Catalytic removal of 1,2-dichloroethane over LaSrMnCoO$_6$/H-ZSM-5 composite: insights into synergistic effect and pollutant-destruction mechanism†

Mingjiao Tian, a Mudi Ma, a Bitao Xu, a Changwei Chen, a Chi He, b, ab Zhengping Hao c and Reem Albilali d

La$_x$Sr$_{2-x}$MnCoO$_6$ materials with different Sr contents were prepared by a coprecipitation method, with LaSrMnCoO$_6$ found to be the best catalyst for 1,2-dichloroethane (DCE) destruction (T$_{90} = 509 \degree$ C). As such, a series of LaSrMnCoO$_6$/H-ZSM-5 composite materials were rationally synthesized to further improve the catalytic activity of LaSrMnCoO$_6$. As expected, the introduction of H-ZSM-5 could remarkably enlarge the surface area, increase the number of Lewis acid sites, and enhance the mobility of the surface adsorbed oxygen species, which consequently improved the catalytic activity of LaSrMnCoO$_6$. Among all the composite materials, 10 wt% LaSrMnCoO$_6$/H-ZSM-5 possessed the highest catalytic activity, with 90% of 1,2-DCE destructed at 337 °C, which is a temperature reduction of more than 70 °C and 170 °C compared with that of H-ZSM-5 (T$_{90} = 411$ °C) and LaSrMnCoO$_6$ (T$_{90} = 509$ °C), respectively. Online product analysis revealed that CO$_2$, CO, HCl, and Cl$_2$ were the primary products in the oxidation of 1,2-DCE, while several unfavorable reaction by-products, such as vinyl chloride, 1,1,2-trichloroethane, trichloroethylene, perchloroethylene, and acetaldehyde, were also formed via dechlorination and dehydrochlorination processes. Based on the above results, the reaction path and mechanism of 1,2-DCE decomposition are proposed.

1. Introduction

Volatile organic compounds (VOCs), regarded as a class of important pollutants, have attracted significant attention from researchers. Among these, chlorinated volatile organic compounds (CVOCs) are especially considered as main contributors to air pollution owing to their high toxicity, excellent stability, and low biodegradability. 1,2 Therefore, the effective elimination of CVOCs is of great significance for air pollution control. Various control methods, such as absorption/adsorption, catalytic combustion, plasma, pyrolysis, and the catalytic chemical vapor deposition of VOCs, have been exploited to solve this problem, among which catalytic combustion is recognized as one of the most promising technologies for CVOC removal, ascribed to its low operating temperature, high activity and selectivity, and recoverable heat.9

To date, researchers have focused on a large number of materials for the catalytic combustion of CVOCs, including noble-metal-supported catalysts, transition-metal-oxide-based catalysts and molecular-sieve catalysts (H-zeolite).2,10,11 Noble-metal-supported catalysts possess satisfactory catalytic activity at low temperature, but their practical applications are greatly limited by their high cost, inferior thermal stability, and low resistance to poisoning, especially in the case of CVOCs destruction.12 Transition-metal-oxide-based catalysts are considered to be the most favorable materials in the oxidation of CVOCs due to their high catalytic activity and excellent resistance to chlorine poisoning and coking.2 Gonzalez-Prior et al. revealed that Co-metal-based catalysts are one type of efficient materials in the oxidation of 1,2-dichloroethane, and they proposed that the high content of surface oxygen species and good mobility of oxygen species through the
in amount of NaOH (1 M) solution was added to the above solution (until the pH reached 13.0) and stirring was maintained for 16 h. The obtained precipitate was washed with distilled water and anhydrous ethanol three times, and the obtained powder was dried at 60 °C for 3 h. The resulting black powder was calcined at 500 °C for 3 h. In this work, double-perovskite La$_{x}$Sr$_{2-x}$MnCoO$_{6}$ materials with different Sr contents were prepared by the coprecipitation method, and LaSrMnCoO$_{6}$/H-ZSM-5 (LSMC/Z) catalysts with varied LaSrMnCoO$_{6}$ contents were further synthesized by the hydrothermal method using tetratetrapropylammonium hydroxide (TPAOH) as the structure-directing agent. The effects of the physicochemical properties of the synthesized materials on the catalytic activity, product selectivity, reaction mechanism, and reaction durability in 1,2-DCE destruction were investigated. The results indicated that the Sr content has an important influence on the catalytic activity of La$_{x}$Sr$_{2-x}$MnCoO$_{6}$ materials in the oxidation of 1,2-DCE, and that LaSrMnCoO$_{6}$ possesses a higher catalytic activity than that of La$_{2}$MnCoO$_{6}$, La$_{1.5}$Sr$_{0.5}$MnCoO$_{6}$, and La$_{0.5}$Sr$_{1.5}$MnCoO$_{6}$. We found that the LaSrMnCoO$_{6}$/H-ZSM-5 composite materials have much better 1,2-DCE decomposition performance compared with LaSrMnCoO$_{6}$ and H-ZSM-5 owing to their possessing large amounts of surface adsorbed oxygen species, a high Mn$^{4+}$/Mn$^{3+}$ ratio, excellent chlorine resistance, and 1,2-DCE adsorption capability.

2. Experimental

2.1. Catalyst preparation

Preparation of La$_{x}$Sr$_{2-x}$MnCoO$_{6}$. The double-perovskite materials were synthesized using the coprecipitation method. Typically, 2.17 g of cetyltrimethylammonium bromide (CTAB) was totally dissolved in 200 mL of deionized water, and then stoichiometric amounts of LaJNO$_{3}$$_{3}$-6H$_{2}$O (99.0%), SrJCH$_{3}COO_{2}$-0.5H$_{2}$O (99.0%), MnJCH$_{3}COO_{2}$-4H$_{2}$O (99.0%), and CoJNO$_{3}$$_{3}$-6H$_{2}$O (99.0%) were dissolved in the solution (nCTAB/metal precursor = 0.75), which was kept stirring for 1 h. Then, a certain amount of NaOH (1 M) solution was added into the above solution (until the pH reached 13.0) and stirring was maintained for 12 h. Subsequently, the obtained solution was transferred into a Teflon container and was hydrothermally reacted at 90 °C for 3 h. The obtained precipitate was washed with distilled water and anhydrous ethanol three times, and the obtained powder was dried at 60 °C for 6 h. Finally, the resulting black powder was calcined at 500 °C for 3 h (heating rate of 6 °C min$^{-1}$) and 1100 °C for 3 h (heating rate of 6 °C min$^{-1}$) continuously under an air atmosphere to obtain La$_{x}$Sr$_{2-x}$MnCoO$_{6}$.

Preparation of LaSrMnCoO$_{6}$/H-ZSM-5 and 10 wt% LaSrMnCoO$_{6}$+H-ZSM-5. LaSrMnCoO$_{6}$/H-ZSM-5 (Si/Al = 300) materials were prepared by the hydrothermal method using tetratetrapropylammonium hydroxide (TPAOH) as the structure-directing agent. Typically, NaOH (1.38 g) and TPAOH (11.7 g) were dissolved in 71 mL of deionized water under stirring. Then, 15.9 g of H$_{2}$SiO$_{3}$ was added into the mixture, with stirring maintained for 1 h at room temperature. The obtained solution was transferred into a 100 mL of Teflon-lined autoclave and heated at 100 °C for 16 h to obtain TPAOH–Si. After that, NaOH (0.88 g) and NaAlO$_{2}$ (0.202 g) were dissolved in 87.6 mL of deionized water, and then 11.3 g of H$_{2}$SiO$_{3}$ and 5 g of TPAOH–Si were added into the mixed solution under
stirring. Next, a certain amount of prepared LSMC (weight ra-tio of LSMC/SiO$_2$ = 0.1, 0.2, 0.3, or 0.5) was added into the mixed solution, which was stirred for 1 h and then sealed in a Teflon-lined autoclave and heated at 180 °C for 40 h. After cooling to room temperature, the precipitate was washed with deionized water and dried at 100 °C for 24 h. The obtained solid was then added into 0.1 M of NH$_4$NO$_3$ solu-tion for ion exchange under room temperature. Then, the precipitate was washed with deionized water and dried at 100 °C for 24 h. Finally, the resulting powder was calcined at 500 °C for 3 h (heating rate of 6 °C min$^{-1}$) under an air atmo-sphere to obtain the LaSrMnCoO$_6$/H-ZSM-5 materials, named as xLSMC/Z (x = 0.1, 0.2, 0.3, or 0.5). H-ZSM-5 material was prepared using the same synthetic route without the addition of LSMC. 10 wt% LaSrMnCoO$_6$ + H-ZSM-5 (0.1LSMC + Z, 10 wt% LaSrMnCoO$_6$ + 90 wt% H-ZSM-5) was prepared by a me-chanical mixing method.

2.2. Catalyst characterizations

X-ray diffraction (XRD) patterns were performed on an XPert Pro powder diffraction system using Cu Ka radiation ($\lambda = 0.15418$ nm) in the 2θ range of 10–80° with z scanning rate of 10° min$^{-1}$. Fourier transform infrared spectra (FT-IR) were recorded using a Bruker Tensor 37 spectrometer. Field-emission scanning electron microscopy (FE-SEM) images were obtained with a JEOL JSM-7800F microscope. High-resolution transmission electron microscopy (HR-TEM) was performed on an FEI Tecnai G2F30 microscope operating at an accelerating voltage of 300 kV. N$_2$ adsorption/desorption isotherms were conducted with an SSA microscop-ery (HR-TEM) images were obtained with a JEOL JSM-7800F microscope. High-resolution transmission electron microscopy (HR-TEM) was performed on an FEI Tecnai G2F30 microscope operating at an accelerating voltage of 300 kV. N$_2$ adsorption/desorption isotherms were conducted with an SSA-6000 gas sorption ana-lyzer at −196 °C to measure the BET surface areas of the samples.

The chemical compositions of the samples were deter-mined on a Kratos Axis Ultra DLD multifunctional X-ray photoelectron spectrometer (XPS). Binding energies (BE) were calibrated relative to the C 1s peak (284.8 eV) from adventitious carbon adsorbed on the surface of the samples. The temperature-programmed reduction of H$_2$ (H$_2$-TPR), temperature-programmed desorption of O$_2$ (O$_2$-TPD), temperature-programmed desorption of NH$_3$ (NH$_3$-TPD), and temperature-programmed desorption of 1,2-DCE (1,2-DCE-TPD) were performed on an automatic adsorption analyzer (TP-5080, Xianquan Co., China) equipped with a thermal con-dictivity detector (TCD). In a typical H$_2$-TPR experiment, the catalyst (100 mg) was pretreated at 400 °C for 30 min in the presence of N$_2$ with a flow of 40 mL min$^{-1}$ to remove the adsorbed CO$_2$ and H$_2$O before the H$_2$-TPR test. Then, the sample was further reduced under a 5 vol% H$_2$/Ar flow (30 mL min$^{-1}$) from 30 °C to 800 °C at a heating rate of 10 °C min$^{-1}$. Likewise, 100 mg of the sample was used in the O$_2$-TPD experiments. The sample was also pretreated in a N$_2$ flow (30 mL min$^{-1}$) at 400 °C for 30 min to remove the adsorbed CO$_2$ and H$_2$O. Next, the sample was treated in a 21 vol% O$_2$/N$_2$ flow at 35 °C for 30 min. Then, the sample was heated from 30 °C to 700 °C at a heating rate of 10 °C min$^{-1}$ in a pure N$_2$ stream. Also, 100 mg of the sample was used in the NH$_3$-TPD experiments (NH$_3$-TPD). Here, the sample was also pretreated in a N$_2$ flow (30 mL min$^{-1}$) at 300 °C for 30 min to remove the adsorbed CO$_2$ and H$_2$O. Next, the sample was treated in a 2.01 vol% N$_2$/NH$_3$ flow at 100 °C for 30 min. Then, the sample was heated from 100 °C to 800 °C at a heating rate of 10 °C min$^{-1}$ in a N$_2$ stream. Similarly, the temperature-programmed desorption of 1,2-DCE (1,2-DCE-TPD) was conducted the same as for the procedure for O$_2$-TPD with the automatic adsorption analyzer (1,2-DCE = 1000 ppm). Thermogravimetric analysis (TG) of the used catalysts was conducted on an HCT-2TGA/DSC-1 analyzer (Beijing Per-manent, China) from room temperature to 700 °C at a rate of 10 °C min$^{-1}$ under a continuous air flow of 50 mL min$^{-1}$.

2.3. Catalytic activity

The catalytic oxidation of 1,2-DCE was evaluated in a continu-ous flow quartz tube reactor (I.D. = 10 mm), in which the temperature was controlled by a K-type thermocouple placed in the catalyst bed. Here, 0.5 g of the sample (40–60 mesh) and 500 ppm of 1,2-DCE in a 400 mL min$^{-1}$ air stream (21 vol% O$_2$, N$_2$ balance) with a gas hourly space velocity (GHSV) of 48 000 mL g$^{-1}$ h$^{-1}$ were used in each test. The catalytic ac-ivities of La$_3$Sr$_2$-xMnCoO$_6$ and LSMC/Z were measured in the temperature range of 200–550 °C and 200–580 °C, re-spectively. The 1,2-DCE conversion was calculated by the differ-ence between the inlet and outlet 1,2-DCE concentrations. The reactants and reaction products were analyzed using an online gas chromatograph (GC9890) equipped with an electron capture detector (ECD) and flame ionization detector (FID), while a SHP8400PMS-L mass spectrometer (Sunny Hengping, China) equipped with a heated quartz inlet capil-lary was used to detect the gas phase species. The conversion of 1,2-DCE and the selectivity to CO, CO$_2$, HCl, and Cl$_2$ were calculated as follows:

\[
\text{DCE conversion} \% = \frac{1,2\text{-DCE in}}{1,2\text{-DCE in}} \times 100
\]

\[
\text{CO selectivity} \% = \frac{\text{CO}}{2\text{-DCE in, 2-DCE out}} \times 100
\]

\[
\text{CO}_2 \text{ selectivity} \% = \frac{\text{CO}_2}{2\text{-DCE in, 2-DCE out}} \times 100
\]

\[
\text{Cl}_2 \text{ selectivity} \% = \frac{\text{Cl}_2}{1,2\text{-DCE in, 2-DCE out}} \times 100
\]
where \([1,2\text{-DCE}]_{\text{in}}\) and \([1,2\text{-DCE}]_{\text{out}}\) are the inlet and outlet concentrations of 1,2-DCE, respectively, and \([\text{CO}], [\text{CO}_2], [\text{Cl}_2]\), and \([\text{HCl}]\) are the outlet concentrations of CO, CO\(_2\), Cl\(_2\), and HCl, respectively.

3. Results and discussion

3.1. Catalytic performance

The catalytic activities of the synthesized materials in the oxidation of 1,2-DCE are shown in Fig. 1. LaSrMnCoO\(_6\) (LSMC) presented the best activity with \(T_{50}\) and \(T_{90}\) (the temperatures for 50% and 90% conversion of 1,2-DCE, respectively) temper-atures of about 415 °C and 509 °C (Fig. 1A and Table S1†). Based on the \(T_{90}\) temperature, the catalytic activity of \(La_xSr_{2-x}MnCoO_6\) samples followed the sequence: LaSrMnCoO\(_6\) (499 °C) > La\(_2\)MnCoO\(_6\) (528 °C) > La\(_1.5\)Sr\(_{0.5}\)MnCoO\(_6\) (533 °C) > La\(_1.5\)Sr\(_1\)MnCoO\(_6\) (537 °C). It can be concluded that the appropriate substitution of La element by Sr in the A site can improve the activity of double-perovskite materials, as the substitution of La\(^{3+}\) by Sr\(^{2+}\) induces a positive charge on Mn\(^{3+}\) and Co\(^{2+}\). (which tend to be oxidized to Mn\(^{4+}\) and Co\(^{3+}\)), thereby enhancing the formation of anionic vacancies.\(^{17}\) LaSrMnCoO\(_6\)/H-ZSM-5 materials were further prepared with a target to improve the catalytic activity of LaSrMnCoO\(_6\). The light-off curves of 1,2-DCE oxidation over LSMC/Z and H-ZSM-5 are displayed in Fig. 1B. The activity of LSMC/Z, H-ZSM-5, and 0.1LSMC/Z for 1,2-DCE destruction decreased in the order: 0.1LSMC/Z (\(T_{90} = 337 °C\)) > 0.2LSMC/Z (\(T_{90} = 358 °C\)) > 0.3LSMC/Z (\(T_{90} = 370 °C\)) > 0.5LSMC/Z (\(T_{90} = 386 °C\)) > H-ZSM-5 (\(T_{90} = 411 °C\)) > 0.1LSMC + Z (\(T_{90} = 422 °C\)). Compared with LSMC and H-ZSM-5, it could be observed that the catalytic activity of LSMC/Z materials was obviously increased. However, the activity of LSMC/Z composites decreased significantly with increasing the LSMC content, owing to partial ag-gregation and the lower dispersion of the LSMC phase. As displayed in Fig. 1B, it can be seen that the 0.1LSMC + Z mate-rial has the lowest catalytic activity compared to the LSMC/Z and H-ZSM-5 materials, suggesting that the synergy effect be-

![Fig. 1 Light-off curves of 1,2-DCE oxidation over: (A) La\(_1.5\)Sr\(_1\)MnCoO\(_6\) and (B) LSMC/Z materials.](image)

3.2. By-products distribution and reaction path

The by-product type and distribution during 1,2-DCE decom-position over the prepared materials were studied, and the re-sults revealed that vinyl chloride (VC), 1,1,2-trichloroethane (1,1,2-TCA), trichloroethylene (TCE), perchloroethylene (PCE), and acetaldehyde (ACE) were the primary intermediates in the temperature range 200–500 °C. The by-product distribu-tions as a function of temperature are displayed in Fig. 3 and S2.† As shown in Fig. 3, the concentration of the chlorinated intermediates (1,1,2-TCA, TCE, and PCE) increases first with the increase in temperature and then decreases subsequently. The formation of ACE over the synthesized materials mainly occurred at 400–500 °C. It could be observed that the VC con-centration over the 0.1LSMC/Z catalyst reached the maximum value at around 200 °C, and the formed VC could then be to-tally oxidized at 500 °C (Fig. S2†). As shown in Fig. 3A, 1,1,2-TCA was first detected at about 200 °C and reached the...
Table 1 Physicochemical properties and catalytic performance of the synthesized catalysts

<table>
<thead>
<tr>
<th>Sample</th>
<th>S_{BET} (m2 g$^{-1}$)</th>
<th>D_{V} (cm3 g$^{-1}$)</th>
<th>D_p (nm)</th>
<th>T_{50} ($^\circ$C)</th>
<th>T_{90} ($^\circ$C)</th>
<th>$r_1 \times 10^{-8}$ (mmol g$^{-1}$ s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-ZSM-5</td>
<td>296.4</td>
<td>0.05</td>
<td>4.48</td>
<td>308</td>
<td>411</td>
<td>8.67</td>
</tr>
<tr>
<td>LSMC</td>
<td>11.0</td>
<td>0.12</td>
<td>53.6</td>
<td>415</td>
<td>509</td>
<td>3.23</td>
</tr>
<tr>
<td>0.1LSMC/Z</td>
<td>96.3</td>
<td>0.10</td>
<td>21.1</td>
<td>263</td>
<td>337</td>
<td>11.82</td>
</tr>
<tr>
<td>0.2LSMC/Z</td>
<td>100.3</td>
<td>0.10</td>
<td>13.7</td>
<td>270</td>
<td>358</td>
<td>11.37</td>
</tr>
<tr>
<td>0.3LSMC/Z</td>
<td>52.9</td>
<td>0.09</td>
<td>13.3</td>
<td>270</td>
<td>370</td>
<td>10.96</td>
</tr>
<tr>
<td>0.5LSMC/Z</td>
<td>35.9</td>
<td>0.07</td>
<td>16.1</td>
<td>287</td>
<td>386</td>
<td>9.97</td>
</tr>
</tbody>
</table>

Note:

- a BET surface area calculated at $P/P_0 = 0.05–0.25$.
- b Total pore volume estimated at $P/P_0 = 0.99$.
- c BJH pore diameter calculated from the adsorption branch.
- d Temperatures at which 50% and 90% conversion of 1,2-DCE are achieved.
- e 1,2-DCE reaction rate gained at 337 °C.

Fig. 2 (A) CO, CO$_2$, HCl, and Cl$_2$ distribution over synthesized La$_{1-x}$Sr$_x$MnCoO$_6$ catalysts at 580 °C; (B) selectivity of CO, CO$_2$, HCl, and Cl$_2$ over 0.1LSMC/Z; (C) CO and CO$_2$ selectivity of LSMC/Z at 500 °C.

maximum value at 400 °C due to the electrophilic addition reaction between VC and the electrophilic reagent HCl. Simultaneously, the formed 1,1,2-TCA further takes place in de-chlorination and/or a substitution reaction in the oxidation process (especially when the reaction temperature is higher than 350 °C), forming other chlorinated by-products. The concentration of 1,1,2-TCA over the prepared materials followed the order: 0.5LSMC/Z (226 ppm) > 0.3LSMC/Z (219 ppm) > 0.2LSMC/Z (98 ppm) > H-ZSM-5 (64 ppm) > 0.1LSMC/Z (25 ppm), indicating that the synergistic effect between LSMC and H-ZSM-5 could enhance the catalytic activity of LSMC and H-ZSM-5 and inhibit the formation of by-products in 1,2-DCE decomposition. Fig. 3B and C reveal that a certain amount of TCE and PCE was further formed through the decomposition of 1,1,2-TCA (300–400 °C) and by the dehydrochlorination of TCE (400–450 °C), respectively. ACE is one of the most common by-products in the oxidation of CVOCs over H-ZSM-5.26 In our work, ACE could also be detected over the LSMC/Z and H-ZSM-5 materials when the reaction temperature was higher than 400 °C, as shown in Fig. 3D. It could be observed that the 0.1LSMC/Z catalyst possessed the lowest ACE concentration, and the concentration of ACE over the LSMC/Z materials increased with the increasing weight ratio of LSMC.

The proposed oxidation routes for 1,2-DCE based on the above results are displayed in Scheme 1. Here, C–Cl with a lower bond energy (328 KJ mol$^{-1}$) than that of C–C (332 KJ mol$^{-1}$) is easier attacked in the oxidation process. Therefore,

Fig. 3 The 1,1,2-trichloroethane (A), trichloroethylene (B), perchloroethylene (C), and acetaldehyde (D) distribution at the temperature range of 160–500 °C.

Scheme 1 The proposed mechanism for 1,2-DCE oxidation over LSMC/Z materials.
the cleavage of C–Cl is the key step in the oxidation of 1,2-DCE. As shown in Scheme 1, the formation of ACE is probably ascribed to the partial dechlorination of VC or 1,2-DCE, which results from the attack of oxygen species and the formation of carbonyl species. Afterwards, the following oxygen attack results in the yield of CHCl2CHO or acetic acid, which was not detected in the oxidation process due to its higher generation temperature or due to their relatively low concentration. Additionally, C–Cl bond cleavage can promote the formation of 1,1,2-TCA. The next dehydrochlorination and decomposition of 1,1,2-TCA would facilitate the formation of TCE and PCE. Finally, the chlorinated by-products are almost oxidized to CO, CO2, HCl, and Cl2 by the chemically adsorbed oxygen species (O2− and O−) at about 500 °C.

3.3. Catalytic stability and coke formation

The catalytic stability of the typical used materials (0.1LSMC, H-ZSM-5, and LSMC) in the oxidation of 1,2-DCE were studied, as displayed in Fig. 4. It could be observed that LSMC performed with good stability at 500 °C, due to the excellent structure stability of the double-perovskite-type oxide. The conversion of 1,2-DCE over H-ZSM-5 reduced gradually from the beginning of the reaction up to 267 min, and an obvious reduction of 1,2-DCE conversion (from 90% to 63%) could be observed when the reaction time was increased further, indicating that coke formation and chlorine species attack cause the deactivation of H-ZSM-5.27 The catalytic stability of 0.1LSMC/Z was much better than that of H-ZSM-5, over which no obvious reduction of 1,2-DCE conversion could be found within 517 min and the final conversion of 1,2-DCE could be maintained at around 80%, suggesting that LSMC, with its excellent structural stability, could enhance the chlorine resistance and inhibit carbon deposition over the LSMC/Z materials.

TG/DTA was conducted to determine the amount of coke deposited on the used catalysts, as shown in Fig. 5. All the TG curves could be divided into three regions. The first stage in the temperature range of 30–200 °C could be assigned to the loss of molecular water, adsorbed water, and adsorbed or-ganisms.28,29 No obvious weight loss of the catalysts could be found in the second stage within the temperature range 200–

400 °C. Distinct exothermic processes could then be detected in the temperature range 400–700 °C (the third stage) due to the decomposition of carbon deposits.30 It could be observed that the weight ratio of the coke over the catalyst followed the order: 0.5LSMC/Z (0.58%) < 0.2LSMC/Z (1.77%) < 0.1LSMC/Z (2.61%) < 0.3LSMC/Z (4.12%). 0.5LSMC/Z showed the lowest amount of coke due to the superior carbon deposition resistance of the double perovskite, in good agreement with the stability test (Fig. 4). On the contrary, 0.3LSMC/Z showed the largest amount of coke deposits, while the amount of coke deposits over 0.2LSMC/Z and 0.1LSMC/Z were lower than that over 0.3LSMC/Z, attributed to their higher activity, indicating that 0.3LSMC/Z could be attacked more easily by the formation of coke.

3.4. Structural, morphological, and textural properties

The crystalline structure of the synthesized materials was characterized by XRD, as displayed in Fig. S1† and 6. As shown in Fig. S1†, the synthesized La0.5Sr2–xMnCoO6 catalysts showed typical diffraction peaks of double perovskites at 2θ of 23.0°, 32.8°, 36.7°, 40.5°, 46.8°, 58.6°, and 68.9°, illustrating...
the successful synthesis of double-perovskite-type oxides. All LSMC/Z catalysts possessed typical diffraction peaks of double perovskites, confirming that the LaSrMnCoO$_6$ phase was successfully formed and incorporated to H-ZSM-5 in the hydro-thermal method. It is worth noting that all the LMSC/Z mate-rials exhibited similar diffraction patterns to that of H-ZSM-5, suggesting that the introduction of LSMC had an insignificant effect on the structure of the H-ZSM-5 support.

FT-IR spectra of all the prepared materials are displayed in Fig. 7. It was found that all the LSMC/Z materials had sim-ilar structural features. The bands at 1232, 1100, 548, and 450 cm$^{-1}$ are the characteristic absorption peaks of H-ZSM-5.31 In particular, the band at 548 cm$^{-1}$ in the spectra of all the samples is related to the vibration of the five-membered oxygen rings of the H-ZSM-5 skeleton structure, while the de-crease of the peak intensity after the introduction of the LSCM phase indicates the loss of crystallinity, which is in agreement with the XRD results.32 The bands at 1100 and 800 cm$^{-1}$ are associated with the asymmetric and symmetric stretching vibrations of Si–O–Si, Si–O–Al or Al–O–Al, while the band at 450 cm$^{-1}$ is ascribed to the vibration of Si–O or Al–O in the SiO$_4$ and AlO$_4$ tetrahedrons.31,33 It could be also detected that the intensities of the bands at 1100, 800, and 450 cm$^{-1}$ were slightly decreased with the increase in LSMC loadings, which indicated that the addition of LSCM may weaken the vibration of the bonds in the skeleton structure of H-ZSM-5, which is in accordance with the XRD results (Fig. 6). The bands at 855 and 1465 cm$^{-1}$ were only detected in the spectra of LSCM/Z materials, which is respecti-vely related to the CO$_3^{2-}$ and C–H bending vibrations (Fig. 8).34,35

Fig. 8 shows the typical SEM images of the prepared samples. The H-ZSM-5 sample possessed a uniform hexagonal columnar crystal morphology with a length of ca. 1.5 μm, while a similar morphology could also be found over the 0.1LSMC/Z and 0.2LSMC/Z materials. However, the 0.3LSMC/Z and 0.5LSMC/Z samples showed an irregular morphology, which was different from that of H-ZSM-5, suggesting that higher loadings may cause a partial aggre-gation of the catalyst. The structures of the samples were further demonstrated by the TEM and STEM patterns, as

shown in Fig. 9. H-ZSM-5 (Fig. 9a and b) exhibited a hex-agonal columnar morphology, corresponding well to the SEM results (Fig. 8e and f). STEM-EDX was conducted to evaluate the integrated intensity of the elements of the materials. It could be distinctly observed that the Si and Al elements of H-ZSM-5 were dispersed homogeneously in the sample (Fig. 9c–e). The TEM of 0.1LSMC/Z displayed that LSMC was successfully loaded on the surface of H-ZSM-5 (Fig. 9f and g), and the crystalline interplanar
The textural properties of the prepared catalysts were determined by low-temperature nitrogen adsorption–desorption measurements. As shown in Fig. 10A, the samples exhibited a sharp increase at P/P₀ = 0–0.1, indicating the existence of large amounts of micropores.³⁰ Moreover, the amounts of micropores of the samples decreased with increasing the LSMC loading weight, indicating that the loading of LSMC influences the formation of micropores. The synthesized H-ZSM-5 displayed a type IV isotherm with a remarkable H₄-type hysteresis loop at P/P₀ = 0.4–0.9, which could be associated with the existence of mesopores.³⁶ Moreover, all the LSMC/Z materials exhibited type IV isotherms, while the hysteresis loops were much smaller than that of H-ZSM-5, indicating that the incorporation of the LSMC phase can also hinder the formation of mesopores. The textural properties of the synthesized catalysts are summarized in Table 1, which also shows that the BET surface areas of all the materials followed the order: H-ZSM-5 (296.4 m² g⁻¹) > 0.2LSMC/Z (100.3 m² g⁻¹) > 0.1LSMC/Z (96.3 m² g⁻¹) > 0.3LSMC/Z (52.9 m² g⁻¹) > 0.5LSMC/Z (35.9 m² g⁻¹). The 0.2LSMC/Z sample possessed the highest specific surface area within the series of LSMC/Z materials, attributed to the existence of lots of mesopores in the 0.2LSMC/Z material. The reduction of the BET surface area of the LSMC/Z materials can be ascribed to the negative effect of LSMC species on the porosity of H-ZSM-5 (which inhibits the formation of micro- and mesopores and blocks the pore channels).³²,³⁶ The pore size distribution curves of the prepared samples are depicted in Fig. 10B. It can be observed that all the catalysts have obvious peaks centered at 3.8 nm, illustrating the existence of a mesporous structure. The BJH pore diameters of all the materials are listed in Table 1, and it can be seen that the pore diameter is enlarged after loading LSMC due to the formation of stacking holes, which also corresponds to the results from N₂ adsorption–desorption at P/P₀ = 0.9–1.0 (Fig. 9).

3.5. Surface composition and element status

XPS was conducted to investigate the chemical state of the elements and the surface atomic concentration in the near-surface region of the synthesized catalysts. La 3d, Sr 3d, Mn 2p, Co 2p, and O 1s were analyzed with deconvolution by fitting a Gaussian–Lorentzian (GL) function with a Shirley background, as shown in Fig. 11. La 3d showed two doublets of peaks, corresponding to La 3d₅/₂ and La 3d₃/₂ associated with La⁵⁺ in the perovskite.³⁷ La 3d₅/₂ could be fitted into two peaks located at 834.7 and 837.7 eV, while two main peaks of La 3d₃/₂ occurred at 850.7 and 854.8 eV. The Sr 3d peaks located at 131.8 and 134.1 eV were related to Sr²⁺, while two binding energies (BEs) at 133.2 and 133.4 eV were associated with the presence of SrO.³⁸ The peaks at 133.7, 135.2, and 135.5 eV were attributed to SrCO₃.³⁹

The Co 2p XPS spectra of the samples exhibited two peaks at 779.7–780.2 and 795.1–795.9 eV, corresponding to Co 2p₃/₂ and Co 2p₁/₂, respectively. However, Co²⁺ and Co³⁺ in the Co 2p spectra are hard to distinguish due to the small differences in their binding energy values and peak shapes.⁴⁰ According to the literature, the binding energies of the 2p level of 779.7–780.2 eV with the difference between Co 2p₃/₂ and Co 2p₁/₂ of about 15.4–15.8 eV are ascribed to the octahedral Co³⁺ component of Co₃O₄ over the catalyst.⁴¹ Also, the binding energies of the 2p level of 795.1–795.9 eV correspond to the Co²⁺ of Co₃O₄ in the catalyst.⁴²

The XPS spectra of Mn 2p also displayed two distinct peaks, corresponding to Mn 2p₃/₂ and Mn 2p₁/₂ with a spin–

Fig. 10 (A) Nitrogen adsorption–desorption isotherms and (B) pore size distribution of all the catalysts.

Fig. 11 (A) La 3d, (B) Sr 3d (C) Mn 2p, (D) Co 2p, and (E) O 1s XPS spectra of typical catalysts.
Table 2 XPS results of Mn 2p, Co 2p, and O 1s

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn 2p3/2</th>
<th>O 1s</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mn$^{4+}$</td>
<td>Mn$^{3+}$</td>
</tr>
<tr>
<td>0.1LSMC/Z</td>
<td>643.3</td>
<td>642.0</td>
</tr>
<tr>
<td>0.5LSMC/Z</td>
<td>643.2</td>
<td>641.8</td>
</tr>
<tr>
<td>LSMC</td>
<td>643.0</td>
<td>641.4</td>
</tr>
</tbody>
</table>

Note: a O$_{(α)}$ represents adsorbed oxygen from the hydroxyl species and adsorbed water species. b O$_{(b)}$ represents surface adsorbed oxygen species. c O$_{(γ)}$ represents lattice oxygen.

The main spectra of Mn 2p3/2 could be divided into two peaks at around 641.4–641.7 and 643.0–644.1 eV, which were associated with the Mn$^{4+}$ and Mn$^{3+}$ of LSMC, respectively. After the curve-fitting analysis of Mn 2p3/2, the ratio between Mn$^{4+}$ and Mn$^{3+}$ species was calculated by their peak areas, as presented in Table 2. The ratio of Mn$^{4+}$/Mn$^{3+}$ over 0.1LSMC/Z (1.04) was higher than that of LSMC (0.96) and 0.5LSMC/Z (0.85), indicating that part of the Mn$^{3+}$ in the LSMC is converted to Mn$^{4+}$ in the synthesis process and that there is a larger amount of manganese vacancies in 0.1LSMC/Z.33,66

The O 1s spectra of LSMC showed three peaks with binding energies of 528.8, 531.3, and 533.1 eV, which were associated with the lattice oxygen (O$_{(α)}$), surface adsorbed oxi-gen species (physical adsorption oxygen (O$_{(b)}$), chemically adsorbed oxygen (O$_{(γ)}$), oxygen adsorbed on oxygen vacancies (O$_{(β)}$)), and the adsorbed oxygen from the hydroxyl species/adsorbed water species, respectively.3,47,48 The O 1s spectra of 0.1LSMC/Z and 0.5LSMC/Z just exhibited two peaks at 531.9–532.1 eV and 533.0 eV, suggesting that the concentration of lattice oxygen species over 0.1LSMC/Z and 0.5LSMC/Z is much lower than that of LSMC. The quantitative analysis of the O 1s spectra is listed in Table 2 in terms of O$_{(α)}$/O$_{(β)}$ (surface adsorbed oxygen species/total oxygen species). It can be found that the amounts of surface adsorbed oxygen over 0.1LSMC/Z (O$_{(α)}$/O$_{(β)}$ × O$_{(γ)}$ = 1.34) and 0.5LSMC/Z (O$_{(α)}$/O$_{(β)}$ × O$_{(γ)}$ = 1.25) are remarkably higher than that of LSMC (O$_{(α)}$/O$_{(β)}$ × O$_{(γ)}$ = 0.44). It is reported that a high concentration of surface adsorbed oxygen and metal ions with high oxidation states (such as Mn$^{4+}$ and Co$^{3+}$) over a catalyst are beneficial to its catalytic ability, and can play a key role in promoting the oxidation process.49

3.6. Reducibility, oxygen species, and acid properties

H$_2$-TPR experiments were conducted to investigate the reducibility of the synthesized materials, as displayed in Fig. 12A. All the prepared materials possessed two reduction peaks centered at a temperature range of 455–470 ºC and 620–649 ºC, while the 0.1LSMC/Z catalyst had a small low-temperature peak at around 225 ºC due to the reduction of surface chemically adsorbed oxygen species and the oxygen adsorbed at the oxygen vacancies.1 The peaks of the synthesized materials centered at the temperature range 455–470 ºC could be attributed to the reduction of MnOx (MnO$_2$ → Mn$_2$O$_3$ → Mn$_3$O$_4$) and CoO$_x$ (Co$_2$O$_4$ → CoO → Co0).50,51 And the peaks above 600 ºC could be attributed to the reduction of Mn$_3$O$_4$ (Mn$_3$O$_4$ → MnO) and CoO (CoO → Co0).52 The above reduction processes over the prepared materials can facilitate oxygen adsorption and promote electron transfer, and thus accelerate the 1,2-DCE oxidation rate.42

O$_2$-TPD has been proved to be a useful technology to distinguish the active oxygen species over catalysts, as shown in Fig. 12B. The active oxygen species can be divided into four types: physically adsorbed oxygen (O$_2$ (ads)), chemically adsorbed oxygen (O$_2^+$ (ads)), oxygen adsorbed species on vacancies (O$^-$ (ads)), and lattice oxygen (O$^{2-}$).47 It is reported that the adsorbed oxygen generally changes in the following procedures: O$_2$ (ads) → O$_2^+$ (ads) → O$^-$ (ads) → O$^{2-}$ (lattice).40 As shown in the O$_2$-TPD profiles, all the catalysts displayed two types of oxygen species with desorption temperatures around 60–77 ºC and 464–487 ºC. The first peak can be ascribed to the physically adsorbed oxygen (O$_2$) and chemically adsorbed oxygen (O$_2^+$) species.
The acid properties of the catalysts have a significant influence on the 1,2-DCE destruction process. In a typical oxidation process, 1,2-DCE is first adsorbed on the Lewis acid sites, resulting in the formation of the main by-products VC by dehydrochlorination because of the effect of active oxygen species over the catalysts. Then, the further dechlorination reaction occurs to form other chlorinated by-products. Temperature-programmed desorption of NH₃ is an efficient tool to evaluate the acid properties of the prepared materials, and the profiles from this are shown in Fig. 13A. Two main peaks can be clearly observed at 211 °C and 480–520 °C, which can be, respectively, attributed to the catalyst weak acid sites and strong acid sites. The weak acid sites at low temperature are associated with the desorption of ammonia from the Lewis acid sites and the strong acid sites at high temperature corresponded to the desorption of ammonia from the Brønsted acid sites. As shown in Fig. 13A, the intensity of the peaks of LSMC/Z at 211 °C follows the sequence: 0.1LSMC/Z > 0.2LSMC/Z > 0.3LSMC/Z > 0.5LSMC/Z, which is in accordance with the order of catalytic activity. ZSM-5 with the most Lewis acid sites possessed the lowest catalytic activity compared to LSMC/Z on account of the abundance of active contents. In the temperature range 480–520 °C, the intensity of the strong acid sites over LSMC/Z could be detected in the order: 0.3LSMC/Z > 0.1LSMC/Z > 0.2LSMC/Z > 0.5LSMC/Z. According to previous studies, the existence of CO- and Cl-containing by-products in the oxidation process, even at high temperatures, can cause severe deactivation (mainly caused by coke), due to the strong acid property of zeolites. With the largest amount of strong acid sites, 0.3LSMC/Z, the catalyst weak acid sites and strong acid sites at high temperature corresponded to the desorption of lattice oxygen usually happens above 700 °C. Obviously, 0.1LSMC/Z possessed the largest amount of chemically adsorbed oxygen species among 0.2LSMC/Z, 0.3LSMC/Z, and 0.5LSMC/Z materials, which can take part in the oxidation process and accelerate the overall destruction speed for 1,2-DCE.

Fig. 13 (A) NH₃-TPD profiles and (B) 1,2-DCE-TPD of the synthesized catalysts.

oxygen (O₂⁻ (ads)), which can be desorbed from the catalyst surface easier. The peaks located at the temperature range 300–750 °C can be associated with the desorption of the chemically adsorbed oxygen on the vacancies, corresponding to the second peak in this work. Lattice oxygen species (O²⁻) were not detected in this work because the desorption of lattice oxygen usually happens above 700 °C. Obviously, 0.1LSMC/Z possessed the largest amount of chemically adsorbed oxygen species among 0.2LSMC/Z, 0.3LSMC/Z, and 0.5LSMC/Z materials, which can take part in the oxidation process and accelerate the overall destruction speed for 1,2-DCE.

4. Conclusions

LaₓSr₁₋ₓMnCoO₆ materials with different Sr contents were investigated in 1,2-DCE oxidation. The results suggested that the Sr content in LaₓSr₁₋ₓMnCoO₆ has a significant influence on the catalytic activity and that LaSrMnCoO₆ possessed the highest activity among all the LaₓSr₁₋ₓMnCoO₆ catalysts. H-ZSM-5, with a large surface area and abundant acid sites, was further introduced via a hydrothermal process to improve the performance of LaSrMnCoO₆, and the results revealed that the LaSrMnCoO₆/H-ZSM-5 materials had much higher catalytic activity for 1,2-DCE oxidation than that of LaSrMnCoO₆ and H-ZSM-5 due to the larger specific surface area, higher concentration of high-valence manganese and cobalt species, better reducibility and oxygen mobility, and higher 1,2-DCE adsorption capacity. 10 wt% LaSrMnCoO₆/H-ZSM-5 possessed the best activity and selectivity in 1,2-DCE oxidation. Two reaction pathways (dechlorination and dehydrochlorination) over LaSrMnCoO₆/H-ZSM-5 for 1,2-DCE oxidation were proposed and several reaction by-products (vinyl chloride, 1,1,2-trichloroethane, trichloroethylene, tetrachloroethylene, and acetaldehyde) were detected, which are totally oxidized to the main oxidation productions (CO₂, CO, HCl, and Cl₂) at elevated temperatures.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (21477095, 21677114, 21337003), and the Fundamental Research Funds for the Central Universities (xjj2017170).
References