helpful.

Recommendations:

- In patients with persistent, significant and unexplained erythrocytosis, testing for JAK2 V617F is recommended, using a peripheral blood sample and an assay sufficiently sensitive to detect a mutant allele burden as low as 1-3%.

(GRADE 1B)

Risk stratification in PV

The principal aims of risk stratification in PV are a) to select patients at higher risk of thrombosis for consideration of cytoreductive therapy and b) to provide the most accurate information to patients on the risks and implications of a diagnosis of PV.

Thrombosis and Bleeding Risk

At diagnosis, in the largest prospective study to date the European Collaboration on Low-Dose Aspirin in Polycythaemia Vera (ECLAP), age ≥ 65 years and a prior history of thrombosis were found to be the most important predictors of cardiovascular events (Marchioli, Finazzi et al. 2005). A baseline WBC of >15.0 ×
10\(^9\)/l is a significant predictor of thrombosis, particularly an increased risk of myocardial infarction (Landolfi, Di Gennaro et al. 2007); however, prognostic models including leucocytosis have not been prospectively validated. Cardiovascular risk factors (smoking, diabetes mellitus, arterial hypertension, hypercholesterolaemia) also contribute to thrombotic risk in PV (Barbui, Vannucchi et al. 2017) (Landolfi, Di Gennaro et al. 2007) (Gangat, Strand et al. 2007). Once treatment is initiated, cardiovascular events occur more frequently in patients with less stringent Hct control (Marchioli, Finazzi et al. 2013) and when the WBC remains elevated $>11 \times 10^9$/l (Barbui, Masciulli et al. 2015). A relationship between thrombocytosis (either at diagnosis or follow-up) and thrombotic risk has not been established in PV (Di Nisio, Barbui et al. 2007), but extreme thrombocytosis ($\geq 1500 \times 10^9$/l) is associated with increased risk of bleeding due to acquired von Willebrand disease and should be considered an indication for initiation of cytoreductive therapy (Budde and van Genderen 1997).

Survival and Transformation Risk

The impact of age, degree of leucocytosis and prior history of venous thrombosis on long term prognosis are well-established. In the ECLAP study, age >65 years was associated with inferior survival and age >70 years was associated with increased incidence of leukaemia/myelodysplasia (Marchioli, Finazzi et al. 2005). In the IWG-MRT study, age >61 years was associated with inferior overall and leukaemia-free survival (Tefferi, Rumi et al. 2013). Longer disease duration has been associated with increased risk of myelofibrotic (MF) transformation (Marchioli, Finazzi et al. 2005). Leucocytosis with WBC $\geq 15 \times 10^9$/l is associated with an inferior leukaemia-free survival. A prior history of venous thrombosis also impacts negatively on overall survival. The IWG-MRT Prognostic Score uses these three parameters (age, WBC
and thrombotic history) to delineate distinct risk groups for overall survival (Tefferi, Rumi et al. 2013), but this prognostic score has not been independently validated in prospective studies.

Several other clinical and laboratory variables have been reported to influence overall survival and/or risk of disease transformation. The presence of splenomegaly in PV patients has been associated with shorter overall survival and increased risk of transformation to both MF and AML (Abdulkarim, Ridell et al. 2011). The presence of an abnormal karyotype adversely impacts overall and leukaemia-free survival (Tefferi, Rumi et al. 2013). A raised lactate dehydrogenase (LDH) and the presence of reticulin fibrosis at diagnosis predict a higher rate of transformation to myelofibrosis (MF) but not to acute myeloid leukaemia (AML) (Alvarez-Larrán, Bellosillo et al. 2009) (Barbui, Thiele et al. 2012). Prospective analysis indicates that a JAK2 mutant allele burden of >50% is also associated with increased risk of MF (but not of AML or thrombosis) (Passamonti, Rumi et al. 2010) but the clinical utility of this measurement is not yet well-established. Although JAK2 exon12-mutated disease has a subtly different clinical phenotype to JAK2 V617F-driven PV (higher haemoglobin concentration, lower WBC), there appears to be no difference in long-term prognosis (Passamonti, Elena et al. 2011). Targeted gene sequencing is a rapidly advancing area; approximately 15% of PV patients have mutations of ≥1 of ASXL1, SRSF2 and IDH2 and these patients have a reduced rate overall survival in univariate analysis (Tefferi, Lasho et al. 2016).

Recommendations: Risk stratification

- Age and thrombotic history should be used to define risk groups for thrombosis in PV (GRADE 1A).
- ‘High risk’: age ≥65 years and/or prior PV-associated arterial or venous thrombosis (GRADE1A)
- ‘Low risk’: age <65 years and no PV-associated thrombotic history (GRADE 1A)
- Some ‘low risk patients’ may be to be considered at higher risk in the presence of cardiovascular risk factors, elevated WBC, extreme thrombocytosis or Hct uncontrolled with venesection (GRADE 1B)
- A number of variables including age, prior thrombosis, the presence of splenomegaly, serum LDH level, degree of reticulin staining, presence of an abnormal karyotype and JAK2 mutant allele burden may be utilised when counselling the patient on longer term prognosis including overall survival and disease transformation risk (GRADE 2B).
- Deep sequencing for ‘high risk mutations’ e.g. ASXL1, SRSF2, IDH1/2 is not yet ‘standard of care’ but may be considered in selected cases where their presence may influence management. (GRADE 2B).

Management of polycythaemia vera

Patients with PV may present with thrombosis or cardiovascular disease. Disease-related PV symptoms such as microvascular disturbance, pruritus (which may be excruciating), migraine-type headache and fatigue may also be presenting features which can significantly impact on quality of life (Harrison, Koschmieder et al. 2017). However, patients may be asymptomatic at presentation.

The goals of treatment are to reduce complications and therefore improve survival. (Table III). Mortality is chiefly related to thromboembolic events and the principal aim of therapy is to reduce this risk. Targeted assessment and management of
cardiovascular risk factors such as hypertension, hypercholesterolaemia and

diabetes mellitus and smoking is essential. Reduction in symptom burden is also a
valid target for treatment. There is evidence that patients with inadequately
controlled PV as determined by hydroxycarbamide (HC) use, splenomegaly and
venesection requirements have a significantly higher symptom score measured by
the MPN-SAF (Geyer, Scherber et al. 2016). Frequent need for concurrent
venesection may indicate need for dose alteration and or change of treatment.

Haematocrit target

The target for Hct control in PV was originally based on data from assessment of
numbers of vascular events at different Hct levels and it was estimated that a target
below 0.45 should be maintained (Pearson and Wetherley-Mein 1978). This target
has now been validated in a randomised clinical trial by the investigators of the
CYTO-PV group who assessed the impact of stringent Hct reduction to <0.45
compared with a more liberal target range of 0.45-0.50. Patients with a Hct target of
< 0.45 had a significantly lower rate of cardiovascular death and major thrombosis
than those with a target of 0.45-0.50 (Marchioli, Finazzi et al. 2013). It was noted
that the median WBC was significantly lower in the low Hct group, which may have
been related to variation in the use of cytoreductive therapy between the groups. The
impact of this parameter on the difference in outcome between the groups has been
debated (McMullin, Harrison et al. 2013).

The European LeukemiaNet (ELN) has by consensus recommended response
criteria for PV. There is, however, little evidence that stringent achievement of these
contributes to improved outcomes apart from the Hct target. These are a valuable
set of measures to assess treatment outcome with consistency across clinical trials but are not as useful in clinical practice (Barosi, Tefferi et al. 2015).

Platelet and leucocyte target

There is considerable published evidence that there is an association between increased WBC and thrombosis risk in PV (Barbui, Carobbio et al. 2009, Caramazza, Caracciolo et al. 2009) ((De Stefano, Za et al. 2010, Barbui, Masciulli et al. 2015) (Cerquozzi, Barraco et al. 2017). In contrast, one prospective study did not find such an association (Passamonti, Rumi et al. 2010). An analysis of long-term outcome of patients enrolled into the ECLAP study demonstrated that in patients with WBC >15 × 10^9/l there was increased incidence of thrombosis in comparison with those with WBC <10 × 10^9/l, largely related to an increase in myocardial infarction (Landolfi, Di Gennaro et al. 2007). In a retrospective study of PV to determine whether blood counts influenced the complication rate and survival, older age and elevated lactate dehydrogenase at diagnosis were found to be risk factors for vascular complications. When the vascular complication occurred, 41% of the patients with a complication had elevated WBC compared with 20% of patients without a complication (Enblom-Larsson, Girodon et al. 2017). The CYTO-PV study treatment arms which showed a lower thrombotic risk in those intensively managed to Hct <0.45 showed a comparatively lower WBC which may have contributed to the lower rate of thrombotic events (Marchioli, Finazzi et al. 2013) (McMullin, Harrison et al. 2013). There is no evidence from randomised trials to determine whether treatment targeted at reducing leucocyte count impacts on overall outcome and therefore no recommendation to target WBC as a treatment goal can be made. Indeed, no evidence for improved survival or lower thrombosis risk was seen in
patients achieving complete or partial response according to ELN criteria in an analysis of PV patients treated with HC whereas a better prognosis was seen when there was a white cell and platelet response (Alvarez-Larrán, Pereira et al. 2012).

There is evidence that at extremes of platelet count there is a risk for bleeding and haemorrhage which may necessitate cytoreductive treatment in those with high counts.

Allele burden reduction

There is currently no indication to monitor allele burden sequentially outside the clinical trial setting. Whilst many studies have used allele burden reduction to assess impact of treatment there is currently no clear clinical impact of this as a target. Allele burden over 50% may correlate with progression to myelofibrosis (Passamonti, Rumi et al. 2010) but there is no evidence that this alters outcome and no evidence that lowering allele burden alters outcome.

Bone marrow response

There is no indication that serial monitoring of bone marrow morphology or fibrosis grade is of value but this should be undertaken if there is suspected progression from blood counts or symptomatology.

Venesection

Randomised trial data supports venesection of 200 – 500 mls blood at intervals suitable for patient size/tolerability should be used to achieve and maintain Hct of <0.45 (Marchioli, Finazzi et al. 2013). In low risk patients this is usually adequate to maintain target Hct. Where frequent venesection is needed to achieve this target then an alternative approach using a cytoreductive agent may need to be considered. High levels of venesection requirement have been reported to have an
association with higher thrombosis risk in patients on HC, specifically in those
patients requiring 3 or more venesections per year (Alvarez-Larrán, Pérez-Encinas
et al. 2017).

No study has explicitly defined a gender difference in Hct target. A different target
Hct in males and females is not recommended

Iron deficiency may result from venesection. Whilst generally this is asymptomatic,
restless legs, concentration problems, impaired cognitive function, dizziness, fatigue,
headaches and inactivity and other symptoms may warrant a different treatment
approach. Iron administration must be undertaken with extreme caution and with
close supervision and monitoring of blood counts. Severe symptoms may warrant an
alternative approach such as cytoreductive therapy.

Aspirin

The value of low-dose aspirin in patients with PV was demonstrated in the ECLAP
study. In this double blind, placebo-controlled randomised trial those randomised to
aspirin 100 mg daily had significantly fewer vascular events at 3 years compared to
placebo. There was a 60% decrease in the risk of the combined primary end-point
which was of thrombotic events and death from cardiovascular causes. Major
bleeding events were not significantly increased (Landolfi, Marchioli et al. 2004).

Cytoreductive therapy

High-risk patients should be considered for cytoreductive therapy. Low-risk patients
who may benefit from cytoreduction include those with progressive splenomegaly,
progressive leucocytosis (e.g. WBC >15 x 10⁹/l) thrombocytosis (e.g. platelets >1500
x 10⁹/l) and poor tolerance of venesection.
Hydroxycarbamide

Hydroxycarbamide is a cytoreductive agent, a non-alkylating antimetabolite which acts through inhibition of ribonucleotide reductase thereby regulating the rate of DNA synthesis. HC has a dose-dependent effect and needs to be individually titrated to achieve optimal count control. The efficacy of HC in controlling blood counts and preventing thrombosis has been extrapolated from the evidence in ET (Cortelazzo, Finazzi et al. 1995) and HC has been used in the management of PV. A recent retrospective study of PV demonstrated that patients treated with HC experienced significantly fewer vascular complications (11%) than patients treated with venesection only with a survival advantage for patients treated with HC when adjusted for variables supporting the use of this agent in first-line treatment (Enblom-Larsson, Girodon et al. 2017).

Side effects

HC is generally well tolerated. Macrocytosis is expected. Myelosuppression is seen in some patients. Mucocutaneous side effects occur including ulceration in perimalleolar areas, oral aphthous ulceration, actinic keratosis, squamous cell cancer and other skin lesions. Gastrointestinal side effects have been reported.

Leukaemogenic risk and risk of secondary malignancy

There has been much debate and concern over the potential leukaemogenic risk of treatments used for PV and also the potential for secondary malignancies. The natural history of PV is that a proportion of patients will experience progression to acute leukaemia and myelofibrosis. There is currently no conclusive evidence that this risk is exacerbated by the use of HC alone. A recent large study European ET trial, the EXELS study compared anagrelide treated patient versus those treated with
other cytoreductive therapies and found there was a higher incidence of leukaemia and increased incidence of other cancers in those treated with other cytoreductive therapies including HC alone (Besses, Kiladjian et al. 2013) (Birgegård, Besses et al. 2018). A Swedish population-based study with a nationwide MPN cohort, identified those who developed AML/myelodysplastic (MDS) and matched controls, retrospective case record analysis was undertaken. Whilst the risk of AML/MDS was increased in patients exposed to high doses of 32P and alkylators or 2 or more cytoreductive agents, this was not seen in those patients treated exclusively with HC (Björkholm, Derolf et al. 2011). A long-term assessment from the ECLAP study showed no increased MDS/AML in those treated with HC alone (Finazzi, Caruso et al. 2005) and a retrospective analysis showed no association between HC or busulfan and AML (Tefferi, Rumi et al. 2013).

A higher incidence of second malignancies has been seen in a small cohort of patients treated with HC compared to interferon (INF) alone (Hansen, Sørensen et al. 2017), particularly non-melanoma skin cancers, and this has been seen in population-based studies with increased risk of non-melanotic skin cancer in patients treated with HC, especially in older patients of male sex (Gómez, Guillem et al. 2016). Another study looked at treatment characteristics of a large number of patients with ET, diagnosed and followed during a 30-year period. The different therapies administered, comprising HC and alkylating agents, did not appear to have any impact on the development of secondary malignancy with a similar rate of secondary malignancies in untreated patients. Male gender and age >60 years were the only factors that were correlated with higher risk (Santoro, Sperduti et al. 2017).

HC is recommended as a first line cytoreductive treatment option for all patients for whom this is required. The risk benefit profiles need to be discussed with patients.
HC is not safe in pregnancy and it is recommended that it be stopped 3 months prior to intended conception. Adequate contraception should be used by patients receiving this medication.

Hydroxycarbamide intolerance and resistance

There has been an attempt to define the criteria to suggest failure of HC as first line therapy for PV. The ELN have by consensus suggested a unified definition of resistance to intolerance or hydroxycarbamide. This classification identifies a group of patients who have a poorer prognosis who may require or benefit from a change of treatment (Barosi, Birgegard et al. 2010) (Table IV). In retrospective studies resistance is associated with worse survival, with development of anaemia or cytopenias identifying a group with poorer outcome (Alvarez-Larrán, Pereira et al. 2012, Alvarez-Larrán, Pérez-Encinas et al. 2017).

Interferons

Numerous single centre studies have observed that interferon-α (IFN-α) can be successfully to normalise blood counts, reduce splenomegaly and prevent thrombosis in PV (Silver 2006) It is also effective in many patients in reducing pruritus (Taylor, Dolan et al. 1996). This agent is of particular interest due to its anti-clonal activity as demonstrated by molecular (as assessed by mutation burden of *JAK2 V617F*) and histological remissions (Larsen, Møller et al. 2009) (Stauffer Larsen, Iversen et al. 2013). No leukaemogenic effect has been identified. However, side effects often limit use and most commonly include flu-like symptoms and mood changes. In a minority of patients, endocrine and autoimmune disorders also occur warranting regular monitoring of thyroid function and additional investigations where
indicated. Treatment with IFN-α is usually continuous but occasionally it can be stopped for prolonged periods of time.

Longer acting pegylated IFN-α-2a (PEG-α-2a) requires less frequent administration and is generally better tolerated. Two Phase II studies of PEG-α-2a demonstrated complete responses of 70-95% as well as complete molecular remissions of 14–24% with treatment discontinuation due to side-effects observed in 8-10% of patients only (Kiladjian, Cassinat et al. 2006) (Quintás-Cardama, Kantarjian et al. 2009) Comparable results have been noted in single-centre studies (Crisà, Cerrano et al. 2017, Gowin, Jain et al. 2017) A Phase III study of PEG-α-2a versus HC as first-line treatment for high-risk PV is underway and interim analysis shows no significant advantage for PEG-α-2a over HC (Mascarenhas, Prchal et al. 2016).

Pegylated interferon-α-2b (PEG-α-2b) has also been assessed in two studies which included PV patients and whilst it has been shown to be effective in controlling disease, clinical use has been limited by high discontinuation rates due to side effects (Samuelsson, Hasselbalch et al. 2006) (Jabbour, Kantarjian et al. 2007). Recently, interim analysis from a phase III study of proline-PEG-α-2b (Ropeginterferon) has demonstrated complete haematological responses in 71% of PV patients, sustained reductions in mutation burden of JAK2 V617F, good tolerability and confirmed non-inferiority (or no significant advantage) to HC as first line treatment for patients with high risk PV (Gisslinger, Klade et al. 2017).

Ruxolitinib

Following early studies of the JAK1 and 2 inhibitor ruxolitinib in MF this agent was
tested in PV and ET, in patients resistant or intolerant to HC. The majority of PV patients became phlebotomy-independent and had an improvement in symptoms and splenomegaly (>50%) (Verstovsek, Passamonti et al. 2014).

Following this a phase III trial RESPONSE evaluated the efficacy and safety of ruxolitinib in a specific subgroup of PV patients who were both refractory to, or intolerant of HC and who required ongoing phlebotomy and had splenomegaly (Vannucchi 2015). Patients were randomized between ruxolitinib and best available therapy (BAT), which could include any therapy, and crossover was permitted. Patients on ruxolitinib achieved good Hct control and spleen response, although only 21% of patients achieved both. Improvements in disease-related symptoms were described. Anaemia and thrombocytopenia were the main haematological adverse events. Herpes zoster infection was described in patients on ruxolitinib. Non-melanoma skin cancer was reported in both arms. Thromboembolic events were more frequent on BAT arm but this was not a pre-determined outcome. Data published from this study also suggested that molecular responses can occur perhaps to the same extent as with interferon (Pieri, Pancrazzi et al. 2015, Vannucchi, Verstovsek et al. 2017) and that even profoundly iron deficient patients can normalise their iron parameters with ruxolitinib therapy (Verstovsek, Harrison et al. 2017). Disease transformation occurred and there is no information to suggest that ruxolitinib therapy impacts these events.

However, the RESPONSE study had some inherent bias: first, the population of the study is highly selected as they had to be venesection-dependent. Second, patients on the BAT arm were allowed to receive HC and many did so reflecting the lack of therapy options in this setting. Finally, as patients received other treatments before ruxolitinib and crossed between the treatment arms it is difficult to establish if the
events such as skin cancer, or disease transformation could be an effect of the
ruxolitinib or occur as an accumulative effect of other cytoreductive therapies.

Following RESPONSE, a second randomized open label phase 3b study
(RESPONSE-2) was developed to determinate the efficacy of ruxolitinib versus BAT
in a similar population of PV patients as RESPONSE but the patients were not
required to have splenomegaly (Passamonti, Griesshammer et al. 2017). Here
ruxolitinib showed good responses in controlling Hct and PV-related symptoms.
However, the follow-up for the study is short, the majority of patients had received
HC previously and HC was part of BAT options.

RELIEF was a randomized study focusing on PV-related symptoms for patients on a
stable dose of HC (Mesa, Vannucchi et al. 2017) with crossover to ruxolitinib allowed
after week 16. The primary endpoint, the percentage of patients with ≥50% reduction
in symptoms, was seen in significantly more patients in the ruxolitinib arm. A
statistically significant reduction in itching was also noted in the ruxolitinib. This study
was perhaps underpowered but showed that ruxolitinib improves symptoms in
patients with controlled PV.

The evidence from these trials suggests ruxolitinib has a role in the treatment of HC-
resistant or intolerant PV.

Other treatments

There are several cytotoxic agents that are effective in controlling blood counts but
which have been associated with increased rates of leukaemic transformation.

Busulfan, a cell cycle non-specific alkylating agent, has such an association.

However, retrospective studies show that it is an effective therapy for MPNs (Begna,
Abdelatif et al. 2016) although an actuarial probability of leukaemia transformation of
10% at 3 years was reported in one study (Alvarez-Larrán, Martínez-Avilés et al. 2014). Busulfan is useful in treating PV in those with limited life expectancy. It can be given in dosing regimens of 2 – 4 mg daily until counts are controlled but patients need to be seen frequently to check for neutropenia or thrombocytopenia so that treatment can be interrupted. An alternative regimen is pulsed single 25 – 50 mg doses at intervals of approximately 6 weeks.

32P is has a leukaemogenic potential but a single intravenous dose can be effective for long term control. One retrospective study showed its efficacy with remission rates of 90% (Lawless, McMullin et al. 2016). Doses can be repeated if the response is lost but the leukaemogenic risk increases with the cumulative exposure. 32P is a suitable treatment for those with limited life expectancy who are self-caring (so that there is no risk for carers).

Pipobroman a bromide derivative of piperazine similar to alkylating agents has been compared to HC in randomised trials and shown to be effective but has continuing leukaemogenic potential (Kiladjian, Chevret et al. 2011) and therefore should only be used in those with limited life expectancy.

Anagrelide, a megakaryocyte differentiation inhibitor, is licensed as second line therapy in ET. Retrospective reports of anagrelide used in combination with HC in PV have shown that it is effective at lowering the platelet count and it may be useful in combination when an elevated platelet count is an issue (Ahn, Natelson et al. 2013).

A number of other agents have been used for cytoreduction in PV with varying efficacy. A small study investigated the use of imatinib. The complete response rate
was 30% with frequent side effects. This has not been studied further and is not recommended for the treatment of PV (Silver, Bourla et al. 2012).

Histone-deacetylase inhibitors (HDACi) inhibit proliferation of cells with a JAK2 V617F mutation. Two HDACis have been tested in PV in phase 2 trials. Vorinostat in a trial of PV and ET achieved a response rate of 35% but with a very high drop-out rate because of adverse events (Andersen, McMullin et al. 2013). Givinostat was assessed in a phase 2 study of PV unresponsive to HC monotherapy with response rates in the order of 50% and with high rates of improvement in pruritus (Finazzi, Vannucchi et al. 2013). HDACis need to be assessed further in trials before they can be recommended for clinical use.

Following evaluation of all recent evidence it is recommended that all patients including those stratified as low-risk should be venesected to a Hct target of 0.45 and given low dose aspirin if there are no specific contraindications. High-risk patients should be treated with cytoreductive therapy in addition. However, low-risk patients with any of the criteria listed below, may also need to be considered for cytoreductive therapy.

RECOMMENDATIONS: Management options for ALL PV including low-risk patients

- Target haematocrit of <0.45 in all patients (GRADE 1A)
- Low dose aspirin (75 – 100 mg) in all patients (GRADE 1A)
- Targeted intervention to reduce cardiovascular risk factors
Consider cytoreductive therapy in low-risk patients with:

- History of treated arterial hypertension, ischaemia heart disease or diabetes mellitus
- Persistent leucocytosis (e.g. WBC $>15 \times 10^9/l$)
- Uncontrolled haematocrit (or poor tolerability of venesection)
- Extreme / progressive thrombocytosis (e.g. $>1500 \times 10^9/l$) and/or haemorrhagic symptoms
- Progressive / symptomatic splenomegaly
- Uncontrolled or progressive disease-related symptoms e.g. weight loss, sweats

(GRADE 1B)

Recommendations: Management options in high-risk patients

- First Line: hydroxycarbamide or interferon (preferably pegylated interferon)
- Second line: In patients treated with hydroxycarbamide 1st line interferon as second line treatment or where treated with interferon 1st line recommend hydroxycarbamide as second line treatment
- Consider pegylated interferon as second line in those patients who have had non-pegylated interferon 1st line and could not tolerate it
- Ruxolitinib 2nd /3rd line in HC resistant or intolerant

(GRADE 1A)

Third-line or further treatment options
• Busulfan or 32P or pipobroman in those with limited life expectancy (GRADE 1B).

• Anagrelide in combination with hydroxycarbamide may be helpful in those where platelet control is difficult (GRADE 2C)

Acknowledgements

The authors would like to the BSH task forces and the BSH sounding boards for their support in preparing this guideline. They also wish to thank Jacky Wilson for help in undertaking the initial literature review. All authors reviewed the literature search, formulated and agreed guidance and contributed to drafting writing and editing of the manuscript.

Declaration of Interest

The BSH paid the expenses incurred during the writing of this guidance. All authors have made a declaration of interests to the BSH and Task Force Chairs which may be reviewed on request.

References

Verstovsek, G. Tognoni and T. Barbui (2015). "Clinical end points for drug treatment trials in BCR-

Griesshammer, C. Harrison, R. Hehlmann, S. Hermouet, J. J. Kiladjian, N. Kröger, R. Mesa, M. F. Mc

Barosi, G., A. Tefferi, C. Besses, G. Birgegard, F. Cervantes, G. Finazzi, H. Gisslinger, M.

Andersen, C. L., M. F. McMullin, E. Ejerblad, S. Zweegman, C. Burgaleta, V. Vicente

Angona, A., A. Alvarez-Larrán, C. Morales-Indianio, F. García-Pallarols, L. Martínez-Avilés, A.

Ancochea, A., A. Alvarez-Larrán, C. Morales-Indianio, F. García-Pallarols, L. Martínez-Avilés, A.

Angona, A. Senin, B. Bellosillo and C. Besses (2014). "The role of serum erythropoietin level and JAK2

Andersen, C. L., M. F. McMullin, E. Ejerblad, S. Zweegman, C. Harrison, S. Fernandes, D. Bareford, S.

"A phase II study of vorinostat (MK-0683) in patients with polycythemia vera and essential

thrombocythaemia and polycythemia vera: is leukocytosis a causative factor?" Blood 114(4): 759-763.

Vannucchi, L. Pieri, G. Rotunno, H. Gisslinger, B. Gisslinger, L. Müllauer, G. Finazzi, A. Carobbio, A.

reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome." Blood 119(10): 2239-

2241.

Barbui, T., A. M. Vannucchi, A. Carobbio, E. Rumi, G. Finazzi, H. Gisslinger, M. Ruggieri, M. L. Randi,

E5-E6.

Barosi, G., G. Birgegard, G. Finazzi, M. Grieshammer, C. Harrison, H. Hasselbalch, J. J. Kiladjian, E.

Lengfelder, R. Mesa, M. F. Mc Mullin, F. Passamonti, J. T. Reilly, A. M. Vannucchi and T. Barbui

(2010). "A unified definition of clinical resistance and intolerance to hydroxyurea in

polycthæmia vera and primary myelofibrosis: results of a European LeukemiaNet (ELN) consensus

Barosi, G., A. Tefferi, C. Besses, G. Birgegard, F. Cervantes, G. Finazzi, H. Gisslinger, M.

Grieshammer, C. Harrison, R. Hehlmann, S. Hermouet, J. J. Kiladjian, N. Kröger, R. Mesa, M. F. Mc

Verstovsek, G. Tognoni and T. Barbui (2015). "Clinical end points for drug treatment trials in BCR-

Larsen, T. S., M. B. Møller, K. de Stricker, P. Nørgaard, J. Samuelsson, C. Marcher, M. T. Andersen, O.
2 W. Bjerrum and H. C. Hasselbalch (2009). "Minimal residual disease and normalization of the bone
3 marrow after long-term treatment with alpha-interferon2b in polycythemia vera. A report on
4 molecular response patterns in seven patients in sustained complete hematological remission."
6 Lawless, S., M. F. McMullin, R. Cuthbert and R. Houston (2016). "(32)P in the treatment of
8 Madelung, A. B., H. Bondo, I. Stamp, P. Loevgreen, S. L. Nielsen, A. Falensteen, H. Knudsen, M.
9 Ehinger, R. Dahl-Sørensen, N. B. Mortensen, K. D. Svendsen, T. Lange, E. Ralfkiaer, K. Nielsen, H. C.
10 Hasselbalch and J. Thiele (2013). "World Health Organization-defined classification of
11 myeloproliferative neoplasms: morphological reproducibility and clinical correlations--the Danish
13 Marchioli, R., G. Finazzi, R. Landolfi, J. Kutti, H. Gisslinger, C. Patrono, R. Marilus, A. Villegas, G.
14 Tognoni and T. Barbui (2005). "Vascular and neoplastic risk in a large cohort of patients with
16 Marchioli, R., G. Finazzi, G. Specchia, R. Cacciola, R. Cavazzina, D. Cilloni, V. De Stefano, E. Elli, A.
17 Iurlo, R. Latagliata, F. Lunghi, M. Lunghi, R. M. Marfisi, P. Musto, A. Masciulli, C. Musolino, N.
18 Cascavilla, G. Quarta, M. L. Randi, D. Raperzi, M. Ruggeri, E. Rumi, A. R. Scortechini, S. Santini, M.
19 Scarano, S. Siragusa, A. Spadea, A. Tieghi, E. Angelucci, G. Visani, A. M. Vannucchi, T. Barbui and C.-P.
22 Mascarenhas, J., J. Prchal, A. Rambaldi, R. Messi, D. Berenson, A. Yacoub, C. Harrison, M. McMullin,
23 A. Vannucchi, J. Ewing, C. O'Connell, J. Kiladjian, A. Mead, E. Winton, D. Leibowitz, V. De Stefano, M.
24 Arcasoy, C. Kessler, R. Catchatorian, D. Rondelli, R. Silver, E. Ritchie, A. Nagler, M. Kremyanskaya, R.
27 J. Interim analysis of the myeloproliferative disorders research consortium (MPD-RC) 112 global
28 phase III trial of front line pegylated interferon alpha-2a vs. hydroxyurea in high risk polycythemia
29 vera and essential thrombocythemia, Blood. 128.
30 McMullin, M. F., D. Bareford, P. Campbell, A. R. Green, C. Harrison, B. Hunt, D. Oscier, M. I. Polkey, J.
32 (2005). "Guidelines for the diagnosis, investigation and management of
36 McMullin, M. F., J. T. Reilly, P. Campbell, D. Bareford, A. R. Green, C. N. Harrison, E. Conneally, K.
38 "Amendment to the guideline for diagnosis and investigation of polycythemia/erythrocytosis." Br J
41 Byrne, Y. Hasan, F. Passamonti, S. Verstovsek, D. Hunter, M. M. Jones, H. Zhen, D. Habr and B.
42 Martino (2017). "The efficacy and safety of continued hydroxyurea treatment versus switching to
43 ruxolitinib in patients with polycythemia vera: a randomized, double-blind, double-dummy,
44 symptom study (RELIef)." Br J Haematol 176(1): 76-85.
45 Passamonti, F., C. Elena, S. Schnitter, R. C. Skoda, A. R. Green, F. Girodon, J. J. Kiladjian, M. F.
48 of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations." Blood 117(10): 2813-
49 2816.
51 Vannucchi, S. Sivgin, C. Bensasson, M. Khan, N. Mounedji and G. Saydam (2017). "Ruxolitinib for the

