Reduced cancer incidence in Huntington’s disease: analysis in the Registry study

Paul McNulty1a, Richard Pilcher1a, Raviram Ramesh1a, Renata Necuiniate1, Alis Hughes3,4 REGISTRY Investigators of the European Huntington’s Disease Network5, Daniel Farewell2, Peter Holmans3 and Lesley Jones3

1. School of Medicine, Cardiff University CF14 4XN

2. Division of Population Medicine, Cardiff University School of Medicine, Neuadd Meirionnydd, Heath Park, Cardiff CF14 4YS

3. MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University CF24 4HQ

4. Current address for correspondence: Chester Medical School, University of Chester, Bache Hall, Chester. CH2 1BR.

a. These authors contributed equally to this report. We dedicate this paper to the memory of Raviram Ramesh.

b. Membership of the REGISTRY Investigators of the European Huntington’s Disease Network is provided after the references.

Running title: Reduced cancer incidence in HD

Corresponding author: Lesley Jones

MRC Centre for Neuropsychiatric Genetics and Genomics

School of Medicine, Cardiff University

Cardiff CF24 4HQ, UK

Phone: 44(0) 2920 688469

Email: JonesL1@cf.ac.uk
Abstract

BACKGROUND People with Huntington’s disease have been observed to have lower rates of cancers.

OBJECTIVE To investigate the relationship between age of onset of HD, CAG repeat length and cancer diagnosis. METHODS Data were obtained from the European Huntington’s disease network REGISTRY study for 6540 subjects. Population cancer incidence was ascertained from the GLOBOCAN database to obtain standardised incidence ratios of cancers in the REGISTRY subjects.

RESULTS 173/6528 HD REGISTRY subjects had had a cancer diagnosis. The age-standardised incidence rate of all cancers in the REGISTRY HD population was 0.26 (CI 0.22-0.30). Individual cancers showed a lower age-standardised incidence rate compared with the control population with prostate and colorectal cancers showing the lowest rates. There was no effect of CAG length on the likelihood of cancer, but a cancer diagnosis within the last year was associated with a greatly increased rate of HD onset (Hazard Ratio 18.94, p<0.001).

CONCLUSIONS Cancer is less common than expected in the HD population, confirming previous reports. However, this does not appear to be related to CAG length in HTT. A recent diagnosis of cancer increases the risk of HD onset at any age, likely due to increased investigation following a cancer diagnosis.

Keywords:
Huntington’s disease
Trinucleotide repeat
Cancer
Neurodegeneration
Introduction

Huntington’s disease (HD) is an inherited neurodegeneration of mid-life onset. It is caused by an expanded CAG repeat at the 5’ end of the HTT gene, which is translated to give a polyglutamine tract at the N-terminus of the encoded protein, huntingtin (HTT) (1). It is characterised by a movement disorder, cognitive decline and variable psychiatric symptoms with early and continuing cell death in the striatum(1,2). The disease is inexorably progressive and there is no treatment that can prevent the neurodegeneration(2).

Studies in the systematic population registries of the Scandinavian countries show a reduction in the expected age-matched incidence of cancer in subjects with a diagnosis of HD and spinal and bulbar muscular atrophy (SBMA, Kennedy’s disease) another disease caused by an expanded CAG tract(3,4). Scandinavian countries have country-wide registers that record whole population health so mining these data can be potentially very productive. Most countries do not have such comprehensive and well maintained registers and thus it is hard to replicate such studies. However, the Oxford Record Linkage Group examined rates of cancers in an all-England population study, the English linked hospital episode statistics (LHES), 1999–2010, and showed a similar effect(5). They examined HD, SBMA, and a larger group of hereditary ataxias (HA), which include the CAG repeat expansion associated spino-cerebellar ataxias (SCAs). The rate ratio cancer diagnosis in 4865 people with HD was 0.53, with no effect seen in subjects with a diagnosis of SBMA or HA. More recently Coarelli et al. (6) questioned a cohort of HD and SCA patients directly about their experience of cancer and found standardised incidence ratios of 0.21 in HD and 0.23 in SCAs.

A reduction in cancer incidence is seen in other neurodegenerative conditions. A systematic examination of records from over 500,000 subjects in observational studies of CNS disorders showed a robust lower cancer co-occurrence in all neurodegenerations, with strikingly significantly lower rates in Alzheimer’s disease (ES 0.32)(7). Their HD data was derived from Ji and Sorensen(3,4). By contrast Freedman et al.(8) observed only a modestly reduced risk of Alzheimer’s disease in cancer
survivors in a prospective analysis of 1.16 million subjects in a Medicare population (HR = 0.87 (95% CI = 0.84-0.90). To follow up these studies we examined the incidence of cancers in the EHDN REGISTRY study directly. We obtained the data from REGISTRY and the population rates from the Globocan study(9). We also examined the effect of the CAG length and the age of onset of HD on cancer incidence.

Materials and Methods

Participants

Data were provided from 6540 subjects participating in the REGISTRY study of the European Huntington's Disease Network (EHDN) prior to June 2013. 12 subjects originated in South East Asia and were excluded, giving 6528 subjects in the final study. REGISTRY is a large, prospective study observing the natural course, clinical spectrum and management of HD in European countries. More information on the REGISTRY study can be found at http://www.euro-hd.net/html/REGISTRY. All experiments were performed in accordance with the Declaration of Helsinki, full ethical approval for the REGISTRY study was obtained in each of the participating countries, and all participants gave written informed consent. The information includes demographics, HD related CAG repeat length, age at onset of HD, cancer and comorbidity, and medication data. Whilst we obtained data on other aspects of medical history and on alcohol use, smoking, drug abuse and employment we did not use these in analysis as the numbers of cancer patients were relatively low and only 4 subjects were recorded as having a history of lung cancer, for instance. Thus further subdivision of the sample was not deemed useful. Country of clinical site was obtained to adjust for country-specific cancer incidence with the UK, Spain, France, Germany, Italy, Poland given directly and a “Europe” category for all those from countries contributing relatively few subjects. Incidences of cancer were identified by searching for "cancer", "carcinoma" and "malignant neoplasm" in the comorbidity data field and cross-checked using the ICD10 codes given: 171 patients were identified. To provide some confirmation of the cancer diagnosis we looked for subjects taking medication specific for cancers
and 25/171 (14.6%) were confirmed by medication. However, this search also identified two patients taking cancer-specific therapies who did not have cancer listed as a co-morbidity. In the final sample we had 173 subjects with evidence for a diagnosis of cancer.

Comparison of age-standardised cancer incidence

In order to ascertain whether the number of cancer cases is more or less than might be expected we compared these data with age-adjusted cancer incidence from Europe available on the GLOBOCAN website (http://globocan.iarc.fr): the data used for the analysis were from 2012 (9) as the REGISTRY data were obtained in June 2013 and thus reflected data captured in the period 2012-13.

The age-standardised incidence rate (SIR) was calculated (equation 1). Person-years were calculated from date of birth until date of diagnosis of cancer or the end of the study period (whichever came first), then the ratio of observed number of cases to expected number of cases was calculated but adjusted for age and sex. This is important in this analysis as the REGISTRY cohort is substantially younger than those at highest risk for cancers in the European population and cancer incidence is age-related.

Equation 1

\[
SIR = \frac{\sum_{j=1}^{J} o_j}{\sum_{j=1}^{J} n_j \lambda_j} = \frac{O}{E^*}
\]

\(O\) = observed cancer cases in the study group (173), \(E^*\) = sum of stratum-specific person years \((n_j)\) in subjects with HD x stratum-specific standard incidence rates \((\lambda_j^*)\) obtained from the GLOBOCAN reference group(9). The age stratification is given in Table 1. The weighting was adjusted to reflect the proportions of different countries amongst the 6528 HD subjects.

Relationship of cancer incidence to HTT CAG repeat length and age at onset of HD
We analysed time from birth to HD onset using Cox proportional hazards models (10), adjusting for a time-varying covariate defined to be 0 until a person received a cancer diagnosis, and 1 thereafter. The effect of this is to compare, at every age, the rate of HD onset between those with, and without, a previous cancer diagnosis. This corrects for the fact that people with cancer are likely to be older (since they have lived long enough to develop cancer) than those without, and thus to have a later HD onset, since their HD incidence rates are being compared to people of the same age without a cancer diagnosis. A Cox proportional hazard model was used to assess whether CAG repeat length was related to the age of cancer incidence, with adjustment for sex and stratification by country. We also assessed whether a cancer diagnosis influenced the age of onset of HD.

To investigate the possibility that a cancer diagnosis may quickly bring about increased investigation of HD symptoms, and thus an apparent increase in HD incidence rate, we also included a time-varying covariate that was only 1 during the year immediately following a cancer diagnosis, and 0 elsewhere.

Results

There were 6540 patients identified from the EHDN REGISTRY study(11) with appropriate data: details are given in Table 1. Eight subjects were excluded as they were collected outside Europe (Singapore) and four had incomplete records. The 6528 subjects remaining were collected in European clinics, had a clinical diagnosis of HD and 173 (2.65%) of these patients also had information consistent with a cancer diagnosis. In the whole cohort 52.6% of subjects are female and 47.4% male. There is a higher proportion of females amongst those with a diagnosis of cancer than in those without (Table 1): this is attributable to the relative youth of our HD sample as the incidence of breast cancer is higher at relatively young ages compared with many other cancers. The sample size is too small to split by specific cancers to explore this further. The average age of the non-cancer HD subjects at the point of data collection (age at last visit) is over 10 years younger than in those with a cancer diagnosis and the mean CAG repeat length is longer in the non-cancer cohort than in the subjects with cancer (Table 1).
The distribution of the cancer diagnoses in the 173 subjects is given in Table 2. The standardised incidence rate (SIR) of cancers in the HD population was calculated (Table 2) and for all cancers was 0.26 (CI 0.22 – 0.30). All cancers were observed at significantly lower levels than in the European population though there were differences in the rates between the types of cancer. Uterine and skin cancers had age-standardised incidence rates closest to the European levels with colorectal, breast and prostate cancer all recorded at less than half the rates in the European population.

Those with a cancer diagnosis have, on average, over 10 years later age of onset of HD than those without. Testing whether this is significantly different, is, as noted above, complicated by the fact that cancer incidence rises as people age, and those with later ages of onset of HD will, on average, live longer and thus be more likely to develop a cancer(12). Modelling this using a cancer diagnosis at any time in the past as a time-dependent covariate in a Cox proportional hazards model(10) of time to HD onset, shows that those with a cancer diagnosis at any age are very slightly more likely to have HD onset than those without cancer at the same age (HR 1.2773; 95% CI 1.06 to 1.61, p < 0.001). A cancer diagnosis during the past year is strongly associated with an increased rate of HD onset (HR 18.95, 95% CI 13.01 to 23.20, p < 0.001).

As we noted that the subjects with cancer diagnoses have shorter CAG repeat lengths than those without (Table 1), we investigated whether this is significantly associated with the likelihood of developing cancer. Given that the CAG repeat showed the expected significant inverse correlation with age of HD onset (p < 2x10^{-16}), the apparent association of cancer with CAG length could be a result of people with shorter CAG repeats on average living longer (as age at death in HD is inversely correlated with expanded HTT allele CAG repeat length), and thus having a greater risk of developing cancer(12). To test whether this bias in lifetime length accounts for the apparent association between CAG length and cancer diagnosis we used a Cox proportional hazards model (10) with time from birth to cancer diagnosis as an outcome (death and HD diagnosis both as censoring) and CAG
length as a covariate. We also adjusted for age and sex and used different baseline hazards for the different countries. There are no discernible effects of CAG repeat length on cancer incidence.

Discussion

The standardised incidence ratio for all cancers detected in the REGISTRY subjects is substantially lower than that in the non-HD population, as reported previously(3–6). Cancer might be underdiagnosed in the HD population in later stages of the illness as potentially relevant signs or symptoms may not be noticed or acted upon, or may be masked by HD symptoms – cachexia for instance, common in cancers, is also common in late stage HD. Our findings in the REGISTRY study show a lower rate of cancers than that reported in previous studies of cancer in HD subjects in population cohorts (3–5) which could indicate under-ascertainment of cancer in our sample. However, the recent study examining French HD and SCA populations and asking directly about cancer show a similar SIR to that which we show in this study(6). However, it is also likely that having a diagnosis of HD, and therefore coming to clinical attention, makes diagnosis of any comorbidities more likely. Turner et al.(5), studying hospital admission records in England, found that there was an increased rate of cancer diagnoses in the first year after admission for HD. The overall decrease in the rate of cancers that they observed among HD patients (rate ratio = 0.71) was made more extreme if the first year was excluded (rate ratio = 0.53). This indicates that under-diagnosis is less likely in this population, rather than more likely: we showed a similar effect in the REGISTRY subjects. The only cancer they found to be as common as in the general population was lung cancer, which Turner et al.(5) attributed to the higher rate of smoking in the HD subjects(13). We had only four cases of lung cancer in our study, too few to study separately.

The observation that two subjects were taking tamoxifen but had no recorded cancer diagnosis indicates that one of the reasons for the lower rate of all cancers observed here might well be poor recording of comorbidities in the REGISTRY database. This could result from poor recall of the participant, lack of knowledge of their partners and carers in clinic or from subjects dropping out of
the study after a diagnosis of cancer due to treatment or other effects of the cancer itself and issues in the systematic collection of medical history in clinic.

In an attempt to overcome the limitations of these data we investigated the effect of CAG repeat length on the time to a cancer diagnosis with the view that any correlation might implicate the CAG length at the \textit{HTT} locus in promoting or delaying cancer. No such effect was observed. To further investigate any link between the two diseases we also examined whether having a cancer diagnosis was associated with age at onset of HD. This is more difficult as there are competing risks: cancer risk is age-related, and a cancer diagnosis may influence time to death as well as time to HD onset, as may \textit{HTT} CAG length. However, we observe that a diagnosis of cancer at any time slightly increases the likelihood of HD onset: this marginal effect requires replication in further studies. In addition, the study of Turner \textit{et al.}(5) found that cancer incidences were higher in the year around HD onset and we see a similar effect in the REGISTRY data. This latter is likely to be an ascertainment bias: subjects receiving clinical attention are more likely to have any comorbid condition detected and therefore under-diagnosis of cancer is less likely in this population.

What might underlie the later onset of cancer in HD subjects? Defects in the DNA damage response (DDR) cause cancers (14) and the DDR has recently been implicated in altering the age at motor onset of HD and other repeat disorders (15,16). The direction of this effect is unclear and alterations in the operation of the DDR have been shown to be both protective and deleterious in HD and other neurodegenerations. Mismatch repair and base-excision repair have both been implicated as promoting degeneration in the repeat disorders, possibly through somatic expansion of repeats (17,18). Many other neurological diseases are caused by genetic defects in the DDR (19) but conversely, multiple protective effects of the DDR in neurodegenerations have also been observed (20–27).

One consequence of the involvement of the DDR in modifying HD onset might be that although age at onset is later in subjects who have had a cancer diagnosis, if they have cancer in the presence of
lower DDR activity, then that cancer might be more aggressive with a faster course. HTT has been implicated in acceleration of breast cancer development and metastasis in mouse models of HD and to regulate cell division in mammary stem cells (28). In subjects with breast cancer a reduction of ovarian cancer was shown in BRCA2 mutation carriers also carrying longer HTT CAGs(29), along with a paradoxical finding of increased metastasis and younger ages of cancer onset. Direct examination of metastatic breast cancer showed HTT mRNA downregulation in primary tumours and that the expression and localisation of the tight junction protein ZO1 was controlled by HTT(30). Lower expression of HTT was correlated with less HTT and ZO1 proteins at tight junctions, poorer differentiation of tumour cells and was predictive of worse cancer prognosis(31).

It is not clear how the effect of increased CAG repeats, which translate to expanded polyglutamine tracts in the cognate proteins, could potentially mediate cancer risk but the underlying biology of HD offers clues. Huntingtin (HTT) is expressed in all cells: cell death is promoted by mutant HTT (32–34) and non-mutant HTT is anti-apoptotic(35). HTT localises to spindle poles at mitosis and has a role in cell fate in neurons(36) that may extend to other cell types: therefore in neuronal cells it has been suggested that HTT regulates the balance between survival and death. Most of the experimental work examining these functions has only looked at long (>40) CAGs compared with a single normal range CAG length thus our knowledge of the downstream effects of small differences in the CAG repeat length below 40 CAGs on HTT biology are limited. If small modulations in CAG length in HTT and potentially other genes containing polymorphic CAG repeats impose a relatively small effect on cell fate decisions over a long period then they could well be one of the multiple factors that influence whether a cell divides or dies, contributing to the risk of uncontrolled cell division. The effect could in part be explained by the RNA generated from the expanded CAG repeat in HTT. sCAGs are small CAG repeat RNAs generated from the HTT gene (37) which are toxic to neurons (38) and may operate via an RNAi-based mechanism and downregulate trinucleotide repeat-containing survival genes, leading to tumour cell death (39). Similar findings in other neurodegenerative diseases(7) might implicate a broader biological relationship between cell survival and cell death in
the CNS, manifesting as neurodegeneration. Thus determining the relationship between CAG length in \textit{HTT} and other polymorphic CAG repeat loci could well reveal fundamental biological mechanisms underlying both cancer risk and neurodegeneration.

Acknowledgments

We wish to acknowledge the time and effort of all participants in this study. We thank Daniel Nelmes for helpful advice regarding cancer diagnoses. Funding: the European Huntington's Disease Network is funded by the CHDI Foundation, Inc.: this project was EHDN project 478, and this work was supported by the MRC (MR/L010305/1).

Author contributions

The REGISTRY Investigators of the European Huntington’s Disease Network collected the data. PM, RP, RR, RN and DF analysed the data, AH assisted in interpreting the clinical data, PH and DF supervised the data analysis, LJ conceived the study and wrote the main manuscript text. All authors reviewed the manuscript.

Conflict of Interest

The authors declare no competing financial interests.

References

Members of the REGISTRY Investigators of the European Huntington’s Disease Network

* member of Registry steering committee

** Language coordinator

Bruno
Owen
Lashwood
Gallentree
Valle Guzman
Kasia Sieradzan
Vingerhoets
Ruth Fullam
María Teresa Cáceres Redondo
Andrews
Ribacoba
Jeweinat Figuerola
Westman
Catherine Deith
Dolores Alarcón
Marie McGill
Emily Gerrans
Buchanan
Longthorpe
Souza (Keylock)
Laura Vivancos
Sonia González
Luis Menéndez Guisasola
Marta Para Prieto
René
Ribacoba
Carlos Salvador
Pablo Sánchez
Lozano
Inés Legarda
Ramirez
Penelope Navas
Arques
Monica Rodriguez
Lopera
Barbara Vives
Pastor
Itziar Gaston
Fermin Garcia-Amigo
Maria Dolores Martinez-Jaurrieta
Maria Antonia Ramos
Arroyo
Fátima Carrillo
María Teresa Cáceres
Redondo
Pablo Mir
Laura Vargas
González
Fátima Damas
Hermoso
José Manuel
Garcia Moreno
Carolina Mendez
Lucena
Eva Maria
Pacheco
Cortegana
José
Chacón
Peña
Luís
Redondo
Violeta Sánchez
Sánchez
Cristina
Melgar
Fernandez
María
Dolores
Romero
Lemos
Maite
Paredes
Mata
Rocio
Villagrá
Casado
María
Bosca
Juan
Andres
Burguera
Francisco
Castera
Brugada
Carmen
Peiró
Vilaplana
Pilar
Solís
Begoña
Jeweinat
Figueroa
Paloma
Millan
Palanca
Jan
Wahlström
Ulrika
Hästerey
Gunderson
Gunnar
Fredlund
Radu
Constantinescu
Liselotte
Neleborn
Lingejärd
Maria
Berglund
Petter
Berglund
Petter
Linnands
Elisabeth
Björnsson
Martin
Paucar
Sven
Pålhn
Ponen
Tina
Walden
Ghada
Loutfi
Carina
Olofsson
Eva-Lena
Statinn
Laila
Westman
Birgitta
Wikström
Camilla
Ekwall
Marie-Louise
Göller
Jimmy
Sundblom
Jean-Marc
Burgunder
Yanik
Stebler
Alain
Kaelin
Irene
Romero
Michael
Schüpbach
Sabine
Weber
Zaugg
Federica
Esposito
Jean-Marc
Good
Karín
Paus
Francois
Vingerhoefts
Christian
Wider
Hans
Jung
Jens
A.
Petersen
Maria
Ligon-Auer
Violeta
Mihaylova
Lorna
Downie
Roisin
Jack
Kirsty
Matheson
Zosia
Miedzybrodzka
Daniela
Rae
Sheila
A
Simpson
Fiona
Summers
Alexandra
Ure
Vivien
Vaughan
Timothy
Harrower
Nathan
Vernon
Shabana
Akhtar
Jenny
Crooks
Adrienne
Curtis
Jenny
de Souza
(Keylock)
Hugh
Rickards
Ian
Wright
Elizabeth
Cuthard
Beverley
Hayward
Kasia
Sieradzan
Abigail
Wright
Roger
A.
Barker
Deidre
O’Keefe
Anna
Gerritz
(di
Pietro)
Kate
Fisher
Anna
Goodman
Susan
Hill
Sarah
Mason
Rachel
Swain
Natalie
Valle
Guzman
Monica
Busse
Cynthia
Butcher
Stephen
Dunnett
Catherine
Clenaghan
Ruth
Fullam
Sarah
Hunt
Una
Jones
Hanan
Khaliil
Sara
Minster
Michael
Owen
Kathleen
Price
Jenny
Townhill
Anne
Rosser
David
Goudie
Lindsay
Buchanan
Paula
McFadyen
Alison
Tonner
Anne-Marie
Taylor
Maureen
Edwards
Carrie
Ho
Mary
McGill
Mary
Porteous
Pauline
Pearson
Sarah
Irvine
Peter
Brockie
Jillian
Foster
Nicola
Johns
Sue
McKenzie
Jean
Rothery
Gareth
Thomas
Shona
Yates
Catherine
Deith
Jane
Ireland
Stuart
Ritchie
Liz
Burrows
Amy
Fletcher
Alison
Harding
Fiona
Laver
Mark
Silva
Aileen
Thomson
Carol
Chu
Carole
Evans
Deena
Gallentree
Stephanie
Hammer
Alison
Kraus
Ivana
Markova
Ashok
Raman
Alyson
Andrew
Julie
Frost
Rupert
Noad
Emma
Hobson
Stuart
Jamieson
Mandy
Longthorpe
Ivana
Markova
Hannah
Musgrave
Caroline
Peacy
Ashok
Raman
Liz
Rowett
Jean
Toscano
Sue
Wild
Pam
Yardumian
Carole
Clayton
Heather
Dipple
Dawn
Freire-Patio
Caroline
Hallam
Julia
Middleton
Sundus
Alusi
Rhys
Davies
Kevin
Foy
Emily
 Gerrans
Louise
Pate
Uruj
Anjum
Jan
Coebergh
Charlotte
Eddy
Nayana
Lahir
Meriel
McEntagart
Michael
Patton
Maria
Peterson
Sarah
Rose
Thomasin
Andrews
Andrew
Dougherty
Charlotte
Golding
Fred
Kavaler
Hana
Laing
Alison
Lashwood
Dene
Robertson
Deborah
Ruddy
Alastair
Santhouse
Anna
Whaite
Stefania
Bruno
Elvina
Chu
Karen
Doherty
Charlotte
Golding
Salman
Haider
Davina
Hensman
Monica
Lewis
Marianne
Novak
Aakta
Pate
Nicola
Robertson
Elisabeth
Rosser
Sarah
Tabrizi
Rachel
Taylor
Thomas
Warner
Edward
Wild
Natalie
Arran

4. Medizinische Universität Graz, Psychiatrie, Graz, Austria.
5. Universitätsklinik Innsbruck, Neurologie, Innsbruck, Austria.
6. Christian-Doppler-Klinik Salzburg, Universitätsklinikum der PMU, Universitätsklinik für Neurologie, Salzburg, Austria.
7. St-Luc University Hospital, Bruxelles, Belgium.
8. Institut de Pathologie et de Génétique (IPG), Charleroi, Belgium.
10. Neurologická klinika, Faiktní nemocnice Olomouc, Olomouc, Czech Republic.
11. Extrapyramidové centrum, Neurologická klinika, 1. LF UK a VFN, Prague, Czech Republic.
12. Odense University Hospital, Aarhus, Denmark.
13. Rigshospitalet, Memory clinic, Copenhagen University Hospital, Denmark.
14. Dep. of Neurology, Oulu, Finland.
15. Dep. of Medical Genetics, Oulu, Finland.
20. Terveystalo Healthcare Service Centre, Tampere, Finland.
21. Rehabilitation Centre Suvituuli, Turku-Suvituuli, Finland.
22. Centre de référence des maladies neurogénétique-CHU d’Angers, Angers, France.
23. Hôpital Pellegrin, Bordeaux, France.
24. Hôpital Gabriel Montpied, Clermont-Ferrand, France.
25. Hôpital Henri Mondor, Creteil, France.
26. CHRU Roger Salengro, Lille, France.
27. CHU Sud, Amiens, France.
28. Hôpital La Timone, Marseille, France.
30. Hôpital Charles Nicolle, Rouen, France.
31. Hôpital Civil, Strasbourg, France.
32. Hôpital Purpan, Toulouse, France.
33. Universitätsklinikum Aachen, Neurologische Klinik, Aachen, Germany.
34. Universitätsmedizin Berlin, Klinik und Poliklinik für Neurologie, Berlin, Germany.
35. Huntington-Zentrum (NRW) Bochum im St. Josef-Hospital, Bochum, Germany.
36. Reha Zentrum in Dinslaken im Gesundheitszentrums Lang, Dinslaken, Germany.
37. Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Klinik und Poliklinik für Neurologie, Dresden, Germany.
38. Universitätsklinikum Erlangen, Molekulare Neurologie und Klinik für Neurologie, Erlangen, Germany.
39. Universitätsklinik Freiburg, Neurologie, Freiburg, Germany.
40. Universitätsklinikum Hamburg-Eppendorf, Klinik und Poliklinik für Neurologie Hamburg, Germany.
41. Neurologische Klinik mit Klinischer Neurophysiologie, Medizinische Hochschule Hannover, Hannover, Germany.
42. Schwerpunktprazis Huntington, Neurologie und Psychiatrie, Itzehoe, Germany.
43. Klinik für Psychiatrie und Psychotherapie Marburg-Süd, Marburg KPP, Germany.
44. Huntington-Ambulanz im Neuro-Kopfzentrum - Klinikum rechts der Isar der Neurologischen Klinik und Poliklinik der Technischen Universität München, München, Germany.
45. Universitätsklinikum Münster, Klinik und Poliklinik für Neurologie, Münster, Germany.
46. Isar-Amper-Klinikum - Klinik Taufkirchen (Vils), Taufkirchen, Germany.
47. Universitätsklinikum Ulm, Neurologie, Ulm, Germany.
48. Universitätsklinikum Würzburg, Neurologie, Würzburg, Germany.
49. Neuropychiopathology of Pain Unit, Basic Medical, Neuroscience and Sensory System Department, University of Bari, Bari, Italy.
50. DIBINEM - Alma Mater Studiorum - Università di Bologna, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.
51. Department of Neuroscience, University of Florence & Careggi University Hospital, Florence, Italy.
52. Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy.
53. SODS Genetica delle Malattie Neurodegnerative e Metaboliche & U.O. Neurologia, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
Naples (Department of Neurosciences and Reproductive and Odontostomatological Sciences, Federico II University of Naples):

IRCCS Neuromed, Pozzilli (IS), Italy.

Department of Neurology, Università Cattolica del Sacro Cuore; Institute of Translational Pharmacology & Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.

Azienda Ospedaliera Sant'Andrea; Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University of Rome; Institute of Translational Pharmacology & Institute of Cognitive Sciences and Technologies, National Research Council of Italy, Rome, Italy.

Medisch Spectrum Twente, Enschede, Netherlands.

Polikliniek Neurologie, Groningen, Netherlands.

Leiden University Medical Centre, Leiden, Netherlands.

Maastricht University Medical Center, Maastricht, Netherlands.

Universitair Medisch Centrum St. Radboud, Neurology, Nijmegen, Netherlands.

Haukeland University Hospital, Dept of Medical Genetics and Olaviken Psychiatric Hospital, Bergen, Norway.

Dept. of Medical Genetics, Dept. of Neurology, Dept.of Neurorehabilitation, Oslo University Hospital, Norway.

St. Olavs Hospital, Trondheim, Norway.

St. Adalbert Hospital, Gdansk, Medical University of Gdansk, Neurological and Psychiatric Nursing Dpt., Gdansk, Poland.

Medical University of Silesia, Katowice, Poland.

Krakowska Akademia Neurologii, Krakow, Poland.

Poznan University of Medical Sciences, Poznan, Poland.

Medical University of Warsaw, Neurology, Warsaw-MU, Warsaw, Poland.

Institute of Psychiatry and Neurology Dep. of Genetics, First Dep. of Neurology, Warsaw-IPiN, Warsaw, Poland.

Hospital Universitário de Coimbra, Coimbra, Portugal.

Hospital dos Capuchos, Centro Hospitalar Lisboa Central, Lisbon, Portugal.

Hospital de Santa Maria, Clinical Pharmacology Unit, Instituto de Medicina Molecular, Lisbon, Portugal.

Hospital Fernando da Fonseca, Lisbon, Portugal.

Hospital de São João, Porto, Portugal.

Hospital Infanta Cristina, Badajoz, Spain.

Hospital Universitari de Bellvitge, Barcelona, Spain.

Hospital Clínic i Provincial, Barcelona, Spain.

Barcelona-Hospital Mútua de Terrassa, Barcelona, Spain.

Hospital Mare de Deu de La Merced, Barcelona, Spain.

Hospital de la Santa Creu i Sant Pau, Barcelona-Santa Cruz y San Pablo, Barcelona, Spain.

Hospital de Cruces, Bilbao, Spain.

Servicio de Neurología Hospital General Yagüe, Burgos, Spain.

Hospital Insular de Gran Canaria, Canarias, Spain

Hospital Universitario, Fuenlabrada, Spain.

Hospital Universitario San Cecilio, Neurología, Granada, Spain
88. Fundación CIEN, Madrid-BTCIEN, Madrid, Spain.
89. Hospital Clínico Universitario San Carlos, Madrid-Clinico, Madrid, Spain.
90. Hospital Ramón y Cajal, Neurología, Madrid RYC, Madrid, Spain.
92. Hospital Universitario Virgen de la Arrixaca, Murcia, Spain.
93. Hospital Central de Asturias, Oviedo, Spain.
94. Hospital Universitario Son Espases, Palma de Mallorca, Spain.
95. Complejo Hospitalario de Navarra, Pamplona, Spain.
96. Hospital Universitario Virgen del Rocío, Sevilla, Spain.
97. Hospital Virgen Macarena, Sevilla, Spain.
98. Residencia Santa Ana, Sevilla, Spain.
99. Hospital la Fe, Valencia, Spain.
100. Sahlgrenska University Hospital, Göteborg, Sweden.
101. Stockholm Karolinska University Hospital, Stockholm, Sweden.
102. Umeå University Hospital, Umeå, Sweden.
103. Uppsala University Hospital, Uppsala, Sweden.
104. Swiss HD Zentrum and Zentrum für Bewegungsstörungen, Neurologische Klinik und Poliklinik, Universität Bern, Bern, Switzerland.
105. Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland
106. University Hospital and University of Zurich, Zürich, Switzerland.
107. NHS Grampian Clinical Genetics Centre & University of Aberdeen, Aberdeen, UK.
108. North Devon Healthcare NHS Trust, Barnstaple, Devon, UK.
109. The Barberry Centre, Dept of Psychiatry, Birmingham, UK.
110. North Bristol NHS Trust, Southmead Hospital, Bristol, UK.
111. Cambridge Centre for Brain Repair, Forvie Site, Cambridge, UK.
112. Schools of Medicine and Biosciences, Cardiff University, Cardiff, UK.
113. Scottish Huntington’s Association, Ninewells Hospital, Dundee, UK.
114. SE Scotland Genetic Service, Western General Hospital, Edinburgh, UK.
115. Department of Neurology Royal Devon and Exeter Foundation Trust Hospital, Exeter, UK.
116. Scottish Huntington’s Association Whyteman’s Brae Hospital, Fife, UK.
117. Glasgow HD Management Clinic, Southern General Hospital, Glasgow, UK.
118. Department of Neurology Gloucestershire Royal Hospital, Gloucester, UK.
119. Castle Hill Hospital, Hull, UK
120. Millaton Court, Launceston, UK.
121. Chapel Allerton Hospital, Department of Clinical Genetics, Leeds, UK.
122. Leicestershire Partnership Trust, Mill Lodge, Leicester, UK.
123. Walton Centre for Neurology and Neurosurgery, Liverpool, UK.
124. St. Georges Hospital, London, UK.
125. Guy’s Hospital, London, UK.
126. The National Hospital for Neurology and Neurosurgery, London, UK.
127. Genetic Medicine, University of Manchester, Manchester Academic Health Sciences Centre and Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
128. Centre for Life, Institute of Medical Genetics, Newcastle-upon-Tyne, UK.
129. St Andrew’s Healthcare, Northampton, UK.
131. Plymouth Huntington Disease Service, Mount Gould Hospital, Plymouth, UK.
132. Brain Injury Service, Poole Hospital, Poole, UK.
133. Neurology Department, Preston Royal Hospital, Preston, UK.
134. The Royal Hallamshire Hospital– Shefield Children’s Hospital, Sheffield, UK.
135. Southampton General Hospital, Southampton, UK.
136. Victoria Centre, Great Western Hospital, Swindon, UK.
137. Institute for Genetic and Biomedical Research, University of Milan, Italy
138. European Huntington’s Disease Network (EHDN), Ulm, Germany
139. CHDI Foundation, Inc., New York, USA
140. Research Center of Neurology, Moscow, Russia
141. 2mt Software GmbH, Ulm, Germany
142. Clinic of Neurology, Charles University and General Teaching Hospital, Prague, Czech Republic.
143. Center for Rare Disorders, Oslo University Hospital HF, Rikshospitalet, Norway
144. Department of Neurology, Turku University Hospital, Turku, Finland
145. Clinic of Psychiatry, Charles University and General Teaching Hospital, Prague, Czech Republic.
146. IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
147. LIRH Foundation, Rome, Italy
Table 1 Characteristics of those with and without a cancer diagnosis in the REGISTRY cohort

<table>
<thead>
<tr>
<th>Age</th>
<th>Non-cancer patients</th>
<th>Cancer patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=6355</td>
<td>n= 173</td>
</tr>
<tr>
<td>0 to 10</td>
<td>1 (0.02%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>11 to 20</td>
<td>14 (0.2%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>21 to 30</td>
<td>373 (5.9%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>31 to 40</td>
<td>942 (14.8%)</td>
<td>2 (1.2%)</td>
</tr>
<tr>
<td>41 to 50</td>
<td>1588 (25.0%)</td>
<td>14 (8.1%)</td>
</tr>
<tr>
<td>51 to 60</td>
<td>1621 (25.5%)</td>
<td>36 (20.8%)</td>
</tr>
<tr>
<td>61 to 70</td>
<td>1218 (19.2%)</td>
<td>57 (33.0%)</td>
</tr>
<tr>
<td>71 to 80</td>
<td>502 (7.9%)</td>
<td>53 (30.6%)</td>
</tr>
<tr>
<td>81 to 90</td>
<td>92 (1.5%)</td>
<td>10 (5.8%)</td>
</tr>
<tr>
<td>91 to 100</td>
<td>4 (0.06%)</td>
<td>1 (0.6%)</td>
</tr>
<tr>
<td>Average</td>
<td>52.1</td>
<td>66.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M/F</th>
<th>3009/3346 (47.4%)</th>
<th>62/111 (64.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAG Repeat Length</td>
<td>44.1 (±4.2) n=5029</td>
<td>42.1 (±2.3) n=173</td>
</tr>
<tr>
<td>Age at onset HD</td>
<td>45.7 (±13.9) n=6354</td>
<td>58.0 (±10.7) n=154</td>
</tr>
</tbody>
</table>
Table 2 Standardised incidence rates of cancers in the REGISTRY population

<table>
<thead>
<tr>
<th>Cancer site</th>
<th>SIR (95% CI)</th>
<th># Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breast</td>
<td>0.37 (0.26-0.48)*</td>
<td>44</td>
</tr>
<tr>
<td>Prostate</td>
<td>0.30 (0.17-0.43)*</td>
<td>20</td>
</tr>
<tr>
<td>Skin</td>
<td>0.59 (0.33-0.85)*</td>
<td>20</td>
</tr>
<tr>
<td>Uterus</td>
<td>0.66 (0.36-0.96)*</td>
<td>19</td>
</tr>
<tr>
<td>Colorectal</td>
<td>0.26 (0.13-0.39)*</td>
<td>16</td>
</tr>
<tr>
<td>Kidney</td>
<td>0.40 (0.12-0.68)*</td>
<td>8</td>
</tr>
<tr>
<td>Other Sites</td>
<td>0.19 (0.13-0.24)*</td>
<td>46</td>
</tr>
<tr>
<td>All</td>
<td>0.26 (0.22-0.30)*</td>
<td>173</td>
</tr>
</tbody>
</table>

SIR = standardised incidence rate. CI = confidence interval. *significantly different from expected. Other sites include ovary (8), lung (4), bladder (4), brain (3), thyroid (3), liver/bile duct (3) and stomach (3).