Roles of MSH2 and MSH6 in cadmium-induced G2/M checkpoint arrest in Arabidopsis roots

Xia Cao, Hetong Wang, Defeng Zhuang, He Zhu, Yanli Du, Zhibo Cheng, Weina Cui, Hilary J. Rogers, Qianru Zhang, Chunjun Jia, Yuesuo Yang, Peidong Tai, Futi Xie, Wan Liu

PII: S0045-6535(18)30422-3
DOI: 10.1016/j.chemosphere.2018.03.017
Reference: CHEM 20961

To appear in: ECSN

Received Date: 11 December 2017
Revised Date: 1 March 2018
Accepted Date: 3 March 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Roles of MSH2 and MSH6 in Cadmium-induced G2/M checkpoint arrest in Arabidopsis roots

Xia Cao¹, Hetong Wang ♯, Defeng Zhuang³, He Zhu¹, Yanli Du¹, Zhibo Cheng², Weina Cui², Hilary J Rogers⁵, Qianru Zhang², Chunjun Jia², Yuesuo Yang⁶, Peidong Tai ²; Futi Xie¹*, Wan Liu²*

¹ Agricultural College, Shenyang Agricultural University, Shenyang 110866, P.R. China
² Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, P.R. China
³ Department of Medicine, He University, Shenyang 110163, P.R. China
⁴ Liaoning Research Institute of Cash Crop, Liaoyang Liaoning, 111000, P.R. China
⁵ Cardiff University, School of Biosciences, Cardiff CF10 3TL, UK
⁶ Key Laboratory of Eco-restoration, Shenyang University, Shenyang 11044, P.R. China
⁷ Co-first author

* Corresponding author: Futi Xie: Tel: +86-24-88487135; Fax: +86-24-88487135; Email: snsoybean@sohu.com
Wan Liu: Tel: +86-24-83970367; Fax: +86-24-83970300; Email: liuwan63@hotmail.com

ABSTRACT

DNA mismatch repair (MMR) proteins have been implicated in sensing and correcting DNA damage, and in governing cell cycle progression in the presence of structurally anomalous nucleotide lesions induced by different stresses in mammalian cells. Here, Arabidopsis seedlings were grown hydroponically on 0.5×MS media containing cadmium (Cd) at 0-4.0 mg L⁻¹ for 5 d. Flow cytometry results indicated that Cd stress induced a G2/M cell cycle arrest both in MLH1-, MSH2-, MSH6-deficient, and in WT roots, associated with marked changes of G2/M regulatory genes, including ATM, ATR, SOG1, BRCA1, WEE1, CYCD4;1, MAD2, CDKA;1, CYCB1;2 and CYCB1;1. However, the Cd-induced G2/M phase arrest was markedly diminished in the MSH2- and MSH6-deficient roots, while a lack of MLH1 had no effect on Cd-induced G2 phase arrest relative to that in the wild type roots under the corresponding Cd stress. Expression of the above G2/M
regulatory genes was altered in \textit{MLH1}, \textit{MSH2} and \textit{MSH6}-deficient roots in response to Cd treatment. Furthermore, Cd elicited endoreplication in \textit{MSH2}- and \textit{MSH6}-deficient roots, but not in \textit{MLH1}-deficient Arabidopsis roots. Results suggest that \textit{MSH2} and \textit{MSH6} may act as direct sensors of Cd-mediated DNA damage. Taken together, we conclude that \textit{MSH2} and \textit{MSH6}, but not \textit{MLH1}, components of the MMR system are involved in the G2 phase arrest and endoreplication induced by Cd stress in Arabidopsis roots.

\textbf{Key words}: Arabidopsis; Cd stress; Cell cycle; G2 phase arrest; DNA damage; DNA Mismatch repair

\textbf{Abbreviations}:

- \textit{Arabidopsis} \textit{Arabidopsis thaliana}
- ATM Ataxia-telangiectasia mutated
- ATR ATM and Rad3-related
- \textit{BRCA1} Breast cancer susceptibility1
- CDKs Cyclin-dependent kinases
- \textit{CYCB1;1} Cyclin B1;1
- DAPI 4,6-diamidino-2-phenylindole
- DDR DNA damage response
- DSB Double strand break DNA
- FCM Flow cytometry
- \textit{GR1} Gamma response1
- MAPK Mitogen-activated protein kinase
- MMR DNA Mismatch repair
1. Introduction

Cd is considered to be a highly toxic, persistent and accumulative heavy metal element, and has been listed among the top ten hazardous substances by the National Toxicology Program (NTP 2004) and by the Agency for Toxic Substances and Disease Registry (http://www.atsdr.cdc.gov/cercla/07list.html). Cd exists ubiquitously in the soil and water, mainly due to anthropogenic activities such as urban traffic and industrial processes, and is then transferred to the food chain, which may lead to genotoxicity or/and cytotoxicity to an organism’s cells (Filipic, 2012; Pierron et al., 2014; Zhou et al., 2015). Thus, research
into the molecular mechanisms of Cd stress has become an important topic in environmental studies (Cui et al., 2017; Pena et al., 2012; Wang et al., 2016).

It is well known that Cd, even at low concentrations, can bind directly to DNA and lead to a wide variety of DNA damage processes such as base-base mismatches, insertion/deletion loops, DNA adducts, and DNA chain cross linking and breaks (Filipic, 2012). DNA stress in eukaryotic cells induces elaborate repair mechanisms and signal transduction pathways that can cause transient arrest of the progression through the cell cycle (Hu et al., 2016; Wang et al., 2013; Xiang et al., 2017). ATM and ATR kinases act as sensors of different types of DNA stress, coordinating stress responses with cell cycle checkpoint control and repair of such lesions (Yoshioka et al., 2006; Spampinato, 2017). Cell cycle checkpoints provide the cells with sufficient time to either cope with the damaged DNA or undergo cell death. In particular, the G2/M checkpoint allows cells to repair replication errors and damage before proceeding into mitosis, thereby ensuring genomic integrity. In plant cells, key components of the G2/M checkpoint comprise WEE1, BRCA1, ATM, ATR, and SOG1 which is activated through phosphorylation via the MAPK signalling pathway (Cools and De Veylder, 2009; Opdenakker et al., 2012; Pedroza-Garcia et al., 2016; Sjogren and Larsen, 2017; Yamane et al., 2007). Subsequently, active SOG1 induces hundreds of genes controlling the DDR including cell cycle arrest, DNA repair, endocycle onset and programmed cell death. The induction of these genes (i.e. MAD2, MRE11, CYCB1;2, CYCB1;2, BRCA1, CDKA;1 and RAD51) and accumulation of their encoded proteins results in inhibition of CDK activity and arrest in the G2/M phase in response to various stresses tested (Carballo et al., 2006; Hu et al., 2016; Jia et al., 2016; Pelayo et al., 2001; Rounds and Larsen, 2008; Weimer et al., 2016; Yoshiyama et al., 2009; Yoshiyama, 2016). More recently, FCM analysis showed that the
DDR can delay cell cycle progression and cause endoreplication in Arabidopsis *jhs1* mutant seedlings (Jia et al., 2016; Pena et al. 2012). However, little information is available about the checkpoint response of G2 phase-related *ATM*, *ATR* and *SOG1* genes in response to Cd stress in Arabidopsis seedlings.

Among the different DNA repair pathways in both animals and plants, MMR systems are involved in a wide range of important cellular processes. These include: (1) sensing DNA damage, signaling, reacting to and repairing DNA lesions such as mispaired bases (e.g. G/T, A/G or T/C), unpaired bases, and small insertion-deletion loop-outs (IDLs; e.g. TTTT/AAA) in DNA, which arise from escaping the DNA polymerase proof-reading activity during DNA replication, 5-methylcytosine deamination and the action of chemical mutagens, (2) inhibiting recombination between divergent DNA sequences, (3) maintaining barriers against massive genetic flow, and (4) preventing productive meiosis in interspecies hybrids (Hays, 2002; Emmanuel, 2006; Cadet and Davies, 2017). Thus, MMR plays a crucial role in confirming fidelity of DNA replication, maintaining genomic stability and governing cell cycle progression in the presence of DNA damage (Campregher et al., 2008; Wu and Vasquez, 2008). Thus, a fully functional MMR machinery can modulate prolonged G2/M phase arrest by up-regulation of G2/M regulatory proteins (i.e. Cyclin B1, Cdc2/p-Cdc2, and Cdc25C/p-Cdc25C) and/or by activating the p53, ATM and ATR signaling pathways in human cells under exogenous and endogenous stresses (Wang et al., 2013; Yan et al., 2003). In contrast, MMR deficient human cell lines are resistant to alkylating agents and bypass the G2/M arrest, indicating that the MMR has a role in post-replication checkpoints (O’Brien and Robert Brown, 2006). Pabla et al. (2011) demonstrated that MLH1, MSH6 and MSH2 are the main MMR proteins in human cells, and can play differential roles in G2 phase arrest following DNA damage.
under different stresses. For example, MNNG (N-methyl-N-nitro-N-nitrosoguanidine)- and
ST (Sterigmatocystin)-induced G2/M phase arrest requires hMLH1 in animal cells (O’Brien
and Brown 2006; Wang et al., 2013). In contrast, nitric oxide (NO) and H$_2$O$_2$ are capable of
arresting G2/M phase in hMLH1 mutant cells (Chang et al., 2003; Hofseth et al., 2003).
However, IR (ionizing radiation)- and neutrophil-induced G2 phase arrest requires the
MSH2 protein in primary mouse embryonic fibroblasts and colon epithelial cells
(Campregher et al., 2008; Cejka et al., 2003; Marquez et al., 2003). Additionally, Yamane
et al. (2007) showed that both MSH2 and MLH1 activate G2/M phase checkpoint via the
BRCA1-ATR-Chk1 signaling pathway in human HCC1937 lines under 6-thioguanine
(6-TG) stress. Recently, two models have been suggested to explain how the DNA
damage recognized by MMR proteins can lead to cell cycle checkpoint activation. Firstly,
the “futile repair cycle model” proposes that the MMR system plays an indirect role by
initiating futile cycles of DNA repair, in which DNA breaks and gaps are continuously
produced, ultimately causing the production of secondary lesions. In contrast, the “general
DNA damage sensor model” proposes that MMR proteins may trigger stress signaling
directly, leading to the induction of cell cycle arrest (Pabla et al., 2011; Wang et al., 2013).
In Arabidopsis, there is little information on whether MLH1, MSH2 and MSH6 initiate G2
phase arrest of cell cycle progression in response to Cd stress. Thus, it is important to
evaluate the putative roles of different MMR proteins in Cd-induced DNA damage and cell
cycle arrest in Arabidopsis cells.

The principal objectives of the current study were to (1) measure cell cycle progression
in response to Cd in Arabidopsis seedlings comparing WT with $mlh1$, $msh2$ and $msh6$
mutants; (2) determine the expression levels of DNA damage and G2M-phase-related
genes, such as ATR, ATM, $SOG1$, $CYCB1;1$, $CDKA;1$, $WEE1$, by qRT-PCR analysis in the
above Arabidopsis seedlings under Cd stress, and (3) evaluate the potential roles of MMR genes MLH_1, MSH_2 and MSH_6 in G2/M phase arrest and endoreplication in Arabidopsis under Cd stress.

2. Materials and methods

2.1. Plant materials, growth and treatment conditions

Arabidopsis thaliana (Arabidopsis) plants used in this study were of the Columbia ecotype WT (Col-0) and of the $mlh1$, $msh2$ and $msh6$ mutants. T-DNA insertion mutant lines of $msh2$ (SALK_002708), $msh6$ (SALK_089638), and $mlh1$ (SALK_123174C) were obtained from the Arabidopsis Biological Resource Center (ABRC, Columbus, OH, USA), and the background of the three mutants is from Col-0. The above seeds were surface-sterilized using bleach solution (1:10 dilution of hypochlorite) and ethanol mix (ethanol: water: bleach 7:2:1) at about 20 °C for 5 min, respectively, and were rinsed in sterile distilled water five times and imbibed in sterile-water for 2-4 days at 4 °C to obtain homogeneous germination (Pedroza-Garcia et al., 2016). The seeds were then sown in sterile flasks containing 150 mL of commercially available 0.5× Murashige and Skoog (MS) liquid medium (Basal Salt Mixture, Caisson, USA) with 0.5% (w/v) sucrose (pH 5.8), and supplemented with Cd at a final concentration of 0 (the control), 1.25, 2.5, and 4.0 mg L$^{-1}$ in the form of CdCl$_2$·2H$_2$O of analytical grade with purity 99.5% (PR China). Each flask with 20-30 plantlets was placed on a rotary shaker at about 50 rpm in an incubator (12 h light of approximately 3000 lx and 12 h dark at 21 ± 0.5 °C) for 5 d following germination. All treatments and analyses were repeated in three independent replicates.
2.2. RNA extraction and qRT-PCR analysis

For both the control and Cd treatments, about 100 mg of fresh roots were collected at 5 d following germination in the growth chamber, and flash frozen in liquid nitrogen prior to storage at −80°C. Total RNAs were extracted and purified using RNA isolation and cleanup kits (EZ-10 DNAaway RNA Mini-prep Kit, Sagon). First-strand cDNA was synthesized from 2 μg of total RNA using the PrimeScript™ 1st strand cDNA Synthesis Kit (TaKaRa) following the manufacturer’s protocols. qRT-PCR analysis was carried out using 20 μL reaction mixtures containing 0.4 μL of template cDNA, 0.5 μM of corresponding forward and reverse primers and 10 μL 2×SYBR Mix (SYBR R Premix Ex Taq™ II (Tli RNaseH Plus, TaKaRa). Reactions were run and analyzed on an iCycler iQ (Bio-Rad) according to the manufacturer’s instructions. PCR products were run on a 2% (w/v) agarose gel to confirm the size of the amplification products and to verify the presence of a unique PCR product. The specificity of amplification products was determined by melting curves, and the gene expression level was normalized to that of the reference genes, ACT2 or UBQ10 (Konishi and Yanagisawa, 2011). IQ5 relative quantification software (Bio-Rad) automatically calculates relative expression level of the selected genes with algorithms based on the $2^{-\Delta\Delta Ct}$ method (Livak and Schmittgen, 2001). All analyses were repeated at least three times. The primer pairs used for qRT-PCR are listed in supplemental (Sup) Table S1. For detailed descriptions of expression of SOG1 and the other genes, see Sjogren et al. (2015) and Cui et al. (2017), respectively.

2.3. FCM analysis of cell cycle progression in roots of Arabidopsis

To study the ploidy level of the WT and three mutant plantlets, approximately 0.1 g of
fresh roots were excised and chopped in ice cold chopping buffer (Partec, Germany) with a single-edged razor blade in a glass Petri dish (diameter, 5 cm). After 5-10 minutes, crude samples, consisting of finely minced tissue fragments, were put through two nylon filters (pore size, 50 and 30 μm) to remove cell debris. The nuclei in the filtrate were stained with DAPI (Partec, Germany) following the manufacturer’s instructions. After 15 to 30 minutes at about 25 °C in the dark, the stained nuclei of the control and Cd-treated samples were analyzed using a CyFlow flow cytometer (Partec, Germany) equipped with a 365 nm laser. Fluorescence intensity was analyzed for > 5000 nuclei, and four independent replicates were performed for each sample. Gates (Sup-Fig. S2) were determined empirically on nuclei extracted from the roots of the 5-day-old plantlets with Flowjo 10 win 64 software (BD Biosciences, San Jose, CA). Ploidy distribution calculated proportions of 2C, 4C, 8C and 16C nuclei (i.e. 100% in total for each treatment; Sup-Fig. S2).

2.4. DNA extraction and RAPD analysis

Fresh roots (about 100 mg) were collected as for the RNA extraction. Total genomic DNA was extracted and RAPD analysis was performed using 2 primers (Primers 3 and 11) screened from 12 random primers as previously described (Liu et al., 2005; Sup-Table S2). PCRs were performed, and polymorphism frequency of RAPDs, assessed by PAGE gel electrophoresis, was calculated according to Wang et al. (2016).

2.5. Statistical analysis

SPSS for Windows (version 23.0) was used for statistical analysis of the results. Data are expressed as the means ± standard deviation (SD). Statistical differences among the
control and treatments were calculated using 1-way analysis of variance (ANOVA), taking

$P < 0.05$ as significantly different according to the least significant differences (LSDs) tests
corrected for the number of comparisons.

3. Results

3.1. Cd stress affected root growth of Arabidopsis plantlets

Exposure to Cd ($1.25 - 4.0 \text{ mg-L}^{-1}$) for 5 d had no obvious effect on the germination
rate of WT Arabidopsis seedlings compared to the control ($P < 0.05$; Table 1). Likewise,
there were no statistically significant differences for fresh weight between the control and
Cd-treated plantlets ($P < 0.05$) with the exception that seedlings treated with 4.0 mg-L^{-1} Cd
indicated a notable decrease of fresh weight. However, a significant inverted U-shaped
relationship was seen between root length and Cd level, with a correlation coefficient (r^2)
of 0.939 using regression way (Table 1; Sup-Fig. S1).
<table>
<thead>
<tr>
<th>Lines of Arabidopsis</th>
<th>Cd concentration/ mg·L⁻¹</th>
<th>Germination percentage/ %</th>
<th>Fresh weight of plantlet⁻¹/mg</th>
<th>Root growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Root length/cm</td>
</tr>
<tr>
<td>WT</td>
<td>0</td>
<td>95.1±2.1</td>
<td>10.31±0.39</td>
<td>1.20±0.05</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>95.8±1.9</td>
<td>11.04±0.42</td>
<td>1.32±0.04*</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>96.1±3.3</td>
<td>10.14±0.48</td>
<td>0.81±0.05*</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>95.3±1.7</td>
<td>7.78±0.42*</td>
<td>0.52±0.09*</td>
</tr>
<tr>
<td>mlh1</td>
<td>0</td>
<td>95.6±3.2</td>
<td>10.32±0.24</td>
<td>1.22±0.04</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>94.9±1.3</td>
<td>10.13±0.75</td>
<td>1.09±0.08</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>95.2±3.5</td>
<td>9.08±0.78</td>
<td>0.88±0.02*</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>95.6±1.8</td>
<td>7.69±0.34*</td>
<td>0.55±0.09*</td>
</tr>
<tr>
<td>msh2</td>
<td>0</td>
<td>94.2±1.6</td>
<td>10.29±0.31</td>
<td>1.23±0.03</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>95.1±2.5</td>
<td>10.01±0.67</td>
<td>1.06±0.06*</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>95.3±3.2</td>
<td>8.51±0.56</td>
<td>0.62±0.07*</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>96.2±6.4</td>
<td>7.01±0.29*</td>
<td>0.4±0.09*</td>
</tr>
<tr>
<td>msh6</td>
<td>0</td>
<td>95.7±1.8</td>
<td>10.34±0.35</td>
<td>1.16±0.04</td>
</tr>
<tr>
<td></td>
<td>1.25</td>
<td>95.2±3.3</td>
<td>9.75±0.49</td>
<td>0.87±0.05*</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>96.5±7.7</td>
<td>8.73±0.53</td>
<td>0.55±0.07*</td>
</tr>
<tr>
<td></td>
<td>4.0</td>
<td>94.8±3.1</td>
<td>7.13±0.45*</td>
<td>0.35±0.02*</td>
</tr>
</tbody>
</table>

* Significantly statistical difference from the control, respectively (P < 0.05).

Under the control conditions, the WT and three mutants (mlh1, msh2 and msh6) had similar root growth and fresh weight (Table 1). A significant negative relationship was observed for the root length between the above mutants and Cd levels of 0 and 4.0 mg·L⁻¹ for 5 d, with correlation coefficients (r²) of 0.962, 0.983 and 0.985, respectively. Interestingly, seed germination percentage, fresh weight and suppression of root growth in the WT seedlings was not different from that of MLH1-deficient seedlings under Cd stresses of 2.5 - 4.0 mg·L⁻¹. In contrast, suppression of root growth was much greater in MSH2- and MSH6-deficient seedlings with a similar reduced trend under Cd stresses of 1.25 - 4.0 mg·L⁻¹. These results indicate that MSH2- and MSH6-deficient seedlings were
more sensitive to Cd toxicity than the WT and MLH1-deficient seedlings in this experiment (Table 1).

3.2. Cd stress induced G2 phase arrest in the WT Arabidopsis roots

To evaluate cell cycle progression in the WT roots under Cd stress for 5 d, effect of Cd stress on cell cycle arrest was determined using FCM analysis. As shown in Fig. 1, the proportion of cells with a 2C nuclear content (G0/G1 phase) was 35.2% in the control, but Cd stress significantly decreased this proportion at 4.0 mg L\(^{-1}\) Cd, which was 23.1%. This alteration in the 2C nuclear content was accompanied by a significant increase in the proportion of cells with a 4C nuclear content: which was 39.8% and 41.4% in roots at the highest two Cd concentrations of 2.5 and 4.0 mg L\(^{-1}\), respectively (Fig. 1A, Sup-Fig. S1). The FCM result suggests that Cd stress could induce G2/M phase arrest in roots of the WT plantlets.

![Fig.1.](image)

Fig.1. FCM analysis on the nuclear DNA contents of WT (A), mlh1 (B), msh2 (C), and msh6 (D) in Arabidopsis roots exposed to 0 - 4.0 mg L\(^{-1}\) Cd for 5 d. The percent distribution of cells in 2C, 4C and 8C+16C was calculated and compared with the control.
Each point represents the mean ± SD of three independent experiments. *Significantly different from the control in A-D, respectively (P<0.05), and # significantly different from the WT under the corresponding Cd stress in C-D (P < 0.05).

The effect of Cd stress on cell cycle-regulatory genes was determined by measuring the expression of marker genes for G2/M transition (ATM and ATR, SOG1, WEE1, CYCD4;1, MAD2, CDKA;1, CYCB1;2 and CYCB1;1) in the WT roots with and without Cd stress by qRT-PCR analysis. Two patterns of gene expression were noted. Gene expression of ATM, ATR, SOG1, CDKA;1, and WEE1 increased by 1.21- to 3.3-fold at the lowest concentration (1.25 mg·L⁻¹) of Cd, but a dose-dependent decrease was observed in expression of CDKA;1, and WEE1 with Cd concentrations above 1.25 mg·L⁻¹ (Fig. 2C and 2D). The second group of cell cycle-regulatory genes, CYCD4;1, MAD2, CYCB1;2 and CYCB1;1 showed a dose-dependent reduction in the expression from 0 to 4.0 mg·L⁻¹ Cd. For all these genes the maximum reduction in expression was with 4.0 mg·L⁻¹ Cd with a maximum decrease of 0.12- to 0.50-fold in the expression of the CDKA;1, WEE1, CYCD4;1, MAD2, CYCB1;2 and CYCB1;1 genes relative to the control (Fig. 2C and 2D).

Taken together, these findings support the hypothesis that Cd stress can mediate the aberrant expression of the above G2 phase cell cycle regulatory genes partially involved in G2/M arrest in Arabidopsis roots.
Fig. 2. Effect of Cd stress on gene expression in Arabidopsis roots for 5 d. (A) DNA mismatch repair genes MLH1, MSH2 and MSH6; (B) DNA damage repair genes RAD51, BRCA1, KU70 and MRE11; (C) DNA damage response genes ATM, ATR and SOG1; (D) G2/M marker genes CYCB1;1, CDKA;1, WEE1, CYCD4;1, MAD2 and CYCB1;2. The expression level of these genes was set to 1 in the control. Data are shown as mean ± SD by qRT-PCR. Data presented are average of three replicates. * Significantly different from the control \((P < 0.05) \). House-keeping gene AtUBQ10 was used as an internal control.

3.3. Cd stress caused an MHS2- and MHS6-dependent G2/M arrest in Arabidopsis roots

FCM analyses showed that the Cd-induced G2 arrest was dramatically attenuated in the msh2 and msh6 mutants compared with the WT under the corresponding Cd stress (Fig. 1). The attenuation was of 12.7%, 14.7% and 11.6% in the MSH2-deficient roots, and of 10.9%, 13.2% and 15.7% in MSH6-deficient roots under Cd stresses of 1.25 - 4.0 mg L\(^{-1}\), respectively. In contrast, mutation of MLH1 had no effect on Cd-induced G2 phase
arrest. Cd stress dramatically increased the proportion of cells with 8C and 16C nuclear content, and the increase was of 6.7%, 11.3%, 15.2%, and 15.5% for MSH2-deficient roots, and of 5.7%, 11.3%, 14.3, and 12.4% for MSH6-deficient roots under 0, 1.25, 2.5 and 4.0 mg L$^{-1}$ Cd treatments compared to WT at each Cd concentration tested, respectively. However, again there was no effect of MLH1 mutation on the proportion of 8C and 16C nuclear content in response to Cd treatment (Fig. 1, Sup-Fig.S1). Based on the above results, we concluded that MSH2 and MSH6, but not MLH1, of the MMR system are involved in the G2 phase arrest induced by Cd stress in Arabidopsis roots.

In MSH2-, MSH6- or MLH1-deficient Arabidopsis roots, exposure to Cd stress strongly activated expression of ATR, ATM, SOG1 and CYCB1;2 genes compared with the WT control, whereas expression of CYCD4;1, RAD51, BRCA1, and MAD2 was sharply diminished (i.e. a decrease of 0.12- to 0.23-fold) in MSH2-deficient roots under Cd stress (Fig.3). Some genes (i.e. KU70, CYCB1;1, MRE11) tested were down-regulated in a Cd-dependent manner in MLH1-deficient Arabidopsis roots. Notably, expression of MAD2, MRE11, CYCB1;2, BRCA1 and RAD51 genes showed obvious differences between MLH1-deficient and MSH2/MSH6-deficient roots under Cd stress. In addition, expression of MSH2, MSH6 and MLH1 genes was significantly suppressed in MSH2/MSH6- and MLH1-deficient roots in response to 1.25-4.0 mg L$^{-1}$ Cd treatment compared with the WT control to some extent, respectively (Fig. 3). Taken together, the altered expression of the above genes suggests that (1) most of the genes are down-regulated in each mutant compared to the WT control, and (2) DDR is activated in Cd-stressed seedlings, which may be partially implicated in the G2 phase arrest.
These results indicate that RAPD polymorphism after Cd stress of 1.25 - 4.0 mg·L\(^{-1}\) Cd for 5 d. In A-Q, MMR genes MLH1, MSH2 and MSH6; G2/M phase marker genes CYCB1;1, CDKA;1, WEE1, CYCD4;1, MAD2 and CYCB1;2; DNA damage repair genes RAD51, BRCA1, KU70 and MRE11; and DNA damage response genes ATM, ATR and SOG1. The expression levels of the WT were set to 100% in the control by qRT-PCR analysis. Data were shown mean ± SD at least three independent experiments, and house-keeping gene AtUBQ10 was used as an internal control. * and # significantly statistical difference from the WT control and the corresponding mutant control, respectively (\(P < 0.05\)).

3.4. MSH2 and MSH6 may act as direct sensors of Cd-mediated DNA damage in Arabidopsis roots

To assess whether MMR proteins are acting via the futile repair cycle model or the direct DNA damage sensor signaling model in response to the Cd treatment, we examined the level of DNA damage in WT, MSH2- and MSH6-deficient roots under Cd stress using a RAPD assay. The WT and the two MMR mutants tested exhibited similar frequencies of RAPD polymorphism after Cd stress of 1.25 - 4.0 mg·L\(^{-1}\) for 5 d (Fig. 4, Sup-Fig. S3). These results indicate that MSH2 and MSH6 did not lead to the formation of secondary
damage, suggesting that DNA lesions recognized by MSH2 and MSH6 could lead to G2/M cell cycle arrest through the direct signaling model in Arabidopsis roots under Cd stress.

Fig. 4. RAPD polymorphism variations of Arabidopsis roots exposed to 0- 4.0 mg·L⁻¹ Cd for 5 d. For all treatments, reproducible bands in at least two replicates were evaluated and calculated for polymorphism analysis.

4. Discussion

Many studies have proved that the MMR system can sense, react and repair DNA damage, thus has an utmost important role in confirming fidelity of DNA replication, in maintaining genomic stability and in governing the cell cycle progression in the presence of DNA damage induced by different stresses in mammalian cells. Such experiments indicated that MMR deficiency can lead to tumorigenesis in response to stresses through loss of cell cycle regulation and decreased apoptosis (Tsaalbi-Shtylik, 2015; Wang et al., 2013). However, little information is known about whether MLH1, MSH2 and MSH6 initiate G2/M phase arrest of cell cycle progression in higher plants under Cd stress. Results presented here show that Cd exposure could induce DNA damage and change remarkably gene expression of G2/M-transition-related regulation and MMR system, and thus lead to G2/M phase arrest in Arabidopsis seedlings (Figs. 1 - 2). Moreover, mutation of two MMR genes, MSH2 and MSH6 results in a significant attenuation of G2 arrest and in a marked increase of cells with 8C and 16C nuclear content compared with the WT under the corresponding Cd stress (Fig. 1), indicating that these two genes may be
important in the MMR-mediated response to Cd. Furthermore, MSH2 and MSH6 may act as direct sensors of Cd-mediated DNA damage and participate in the G2/M arrest and endoreplication under Cd stress (Figs. 1, 4). These findings provide new insights into the molecular basis of \textit{MLH1}, \textit{MSH2} and \textit{MSH6} roles in the G2/M phase arrest caused by DNA lesions in Arabidopsis seedlings under Cd stress.

Endogenous replication stress induced by replisome factor E2F TARGET GENE1 mutant triggered a prolonged cell cycle, accompanied with a high number of the G2/M phase cells in Arabidopsis (Cools and De Veylder, 2009), while X-ray or hydroxyurea stress led to a G2/M phase arrest in root cells of onion (\textit{Allium cepa} L.) (Pelayo et al., 2001; Carballo et al., 2006). Recently, we demonstrated that Cd stress could induce G\textsubscript{2} phase arrest in Arabidopsis seedlings (Cui et al., 2017). In the current study, FCM analysis indicated that Cd stress could significantly reduce the proportion of 2C cells and induce a G2/M phase arrest in the WT root cells of Arabidopsis seedlings (Fig. 1; Sup-Fig. S1). Additionally, the expression of the G\textsubscript{2} phase marker genes confirmed that Cd stress induced the abnormal expression of \textit{ATM}, \textit{ATR}, \textit{SOG1}, \textit{WEE1}, \textit{CYCD4;1}, \textit{MAD2}, \textit{CDKA};1, \textit{CYCB1;2} and \textit{CYCB1;1} genes (Fig. 2), which may be involved in the G2 phase arrest triggered by Cd stress in Arabidopsis roots. Although some signaling pathways, such as \textit{ATM}, \textit{ATR}, \textit{SOG1}, \textit{WEE1}, \textit{BRCA1}, \textit{RAD51}, \textit{CDKA};1, \textit{CYCB1;2} and \textit{CYCB1;1}, have been found to be involved in the mechanism of cell cycle arrest by Cd and other stresses (Cui et al., 2017; O’Brien and Brown, 2006; Hu et al., 2016), further studies validating the exact mechanism are warranted.

A number of reports have suggested that MLH1, MSH2 and MSH6 proteins can recognize DNA damage and act as signaling mediators for activation of cellular DNA
Herein, we found that Cd stress caused significant DNA damage in Arabidopsis roots (as shown by RAPD polymorphism, Fig. 4), indicating that Cd stress can produce a genotoxic effect, including DSB and ssDNA, in Arabidopsis roots. In addition, downregulated expression of MLH1, MSH2 and MSH6 genes occurred at the mRNA level by Cd stress at all the concentrations tested, which was obviously different from other repair genes (i.e. KU70, BRCA1, RAD51) (Fig. 2), showing that Cd stress was prone to impairing MMR system in response to DNA damage in Arabidopsis roots. Furthermore, knockdown studies highlighted that MSH2 and MSH6, not MLH1, caused an G2/M arrest of the cell cycle in Arabidopsis roots following Cd stress (Fig. 1), which was consistent with the activation of a post-replication DNA-damage checkpoint (Cools and De Veylder, 2009). Also, evidence for the installation of such a checkpoint, apart from the G2/M arrest (Fig. 1), includes significantly changed expression of G2/M phase and its regulation-related genes such as ATM, ATR, SOG1, WEE1, CYCD4;1, MAD2, CDKA;1, CYCB1;2 and CYCB1;1 in MLH1-, MSH2- or MSH6-deficient roots under Cd stress (Figs. 2 - 3). When the cells undergo diverse stresses, expression of ATM or/and ATR is significantly increased, which phosphorylates SOG1; subsequently, activated SOG1 and/or WEE1 could severely affect CDKA;1 to form an active complex with Cyclin B1, leading to a G2/M arrest (Hu et al., 2016; O’Brien and Brown, 2006; Weimer et al., 2016). In this study, expression of ATM and ATR was enhanced by DNA stress via cell cycle checkpoints although MutSα was uncoupling with them in MSH2- and MSH6-deficient roots, activating SOG1 and WEE1, which could cause G2/M arrest (Figs. 1 - 5). However, in the MLH1-deficient roots, ATR and ATM received signals from MutS and activated WEE1 and SOG1, leading to G2/M phase arrest (Figs. 1 - 3, 5). Indeed, expression of MAD2, MRE11, CYCB1;2, BRCA1 and RAD51 genes indicated obvious differences between MLH1-deficient and MSH2/MSH6-
deficient roots under Cd stress (Fig. 3). Herein, sharply repressed expression of *MAD2* may mediate G2-M arrest through the regulation of chromatid segregation with a dual mechanism: (i) transcriptional regulation of gene expression profiling; and/or (ii) post-transcriptional ubiquitination (Sisinni et al., 2017). Also, aberrant expression of the other genes responsible for DNA repair could affect G2/M arrest probably by altering repair efficiency (Figs. 1 - 3, 5). Taken together, the above results suggest that Cd stress induced G2/M arrest, independent of *MLH1*, but dependent on *MSH2* and *MSH6* genes in Arabidopsis roots.

![Fig. 5. Model of Cd-induced G2/M arrest and endoreplication in Arabidopsis roots. Base damage is usually major form in Cd-induced DNA stress. In WT and MLH1-deficient roots, base damage and replication stress could be sensed by MutS and RPA complex respectively, leading to activation of ATR. Then ATR activates Wee1 through phosphorylation, which can phosphorylate the inhibiting tyrosine residue of CDK in cyclin-Cdk complex, finally causing cell cycle arrest. In MSH2- and MSH6-deficient roots because of recession of sensing function caused by MutS-deficiency, more DSB are produced and sensed by MRN complex which activate ATM. ATM, as a protein kinase, has been proved that it can cross nuclei membrane through MLH1- and C-abl-dependent MAPK signaling and activates transcription factor SOG1, causing endoreplication.](image)

Two models have been proposed to account for the reason why DNA damage
signaling recognized by MMR proteins may cause cell cycle checkpoint activation (Pabla et al., 2011). The futile cycle model emphasizes DNA repair as the single function of MMR. According to this model, a futile attempt of the MMR system to repair damaged DNA leads to the generation of DNA strand breaks, as damage on the template strand is repeatedly processed. However, the direct signaling model proposes two distinct functions for MMR: DNA repair and DNA damage signaling. In this model, MMR proteins might directly initiate DNA damage signaling that permits activation of one or more cell cycle checkpoints.

Indeed, these two models are not mutually exclusive, and are supported or contradicted by the good experimental evidence (O’Brien and Brown, 2006; Pabla et al., 2011). Our results suggest that under Cd stress, DNA damage (as evidenced by the presence of RAPD polymorphism) was similar in the WT and the $msh2/msh6$ mutant tested after Cd treatment (Fig. 4), which indicates that $MSH2$ and $MSH6$ did not lead to the formation of secondary damage. Similarly, direct sensors of DNA damage signaling were recognized by MLH1 and MSH2 proteins in human esophageal epithelial Het-1A cells and in mouse embryonic fibroblasts, respectively (Pabla et al., 2011; Wang et al., 2013). Moreover, under 1.25 and 2.5 mg L$^{-1}$ Cd stress, DNA damage was different between $msh2/msh6$ and $mlh1$ mutant (Fig. 4), suggesting functional dissociation of DNA damage repair and recognition signaling. The nicks near base mismatches, O6MeG or IDLs loci are produced during DNA mismatch repair processes after replication and sensing damages (Culligan and Hays, 2000; Hu et al., 2016), leading to RAPD polymorphism (Fig. 4). In $mlh1$ mutant, $MLH1$ and many other repair genes (i.e. $KU70$, $BRCA1$, $MRE11$, $RAD51$) were prominently repressed (Fig. 3) to cause low-efficient repair and long-duration of nick maintenance, however, initiating MMR is significantly inhibited in $msh2/msh6$ mutant, which accounts for differences in DNA damage between $mlh1$ and $msh2/msh6$ mutant (Fig. 4). The above observations support the direct signaling model, wherein MSH2 and MSH6 might act as
direct sensors of Cd-mediated DNA damage and be directly implicated in the initiation of DNA damage signaling responses.

The recent findings have revealed that the G2/M arrest and endoreduplication in response to different stresses are strictly dependent on MMR activity and the roles of MMR proteins in mismatch repair can be uncoupled from the MMR-dependent damage responses (Luo et al., 2004). Although MMR system repairs only DNA mismatches or mispairs in cells, it is involved in checkpoint activation in response to various forms of DNA damage (i.e. O^6MeG lesions). Moreover, while the repair can function efficiently at subnormal levels of hMLH1 or hMSH2, the checkpoint activation requires a full level of them (Luo et al., 2004; O’Brien and Brown, 2006). In the current study, the WT roots showed marked G2 phase arrest but increase growth of 10% under 1.25 mg·L\(^{-1}\) Cd stress (Table 1; Sup-Fig. S2), which suggests that the functions of MMR proteins in MMR and checkpoint signaling may involve different molecular processes (Pabla et al., 2011). The possible outcomes are complicated following MMR-dependent G2/M arrest and endoreduplication under Cd stress as follows: (1) the prolonged G2/M arrest is associated with the appearance of plantlets that display a inhibition-like phenotype such as suppressed root growth observed in both WT and mutants, mainly through ATR/ATM-Wee1 cascade (Table 1; Fig. 5); (2) some of them appear to escape from G2 arrest but undergo endoreduplication observed only in the \(msh2\) and \(msh6\) mutants, probably through TLS to bypass Cd-induced lesions in an ATM/ATR-SOG1-dependent manner (Figs. 1, 5) (Adachi et al., 2011; Hirose et al., 2003; Hu et al., 2016; Reyes et al., 2015; Tsaalbi-Shtylik et al., 2015). Alternatively, an interaction between MMR system (MSH2, MSH6 or MHL1) and DNA damage sensors/repair proteins (i.e. ATR, ATM, SOG1, MRE11, BRCA1, CYCB1;1, KU70 and MAPK) has been required for endoreduplication and for the
installation of cell cycle arrest as well as the co-localisation of MMR proteins, γ-H2AX foci and the MRN (Mre11-Rad50- Nbs1) complex to foci of DNA damage (Hirose et al., 2003; Hu et al., 2016; Manke et al., 2005; Opdenakker et al., 2012; Stojic et al., 2004: Weimer et al., 2016). Herein, expression of ATM, ATR and SOG1 genes was strongly activated, accompanied with significantly increased proportion of cells with 8C+16C nuclear content in msh2 or msh6 mutant roots under Cd stress (Figs.1-3), which accounts for endoreduplication via ATM/ATR-SOG1-dependent pathway. Additionally, expression of RAD51, BRCA1, and MAD2 genes was sharply diminished in msh2 mutant roots (Figs. 3, 5), suggesting that these genes’ expression could be mediated through a MSH2-dependent pathway of ATR-SOG1 activation (Pabla et al., 2011; Sisinni et al., 2017), which could similarly promote endoreduplication. However, endoreplication was not seen in MLH1-deficient Arabidopsis roots under Cd stress, and many genes tested were down-regulated in a Cd-dependent manner (Figs. 1, 3, 5), probably because MLH1 in Arabidopsis could play an important role in c-Abl-dependent MAPK signaling just like that in human/animal and then in activating SOG1 in response to DNA lesions (Kim et al., 2007). Campregher et al. (2010) demonstrated that several other proteins have been involved in MMR system, including clamp PCNA, DNA polymerase delta, single-strand binding protein RPA, clamp loader replication factor C (RFC), exonuclease 1 (EXO1), and endonuclease FEN1, which are associated with synthesizing DNA and the replication fork. Thus, we could speculate that the accelerated activation of endoreplication observed exclusively in the msh2 and msh6 mutants, but not in the mlh1 mutant, could be a consequence of the interaction among RPA, MRN and MutS complex with DNA damage checkpoint signaling such as ATR/ATM-Wee1 or/and ATM/ATR-SOG1 cascade under Cd stress (Figs.1, 5). Taken together, exposure to Cd stress strongly activates the major MSH2-ATR-Wee1 signaling cascade in WT and mlh1 mutant, but the major MRN-ATM-
SOG1 cascade in *msh2* and *msh6* mutants (Fig. 5).

More recently, research focus has turned to elucidating the mechanisms that regulate the dephosphorylation of checkpoint proteins, and to revealing phosphatases that govern SOG1 and other checkpoint proteins implicated in checkpoint resolution and mitotic progression (Friedhoff et al., 2016). Moreover, many results point to ATR/ATM/SOG1 as master regulators of checkpoint maintenance and resolution, and subsequent mitotic exit in plants (O’Brien and Brown, 2006; Sjogren et al., 2017; Yoshiyama, 2016). Interestingly, SOG1 exists usually in cytoplasm, and can enter the nuclei to regulate hundreds of genes’ expression when SOG1 was phosphorylated via MAPK signal pathway, which is dependent on c-abl and MLH1 (Kim et al., 2007; Opdenakker et al., 2012). Thus, unravelling the possible roles of MMR proteins in maintenance and resolution of the G2/M checkpoint and the subsequent mitosis after recovery from DNA lesions in Arabidopsis and other plants under Cd and other stresses could prove interesting and fruitful.

Conclusions

This study indicated that Cd stress induced DNA lesions and G2/M arrest in Arabidopsis roots, which was mediated by *MSH2* and *MSH6* genes, but not *MLH1*, of the MMR system via altered expression of G2/M regulatory genes, including *ATM, ATR, SOG1, WEE1, CYCD4;1, MAD2, CDKA;1, CYCB1;2* and *CYCB1;1*. To our knowledge, this is the first study showing that MSH2 and MSH6 are implicated in G2/M phase arrest triggered by Cd stress in Arabidopsis roots. In addition, endoreduplication occurred mainly from impairment of MSH2 and MSH6, and was not seen in MLH1-deficient Arabidopsis.
roots in response to Cd stress. Moreover, we observed that MSH2 and MSH6 could act as
direct sensors of Cd-induced DNA lesions in Arabidopsis plantlets. Because Cd pollution is
ubiquitously present in the soil and water, these results provide new insight into the
essential mechanisms of MLH1, MSH2 and MSH6 in the G2/M phase arrest induced by
DNA damage under Cd stress in other plant seedlings.

Acknowledgment

This study was supported by National Natural Science Foundation of China (NSFC,
21677151, 31470552, 31670516, 41472237 and 41673132), and Liaoning Innovation
Team Project (LT2015017).

References:

Adachi, S., Minamisawa, K., Okushima, Y., Inagaki, S., Yoshiyama, K., Kaminuma, E.,
Programmed induction of endoreduplication by DNA double-strand breaks in

hMSH2-dependent G2/M checkpoint arrest and replication errors at a (CA)13-repeat in

Chang, D.K., Goel, A., Ricciardiello, L., Lee, D.H., Chang, C.L., Carethers, J.M., Boland,
and -proficient cell lines. Cancer Lett. 195: 243-251

transcription-induced cell death at trinucleotide repeats by activating ATR. DNA Repair.
42: 26-32

Edelbrock, M., Kaliyaperumal, S., Williams, K. Structural., 2013. Molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities. Mutat Res. 743-744: 53-66

signaling is activated through c-Abl in response to the alkylator N-Methyl-N-nitro-N-nitrosogunidine. J of Biol Chem. 282: 32021-32031

Menges, M., De, Jager.S.M., Gruissem, W., Murray, J.A.H., 2005. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle
control. Plant J. 41: 546-566
Pabla, N., Ma, Z., McIlhatton, M.A., Fishel, R., Dong, Z., 2011. hMSH2 recruits ATR to DNA damage sites for activation during DNA damage-induced apoptosis. J Biol Chem. 286: 10411-10418
Sjogren, C.A., Bolaris, S.C., Larsen, P.B., 2015. Aluminum-dependent terminal differentiation of the Arabidopsis root tip is mediated through an ATR-, ALT2-, and
SOG1-regulated transcriptional response. Plant Cell. 27: 2501–2515

Xiang, Y., Laurent, B., Hsu, C.H., Nachtergaele, S., Lu, Z., Sheng, W., Xu C., Wang, S.Q.,

Yamane, K., Schupp, J.E., Kinsella, T.J., 2007. BRCA1 activates a G2-M cell cycle checkpoint following 6-Thioguanine-induced DNA mismatch damage. Cancer Res. 67: 6286-6293

HIGHLIGHTS

- Cd-caused endoreplication occurred mainly by impairment of MSH2 and MSH6 in roots.
- Cd-induced G2 phase arrest was markedly reduced in the MSH2- and MSH6-deficiency.
- Cd-triggered endoreplication was eliminated in MLH1-deficient Arabidopsis roots.
- MSH2-ATR/ATM is the major signaling cascade in Cd-governed DDR in Arabidopsis.
- MSH2 and MSH6 can act as direct sensors of Cd-induced DNA damage in roots.