
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/112134/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Minford, Patrick, Wickens, Michael and Xu, Yongdeng 2019. Testing part of a DSGE model by

indirect inference. Oxford Bulletin of Economics and Statistics 81 (1) , pp. 178-194.

10.1111/obes.12253 file 

Publishers page: https://doi.org/10.1111/obes.12253 <https://doi.org/10.1111/obes.12253>

Please note: 

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See 

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.



Testing part of a DSGE model by Indirect

Inference∗

Patrick Minford (Cardiff University and CEPR)†

Michael Wickens (Cardiff University, University of York and CEPR)‡

Yongdeng Xu (Cardiff University)§

May 2018

Abstract

We propose a way of testing a subset of equations of a DSGE model.
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1 Introduction

In this paper we show how to test subsets of the structural equations of a

DSGE model using indirect inference (II). Although a key feature of DSGE

models is that they represent general equilibrium, implying that the model

is a complete structural system, it may be of interest to examine individual

structural equations or subsets of equations. One reason is that econometric

tests of DSGE models, although rare, commonly lead to their rejection. It may

therefore be useful to find which of the structural equations is causing the whole

model to be rejected. A more positive reason for performing subset tests is that

we can also discover which parts of the model are not rejected and so do not

need respecifying.

This problem falls under the category of limited information inference. In

deriving our test we make use of a key result on statistical inference for limited

information models by Phillips and Wickens (1978) and Godfrey and Wickens

(1982). Given a subset of the structural equations of an econometric model,

they show that a simple way to estimate and test these equations is to augment

them with unrestricted reduced-form equations of the endogenous variables not

explained by, but included in, the subset. Full information statistical procedures

can then be used on the resulting complete model. For example, using full

information maximum likelihood estimation would give the standard limited

information maximum likelihood estimator. This method can easily be adapted

for use in indirect inference and applied to DSGE models.

The method of indirect inference was first proposed by Gourieroux, Mon-

fort and Renault (1993), Gregory and Smith (1993) and Smith (1993). It was

shown by Le et al. (2011, 2016) to be well-suited to estimating and testing

DSGE models, notably those already estimated by Bayesian methods. Le et

al. (2011) tested the widely-cited Smets-Wouters (2007) model of the United

States using indirect inference and found it was rejected but, when respecified

to have greater price flexibility, it was not rejected. These findings provide part

of the motivation for the application of the subset test proposed in this paper

to the wage-price sector of the Smets-Wouters model. Le et al. (2016) showed

that the power of tests of DSGE models based on indirect inference was very

high and better than other tests such as likelihood ratio tests. In this paper

we examine whether the good power property of indirect inference tests carries

over to testing a subset of a DSGE model.

The solution of a (linearized) DSGE model is a VAR in the endogenous
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variables of the model plus conditional expectations of its current and future

exogenous variables. If the exogenous variables are represented by a VAR then

solution of the complete set of variables - endogenous and exogenous - can be

represented by a VAR involving both sets of variables, see Wickens (2014).1

The coefficients of this VAR model of the full data set are functions of the

structural parameters of the DSGE model and are therefore restricted. An II

test is provided by comparing the VAR estimated on the actual data with the

VAR estimated using data simulated from the estimated DSGE model where

the original data have been used to estimate the DSGE model. Le et al. (2011,

2016) propose using a Wald test based on the VAR coefficients. Alternatively,

the test could be based on other features of the model, such as the associated

impulse response functions or the moments - Minford, Wickens and Xu (2016)

compare the test with these features and find, mostly, that the properties are

quite similar.

The estimation and evaluation of misspecified DSGE models using indirect

inference has been addressed previously in Dridi, Guay and Renault (2007).2

These authors propose a two-step procedure to achieve both objectives: estima-

tion and evaluation of misspecified DSGE models. In the first step the model

is estimated using a well-chosen set of moments; in the second step, the model

is evaluated with chosen features of the data that the model tries to replicate.

They derive the asymptotic distribution of the test statistic under the hypothesis

that the DSGE model is misspecified.

Our paper differs in several respects from that of Dridi et al. First, our focus

is not on the whole DSGE model but on subsets of equations of the whole model

as our aim is not to evaluate the whole model which, as Dridi et al. note, is likely

to be rejected, but to find which parts of the model, if any, are not rejected. We

regard this as a useful and positive exercise rather than yet another negative

verdict on DSGE models. As a result we use a limited information and not a full

information test. A second difference is that we derive a numerical finite sample

distribution of our test statistic obtained through simulation rather than the

1Wickens (2014) suggested that the reason why DSGE models forecast no better than,
and very similar to, a VAR could probably be attributed to the structure of the solution
of a DSGE model. In order for a DSGE model to forecast better than a VAR it would be
necessary to be able to forecast the future values of the exogenous variables that appear in
its solution otherwise the DSGE forecasts would be, in effect, forecasts from a VAR in the
endogenous variables whose coefficients are restricted by the model. And it is well-known
that an unrestricted VAR is likely to forecast better than a restricted VAR, especially if the
restrictions are incorrect. In effect, an unrestricted VAR is partially correcting for this.

2We are grateful to the referees for drawing our attention to the paper by Dridi et al.
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use of asymptotic distribution theory, and hence the sandwich formulae. Third,

we examine the performance of our test and compare it with that of Dridi et

al. who do not evaluate the performance of their test statistic. Fourth, we use

our test to carry out further empirical analysis of the widely-used Smets and

Wouters (2007) DSGE model. Our main empirical finding is that some parts of

the model are rejected but others are not rejected.

Our test statistic is a Wald test which Le et al. (2016) have shown is very

powerful; falsifying the DSGE model’s coefficients by as little as 7% usually re-

sults in a 100% rejection. In view of this whole-model finding, the non-rejection

of a subset of the DSGE model would be a strongly positive result. As the

solution of a DSGE model is a restricted VAR, a natural way to modify indirect

inference for testing a subset of DSGE structural equations is to augment this

subset with unrestricted VAR equations derived from the solution to the cor-

responding, but not necessarily fully specified, complete DSGE model. These

unrestricted VAR equations together with the specified subset of DSGE equa-

tions form a new complete, but limited information, DSGE model. The solution

to this completed DSGE model will be a VAR that incorporates the restrictions

from only the specified subset of equations. Indirect inference can now be car-

ried out as before by simulating data from the completed DSGE model and

comparing the estimates of the unrestricted VAR based on the simulated and

the original data.

We apply this test to two subsets of equations of the Smets and Wouters

model (hereafter SWUS), namely, the wage-price sector and the expenditure

equations, the consumption-investment sector. The model is based on post-war

data. There is particular interest in the wage-price subset as II tests of the

complete SWUS model by Le et al. (2011) reject the model, but a modified

version of the model that specifies greater price flexibility is not rejected for

the Great Moderation period. One of the principal aims of the SWUS model

is to modify the real business cycle model by including sticky prices on the

grounds that this may be why the RBC model is usually rejected by the data.

The wage-price sector is therefore a critical part of the SWUS model. We find

that the limited information II test confirms our original conclusion that the

wage-price sector is misspecified. We also find that, although the consumption-

investment sector is not rejected during the period of the Great Moderation

1980Q1-2004Q4, it is rejected for the whole sample 1947Q1-2004Q4.

After stating the relevant theory for the testing of limited information DSGE

models - for the details of testing full DSGE models see Le et al (2011) - we
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examine the size and power properties of our limited information test of a subset

of equations and we compare these with the properties of a full information

test of the subset obtained by simulating all of the endogenous variables using

the whole structural model. We also compare the properties of our limited

information Wald test using its numerical finite sample distribution with the

asymptotic distribution proposed by Dridi et al. We find that the size of our

test is generally accurate (and can be made accurate by adjustment), and that

its power for testing the misspecification of the wage-price sector is higher than

that of Dridi et al. The power of our test is also greater for the wage-price sector

than for the consumption-investment sector.

The remainder of the paper is organized as follows. Section 2 describes

the limited information DSGE model consisting of a fully specified subsector of

the full DSGE model together with unrestricted VARs for the other equations.

Section 3 explains Indirect Inference and the testing procedure. Section 4 eval-

uates the performance of our limited information test for the wage-price and

consumption-investment sectors of the SWUS model based on using the numer-

ical small sample distributions of the test statistic derived from Monte Carlo

simulations. In this section we also evaluate the properties of the Dridi et al.

test based on asymptotic distribution theory. In Section 5 we carry out further

tests of the SWUS model using both the complete sample based on post-war

US data employed by SWUS and data for the Great Moderation sub-period.

Section 6 concludes.

2 The limited information DSGE model

DSGE models (possibly after linearization) have the general form:

A0Etyt+1 = A1yt +Bzt (1)

zt = Rzt−1 + εt

where yt contains the endogenous variables and zt the exogenous variables. The

exogenous variables may be observable or unobservable. For example, they

may be structural disturbances. We assume that zt may be represented by an

autoregressive process with disturbances εt that are NID(0,Σ). Assuming that

the conditions of Fernandez-Villaverde et al. (2007) are satisfied, the solution

5



to this model can be represented by a VAR of the form

[
yt

zt

]
= F

[
yt−1

zt−1

]
+G

[
ξt

εt

]
. (2)

where ξt are innovations.

Consider a subset of the structural equations of this complete DSGE model

in which y1t are the endogenous variables that are (partially) determined in this

subset and y2t are the remaining endogenous variables where yt = (y1t, y2t)
′.

The subset of structural equations may be written

A01Ety1t+1 +A02Ety2t+1 = A11y1t +A12y2t +B1zt. (3)

Where variables are not included in this subset the corresponding elements are

zero.

In order to estimate or to test this subset of equations we augment the

subset with unrestricted versions of the solution to y2t derived from the full

DSGE model for which only the subset of interest is assumed to be specified;

the structural equations for y2t are not specified. This gives the completed

model



A01 A02 0

0 0 0

0 0 0






Ety1,t+1

Ety2,t+1

Etzt+1


 =



A11 A12 B1

0 I 0

0 0 I






y1t

y2t

zt




+




0 0 0

FU21 FU22 FU23

0 0 R






y1,t−1

y2,t−1

zt−1




+




0 0 0

GU21 GU21 GU23

0 0 I






ξ1t

ξ2t

εt


 . (4)

where the superscript U denotes that the matrix is unrestricted.3 This com-

pleted model is, in effect, a DSGE model with limited information. The solution

to this limited information DSGE model is also a VAR but with coefficient re-

strictions reflecting only the structural restrictions in the subset of equations.

A special case of the DSGE model is where all of the exogenous variables

3 In practice, these matrices are estimated by OLS from eq(2).
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are unobservable and may be regarded as structural shocks. An example is the

SWUS model to be examined below. This case and its solution can be repre-

sented as above both for the complete DSGE model and the limited information

DSGE model.

3 Indirect inference

A full explanation of how to test a DSGE model using the method of indirect

inference is given in Le et al. (2011, 2016). This can be applied to tests of

a subset of the structural equations of a DSGE model by using the completed

model described above which, as shown, is an equivalent representation of a lim-

ited information DSGE model. For a fully specified DSGE model, we bootstrap

N samples of simulated data from the model. We then estimate the auxiliary

model formed from the solution to the DSGE model which we represent as a

VAR(1) using both the actual data and the N samples of simulated data. We

denote the vector of all of the VAR coefficients by a and the two sets of esti-

mates by aT and aS (S = 1, ..N), respectively. We then use a Wald statistic

(WS) based on the difference between aT , the estimates of the VAR coefficients

derived from actual data, and aS(θ0), the mean of their distribution based on

the simulated data. The test statistic is

WS = (aT − aS(θ0))′W (θ0)−1(aT − aS(θ0)) (5)

where θ0 is the vector of parameters of the DSGE model under the null hypoth-

esis that it is true and W (θ0) is the weighting matrix. W (θ0) can be obtained

from the variance-covariance matrix of the distribution of simulated estimates

aS

W (θ0) =
1

N
ΣNs=1(as − as)′(as − as) (6)

where as =
1

N
ΣNs=1as.

Asymptotically, the test statisticWS has a χ2(r) distribution, with the num-

ber of restrictions equal to the number of elements in aT .We carry out the test

based on the empirical distribution of WS which can be obtained by bootstrap-

ping. Appendix A shows the steps involved in finding the Wald statistic. A

detailed description of the II Wald test can also be found in Le et al. (2016).

In applying this test procedure to a subset of structural equations of a DSGE

model we simulate the data using the completed limited information DSGE
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model, equation (4) with unrestricted reduced form equations for y2 in place of

structural equations. We may then carry out the test as above; in practice as

explained in Le et al. (2016) we use a VAR(1) in a limited set of y variables to

obtain an appropriate level of power.

4 Evaluating the test in small samples

The size and power properties of this subset test for small samples may be

examined using Monte Carlo experiments. The sample size is chosen as 200,

which is typical for macro data. We design Monte Carlo simulations following

the approach in Le et al. (2016). We use the SWUS model as a full DSGE

model and create 1000 samples from this model, which is assumed to be true.

Then we obtain from these samples the distribution of the Wald statistic by

bootstrapping (the bootstrap number is 500) when the model is true. We use

this distribution to assess how many times the x% False model is rejected with

95% confidence.

The false models are generated as follows. We fix the VAR coefficients of the

endogenous variables that are not of interest and falsify the coefficients in the

structural equations in the subset that is to be tested. We generate the falseness

by introducing an increasing degree of mis-specification for the parameters of the

subset of interest. We introduce two types of falseness: altering the parameters

in the subset by +/- x% alternating (even-numbered parameters positive, odd

ones negative) and +/- x% randomly. The level of falseness (x%) is increased

from 1% to 3%, 5%, 7%, 10%,15% and 20%. In this way we construct a False

DSGE model whose parameters are moved x% away from their true values in

both directions.4

We are interested in (a) the accuracy of inferences based on the test when

the subset model is false, and (b) whether the subset model is causing the whole

model to be rejected. In (a) we focus only on the parameters of the subset using

the unrestricted VAR solutions for the rest of the model. We refer to this as the

limited information test of a subset of equations. In (b) our test of the subset

model takes account of the parameter restrictions in the whole model. We refer

to this as a full information test of a subset of equations.

4See Le et al. (2016) section 4.1 for full details of the experiments. For all the exper-
iments, the eigenvalues of reduced-form VAR coefficients are all strictly less than unity in
modulus, so the Fernandez-Villaverde et al. (2007) condition that the DSGE model has a
VAR representation is satisfied.
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4.1 Test of the wage-price equations

We begin with the wage-price equation subset of the SWUS model. These equa-

tions are derived under the assumption of Calvo contracts as New-Keynesian

Phillips curves, respectively for wage and price-setting as:

wt = w1wt−1 + (1− w1)(Etwt+1 + Etπt+1)− w1πt + w3πt−1 (7)

−w4(wt − (σllt +
1

1− λ/γ (ct − λ/γct−1)) + ε
w
t .

πt = π1πt−1 + π2Etπt+1 − π3(α(kst − lt)− wt) + εpt . (8)

The wage and price mark up disturbances follow an AR(1) process: εwt =

ρwε
w
t−1 + η

w
t , ε

p
t = ρpε

p
t−1 + η

p
t .

5

The two key endogenous variables are wt and πt. The other endogenous

variables in the full SWUS model are yt, ct, it, lt, wt, k
s
t , qt. There are two ex-

ogenous shocks εwt and ε
p
t . The equations for the two variables (wt and πt) form

our ‘subset model’.

Table 1: Rejection rates of the wage-price sector at 5% significant level.
Falseness is given by +/- x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

LIST unadjusted 0.053 0.077 0.355 0.928 1.000 1.000 1.000 1.000

LIST adjusted 0.050 0.076 0.345 0.923 1.000 1.000 1.000 1.000

FIST 0.050 0.074 0.385 0.973 1.000 1.000 1.000 1.000

Falseness is given by +/- x% randomly

0% 1% 3% 5% 7% 10% 15% 20%

LIST unadjusted 0.056 0.117 0.176 0.574 0.727 0.801 1.000 1.000

LIST adjusted 0.050 0.070 0.126 0.454 0.630 0.731 0.999 1.000

FIST 0.050 0.074 0.136 0.402 0.568 0.798 0.999 1.000

Notes: These are rejection rates under different types and degrees of parameter

falsification; LIST unadjusted and LIST adjusted denote limited information subset

tests without and with size adjustment; FIST denotes full information subset tests.

Auxiliary VAR(1) has 2 variables wt and πt.

Table 1 gives the size and power of the tests for the wage-price subset of

equations using an auxiliary model that is a VAR(1) in the two variables ex-

plained in the subset, wt and πt. The first two rows report the power of the

5See Appendix B for the structural parameters values that are used in simulation. See
Smets and Wouters (2007) for the full model and details of the two equations, including an
explanation of the parameters.
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limited information subset test (LIST) where the equations that are not part

of the subset are replaced in the simulations by an unrestricted VAR. The first

row gives the rejection rates with the different degrees of falseness. The entry

in this row shows that the sizes of the test are 5.3% and 5.6% and not 5%. As

this makes the test a little too conservative, and so slightly distorts the power

of the test, in the second row we adjust for this by scaling the rejection rates

to give a size of test of 5%. In the third row we report the power of the subset

test where all of the variables are simulated using the structural restrictions in

the whole model. In the power calculations for the subset test the structural

coefficients in the equations that are not part of the subset are held constant in

all simulations. Used as a test - instead of, as here, to examine the potential loss

of power due to using unrestricted VARs to simulate data for the endogenous

variables in the other structural equations - this would generate a test of the

whole model. We refer to these power calculations as full information subset

tests (FIST). For both the LIST test and FIST power calculations only the

restrictions in the subset of equations are tested.

As expected, the power of the LIST test is slightly reduced after adjustment

for its size. The power itself is very high. For the first type of falsification

rejection is virtually guaranteed for degrees of falsity above 3%; the random fal-

sification model will be rejected more than 70% of the time for 10% falsification.

The power of the LIST test and the FIST power calculations are remarkably

close. This is an important result as it shows that the loss of information in the

limited information test has almost no effect on the power of the test.

We now repeat the analysis using the same auxiliary model that we used to

test the whole model: a three variable VAR(1) in the key variables yt (output),

πt (inflation), rt (interest rate). In Table 2 we report results for the adjusted

LIST test and the FIST power calculations based on one type of falsification.

Table 2: Rejection rates of the wage-price sector at 5% significant level.
Falseness is given by +/- x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

LIST adjusted 0.050 0.058 0.149 0.328 0.644 1.000 1.000 1.000

FIST 0.050 0.058 0.158 0.455 0.775 0.851 0.930 0.978

Notes: These are rejection rates under different degrees of parameter falsification;

LIST adjusted denotes limited information subset tests with size adjustment; FIST

denotes full information subset tests. Auxiliary VAR(1) has 3 variables yt, πt and rt.

The power remains high and there is little difference in the powers of the

limited and full information tests from the addition to the auxiliary VAR of

10



variables that are not in the subset being tested.

4.2 Test of the consumption-investment equations

The dynamics of consumption are derived from the consumption Euler equation

and those of investment from the investment Euler equation. The equations are,

respectively,

ct = c1ct−1 − (1− c1)Etct+1 + c2(lt − Etlt+1)− c3(rt − Eπt+1 + εbt). (9)

it = i1it−1 + (1− i1)Etit+1 + i2qt + εit. (10)

The consumption and investment mark-up disturbance follows an AR(1) process:

εbt = ρbε
b
t−1 + ηbt , ε

i
t = ρiε

i
t−1 + ηit. The two key endogenous variables are

ct and it. The other endogenous variables in the full SWUS model, namely

yt, lt, wt, rt, πt, k
s
t , qt, are generated from the unrestricted VAR.

Table 3 replicates Table 1 for the consumption investment sector. We begin

our analysis by testing the subset consisting of only the two variables (ct and

it), using a VAR(1) in these two variables as the auxiliary model.

Table 3: Rejection rates of the consumption-investment sector at 5% level.
Falseness is given by +/- x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

LIST unadjusted 0.095 0.102 0.171 0.202 0.224 0.286 0.425 0.424

LIST adjusted 0.050 0.051 0.086 0.094 0.123 0.174 0.311 0.288

FIST 0.050 0.055 0.057 0.056 0.056 0.069 0.103 0.140

Falseness is given by +/- x% randomly

0% 1% 3% 5% 7% 10% 15% 20%

LIST unadjusted 0.096 0.160 0.231 0.066 0.057 0.378 0.332 0.253

LIST adjusted 0.050 0.086 0.138 0.035 0.032 0.286 0.215 0.175

FIST 0.050 0.060 0.059 0.056 0.132 0.181 0.124 0.308

Notes: These are rejection rates under different types and degrees of parameter

falsification; LIST unadjusted and LIST adjusted denote limited information subset

tests without and with size adjustment; FIST denotes full information subset tests.

Auxiliary VAR(1) has 2 variables ct and it.

The unadjusted size of the limited information test is 9.5%. This is less

accurate than for the wage-price sector and a little more conservative. The

adjusted limited information test statistic for the consumption-investment sec-
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tor is much lower than that for the wage-price sector. This suggests that the

consumption-investment sector plays a considerably smaller role in the rejection

of the whole SWUS model than the wage-price sector. Once again there is not

a large difference in the powers of the limited and full information tests.

In Table 4 we repeat Table 2 for the consumption-investment sector using

the same auxiliary model as we used to test the whole model: a three variable

VAR(1) in the key variables yt (output), πt (inflation), rt (interest rate).

Table 4: Rejection rates of the consumption-investment sector at 5% level.
Falseness is given by +/- x% alternation

0% 1% 3% 5% 7% 10% 15% 20%

LIST adjusted 0.050 0.054 0.058 0.050 0.054 0.056 0.067 0.068

FIST 0.050 0.055 0.061 0.088 0.111 0.171 0.337 0.511

Notes: These are rejection rates under different degrees of parameter falsification;

LIST adjusted denotes the limited information subset test with size adjustment; FIST

denotes full information subset tests. Auxiliary VAR(1) has 3 variables yt, πt and rt.

The power of the LIST test is still very weak, as is the power of the FIST test,

which uses the whole model: falsifying the parameters of this subset generates

low rejection rates that hardly increase with rising falsity. Again this indicates

that the consumption-investment subsector of the model will not cause the whole

model to be rejected unless it is extremely false (15% or more).

4.3 Robustness of the test

We consider a number of issues concerning our procedures and their effects on

the properties of the test. First, we discuss the effect of using an alternative

falseness criterion of the structural parameters when evaluating power. Second,

we compare our previous tests which were based on a numerical finite sample

distribution of the test statistic with a test that uses the asymptotic distribution

of the Wald statistic obtained by Dridi et al. (2007).

Falsifying the parameters by +/- x% of standard deviation

In order to reflect that some structural parameters are more precisely estimated

than others, it is of interest to falsify the parameters in the power calculation in

terms of percentages of the standard deviations of the estimates of the structural

parameters. We therefore repeat the earlier analysis using the same auxiliary

model as we used to test the whole model: a three variable VAR(1) in the

key variables yt (output), πt (inflation), rt (interest rate), by falsifying the
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parameters by +/- x% of their standard deviation. The results are reported in

Table 5.

Table 5: Rejection rates of the wage-price and cons-invest sectors at 5% level.
Wage-price sector

0% 3% 7% 10% 15% 20% 25% 35%

LIST adjusted 0.05 0.059 0.104 0.186 0.396 0.675 0.900 1.000

FIST 0.05 0.042 0.090 0.168 0.456 0.802 0.954 1.000

Consumption-investment sector

0% 3% 7% 10% 15% 20% 25% 35%

LIST adjusted 0.05 0.044 0.039 0.035 0.034 0.033 0.030 0.030

FIST 0.05 0.052 0.061 0.064 0.071 0.077 0.098 0.144

Notes: These are rejection rates under different degrees of falsification; falsification

is by +/- x% of the standard deviation; LIST adjusted denotes the limited

information subset test adjusted for size; FIST denotes full information subset test.

Auxiliary VAR(1) has 3 variables yt, πt and rt.

The results are consistent with the previous simulations based on falsifying

by +/- x% from the true parameters. The power of the test is high for the

wage-price subset, but is low for the consumption-investment subset. Using

this alternative falsification method does not therefore seem to affect the results

greatly.

Using the asymptotic distribution

In our numerical finite sample results we used a bootstrapped weighting ma-

trix. This originated in classical minimum distance estimation theory; see, for

example, Hall et al. (2012), Le et al. (2011) and Guerron-Quintana, Inoue and

Kilian (2017). The latter showed that II estimation based on bootstrapping the

weighting matrix gives a consistent estimator, but its asymptotic distribution is

not a standard Normal. This is why using the numerical finite sample distrib-

ution is advisable. In previous papers, such as Meenagh et al. (2016), we have

also found that it gives a test with good power.

Nonetheless, it is of interest to compare the use of the asymptotic distribution

of the Wald statistic based on the sandwich formula for the weighting matrix

with the numerical finite sample distribution. Dridi, Guay and Renault (2007)
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show that the weighting matrix based on asymptotic distribution theory is6 ,

W (θ0) = J−10 I0J
−1
0 +

1

S
J∗−10 I∗0J

∗−1
0 +

(
1− 1

N

)
J∗−10 K∗

0J
∗−1
0

−J−10 K0J
∗−1
0 − J∗−10 K ′

0J
∗−1
0 . (11)

We repeat the analysis using the same auxiliary model that we used to test the

whole model: a three variable VAR(1) in the key variables. We compare the

small sample performance of the adjusted LIST test which is computed using

bootstrapping with the asymptotic weighting matrix that employs the sandwich

formula. The results for the wage-price and consumption-investment sectors are

reported in Table 6. The LIST adjusted results are taken from Tables 2 and 4.

Table 6: Rejection rates of the wage-price and cons-invest sectors at 5% level.
Wage-price sector

Weighting matrix 0% 1% 3% 5% 7% 10% 15% 20%

LIST adjusted 0.05 0.058 0.149 0.328 0.644 1.000 1.000 1.000

Asymptotic 0.05 0.060 0.071 0.123 0.834 1.000 1.000 1.000

Consumption-investment sector

Weighting matrix 0% 1% 3% 5% 7% 10% 15% 20%

LIST adjusted 0.05 0.054 0.058 0.050 0.054 0.056 0.067 0.068

Asymptotic 0.05 0.054 0.055 0.056 0.056 0.057 0.062 0.060

Notes: These are rejection rates under different degrees of falsification; falsification

is by +/- x% alternation; LIST adjusted denotes the limited information subset test

adjusted for size; Asymptotic denotes the limited information subset test using the

asymptotic weighting matrix. Auxiliary VAR(1) has 3 variables yt, πt and rt.

We find that for the wage-price sector the power of the numerical finite

sample distribution is higher for low levels of falseness, but the two are similar

for higher levels of falseness. This suggests that the asymptotic approximation

improves as the degree of falsity increases but is nowhere superior to the finite

sample distribution. For the consumption-investment sector there is little differ-

ence in the results. This suggests that the structural coefficients in this subset

are less well determined.

5 An application to US data

One of the purposes of this test is to throw more light on individual sectors of a

DSGE model: which sectors are not rejected and how they might be respecified

6See Appendix C for details of how to derive the sandwich form weighting matrix W (θ0).
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if they are rejected. This is more constructive than a blanket rejection of the

whole model.

In their work evaluating the Smets and Wouters model on US post-war data,

Le et al. (2011) found that the model as estimated by SWUS with Bayesian

methods was decisively rejected by the II test on the full post-war sample. Le

et al also found that a ‘New Classical’ version of the model was also decisively

rejected. They then considered a compromise version in which a competitive

sector coexisted with a sticky-price sector in both the labour and goods markets.

They found that, when re-estimated by II, although the hybrid model was still

rejected using the whole sample, it was not rejected for the Great Moderation

period. This suggested that the original version of the wage-price subset may

be a problematic component of the SWUS model. It is therefore of interest to

revisit this issue using the new subset test proposed in this paper by comparing

the performance of wage-price and consumption-investment sectors for the whole

post-war sample used by Smets and Wouters from 1947Q1-2004Q4 and for the

period of the Great Moderation 1980Q1-2004Q4.

In Table 7 we report the p-values for the adjusted LIST test and for the

asymptotic LIST test for the two sectors and sample periods.

Table 7: LIST tests of the Smets-Wouters model for the two sample periods.
Great Moderation 1980Q1-2004Q4 Post War 1947Q1-2004Q4

Test Wage-price Cons-invest Wage-price Cons-invest

LIST adjusted 0.000 0.140 0.000 0.003

Asymptotic 0.143 0.218 0.003 0.021

Notes: These are p-values for limited information subset tests of the joint wage-price

and consumption-investment sectors. LIST adjusted denotes the limited information

subset test adjusted for size; Asymptotic denotes the limited information subset test

using the asymptotic weighting matrix. Auxiliary VAR(1) has 3 variables yt, πt and rt.

Using the limited information test we reject the wage-price sector for both

samples and we reject the consumption-investment sector for the whole sam-

ple. These results support our conjecture that during the period of the Great

Moderation the problem did indeed lie with the wage-price sector and not the

spending sector. It also suggests that there may have been structural change in

the consumption-investment sector before and after the Great Moderation.

The asymptotic test seems to have lower power, especially in the Great

Moderation period as, in that sub-period, neither sector is rejected. This result

is consistent with the lower power of the asymptotic test reported above. A

contributory factor may be the smaller sample size of the Great Moderation

15



period.

6 Conclusion

Testing DSGEmodels is not common, especially if they are estimated by Bayesian

methods. Previously tests of DSGE models have been of the whole model and

they have commonly rejected the model. A more positive approach would be to

examine whether some parts of the DSGE model are not rejected. This would

help to identify which parts of the full model need to be respecified. This paper

suggests a way of carrying out tests on a subset of equations of a DSGE model

that is based on applying limited information theory via indirect inference. The

test is a modification of the II test proposed by Le et al. (2011, 2016) for com-

plete DSGE models and draws on the theory of estimating and testing limited

information models.

The main drawback of any limited information test is that by not using the

structural information in the whole model the power of the test of a subset of

the structural coefficients may be lower. This is only likely, however, if the rest

of the model is correctly specified. If it is not then such misspecification may

contaminate the estimates of the structural coefficients in the subset under test

and hence affect its power. A limited information test may therefore be more

robust against misspecification elsewhere in the model.

Our limited information test has the added advantages of being easy to

perform and seems to have good power in small samples; better, in fact, than

the more commonly used asymptotic distribution theory, and similar to a test

based on using the structural information in the whole model instead of just the

subset of equations under test. The properties of both our limited information

test and an asymptotic test are examined for the wage-price and consumption-

investment subsectors. We also found that calculating the power of the tests

using parameter deviations based on the standard deviations of the structural

parameters rather than the parameters themselves had little effect on our initial

results. These results are robust to the variables included in the auxiliary model;

this seems to reflect the fact that all are variant approximations of the same

reduced form.

The application of these tests to the wage-price and consumption-investment

sectors of the SWUS model is based on the finding in Le et al. (2011) that the

wage-price sector is misspecified, having excessive stickiness. The particular
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interest in this finding is that one of the principal aims of the SWUS model

was to modify the real business cycle model by including sticky prices on the

grounds that this may be why the RBC model was usually rejected by the data.

We found that, using the whole sample of US post-war data, and for the sub-

period of the Great Moderation, the whole model is rejected. Our new result

obtained by using our limited information test is that for the Great Moderation,

while the wage-price sector is rejected, the consumption-investment sector is not

rejected. This suggests that the rejection of the whole SWUS model over the

Great Moderation period may be due to the wage-price sector in the model. We

conclude that this subset test may prove to be both a useful tool for analysing

empirical weaknesses in DSGE models and a constructive tool for isolating which

parts of the model need to be respecified.
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Appendix A: Deriving the Wald statistic

The following steps summarise our implementation of the Wald test by boot-

strapping:

Step 1: Estimate the errors of the economic model conditional on the ob-

served data and θ0.

Estimate the structural errors εt of the DSGE macroeconomic model, xt(θ0),

given the stated values θ0 and the observed data. The number of independent

structural errors is taken to be less than or equal to the number of endogenous

variables. The errors are not assumed to be normally distributed. Where the

equations contain no expectations the errors can simply be backed out of the

equation and the data. Where there are expectations, estimation is required for

the expectations; here we carry this out using the robust instrumental variables

methods of McCallum (1976) and Wickens (1982), with the lagged endogenous

data as instruments – thus effectively we use the auxiliary model V AR. An

alternative method for expectations estimation is the "exact" method; here we

use the model itself to project the expectations and because these depend on the

extracted residuals there is iteration between the two elements until convergence.

Step 2: Derive the simulated data

Under the null hypothesis the {εt}Tt=1 are the structural errors. The simu-
lated disturbances are drawn from these errors. In some DSGE models, includ-

ing the SW model, many of the structural errors are assumed to be generated

by autoregressive processes rather than being serially independent. If they are,

then under our method we need to estimate them. We derive the simulated

data by drawing the bootstrapped disturbances by time vector to preserve any

simultaneity between them, and solving the resulting model using Dynare (Juil-

lard, 2001). To obtain the N bootstrapped simulations we repeat this, drawing

each sample independently.

Step 3: Compute the Wald statistic

We estimate the auxiliary model – a VAR(1) – using both the actual data

and the N samples of simulated data to obtain estimates aT and aS(θ0) of the

vector a. The distribution of aT −aS(θ0) and its covariance matrixW (θ0)−1 are
estimated by bootstrapping aS(θ0). The bootstrapping proceeds by drawing N

bootstrap samples of the structural model, and estimating the auxiliary VAR

on each, thus obtaining N values of aS(θ0); we obtain the covariance of the

simulated variables directly from the bootstrap samples. The resulting set of ak

vectors (k = 1, ...., N) represents the sampling variation implied by the struc-
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tural model from which estimates of its mean, covariance matrix and confidence

bounds may be calculated directly. Thus, the estimate of W (θ0) is

W (θ0) =
1

N
ΣNk=1(ak − ak)′(ak − ak) (12)

where ak =
1

N
ΣNk=1ak. We then calculate the Wald statistic for the data sam-

ple; we estimate the bootstrap distribution of the Wald from the N bootstrap

samples.The Wald statistics are given by

WS = (aT − ās(θo))′W (as(θo))−1(aT − ās(θo)) (13)

We note that the auxiliary model used is a VAR(1) and is for a limited

number of key variables. By raising the lag order of the VAR and increasing the

number of variables, the stringency of the overall test of the model is increased.

If we find that the structural model is already rejected by a VAR(1), we do not

proceed to a more stringent test based on a higher order VAR.

Appendix B: The subsets of equations

The parameters in the wage-price and consumption-investment subsets of the

Smets-Wouters (2007) model are:

π1 = ιp/(1 + βγ
1−σcιp);

π2 = βγ1−σc/(1 + βγ1−σcιp);

π3 = 1/(1 + βγ
1−σcιp)[(1− βγ1−σcξp)(1− ξp)/(ξp((φp − 1)εp + 1))].

w1 = 1/(1 + βγ
1−σc);

w2 = (1 + βγ
1−σcιw)(1 + βγ

1−σc);

w3 = ιw/(1 + βγ
1−σc);

w4 = 1/(1 + βγ
1−σc)[(1− βγ1−σcξw)(1− ξw)/(ξw((φw − 1)εw + 1))].

c1 = (λ/γ) (1 + λ/γ);

c2 = [(σc − 1)(Wh
∗ L∗/C∗) /[(1 + λ/γ)σc];

c3 = (1− λ/γ) [(1 + λ/γ)σc].
i1 = 1/(1 + βγ

1−σc);

i2 = 1/(1 + βγ
1−σc)γ2ϕ.

In the power calculations the true values assumed for these parameters are

based on the posterior modes: see Smets and Wouters (2007) Tables 1A and1B.

They are listed below. The false models are generated by moving the free

parameters in the relevant subset +/-x% away from their true values.

20



Fixed parameters

β 0.9975 Discount factor

δ 0.025 Depreciation rate of capital

εp 10 Curvature of Kimball goods aggregator

εw 10 Curvature of Kimball labour aggregator

φw 1.5 1+ steady state wage mark up

φp 1.6 1+ steady state price mark up

Note: Quarterly data are used.

Free parameters

Posterior Mode St. Dev. Posterior Mode St. Dev.

ϕ 5.48 1.50 σa 0.45 2.00

σc 1.39 0.37 σb 0.24 2.00

h 0.71 0.10 σg 0.52 2.00

ξw 0.73 0.10 σI 0.45 2.00

σl 1.92 0.75 σr 0.24 2.00

ξp 0.65 0.10 σp 0.14 2.00

ιw 0.59 0.15 σw 0.24 2.00

ιp 0.22 0.15 ρa 0.95 0.20

ψ 0.54 0.15 ρb 0.18 0.20

Φ 1.61 0.12 ρg 0.97 0.20

rπ 2.03 0.25 ρI 0.71 0.20

ρ 0.81 0.10 ρr 0.12 0.20

ry 0.08 0.05 ρp 0.90 0.20

r4y 0.22 0.05 ρw 0.97 0.20

π 0.81 0.10 µp 0.74 0.20

l -0.10 2.00 µw 0.88 0.20

γ̄ 0.43 0.10

α 0.19 0.05

Note: St. Dev. denotes the standard deviation; γ̄ = 100(γ − 1) is the
common quarterly trend growth rate to real GDP.

Appendix C: The asymptotic distribution

Suppose the actual data consist in the observation of a stochastic process {yt}Tt=1
or {Y 0, X}. Then for each given value of the parameters θ0 in the structural
model, it is possible to simulate data {yst }Tt=1 or {Y 0s, Xs} conditional on the
observed data and for given initial conditions. This is done by the bootstrap
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process discussed in Appendix A.

To derive the asymptotic theory of indirect inference, we need the informa-

tion and Hessian matrix from observed and simulated data.These may differ, as

shown in Dridi, Guay and Renault (2007). We must also consider a second set

of similar matrices associated with the simulator when the pseudo-true values

of the parameters are used for simulation. More precisely, we define:

I∗0 =
1

N

N∑

s=1

E(Sst (Y
0s, Xs)Sst (Y

0s, Xs)′)

J∗0 = − 1
N

N∑

s=1

E(Hs
t (Y

0s, Xs))

K0 =
1

N

N∑

s=1

E(St(Y
0, X)S∗t (Y

0∗, X∗))

K∗
0 =

1

N(N − 1)/2

N∑

s 6=l

E(Sst (Y
0s, Xs)Slt(Y

0l, X l)) (14)

where St(.) is the score vector and Ht(.) is the Hessian matrix. The score vector

and Hessian matrix from observed and simulated data can be computed under

a standard MLE framework. K∗
0 is the covariance matrix of the score vector

from two independent simulators {Y 0s, Xs} and (Y 0l, X l) for s 6= l.

Under the null hypothesis of full encompassing and some regularity con-

ditions, Dridi, Guay and Renault (2007) show that the distribution of the II

estimator θ̂ is asymptotic normal

√
T (θ̂ − θ0) v N(0,Ξ(N,W ) (15)

with

Ξ(N,W ) =

{
∂′(δ)

∂(θ0)
W (θ0)

−1 ∂
′(δ)

∂(θ0)

}−1
. (16)

and an asymptotic weighting matrix

W (θ0) = J−10 I0J
−1
0 +

1

N
J∗−10 I∗0J

∗−1
0 +

(
1− 1

N

)
J∗−10 K∗

0J
∗−1
0

−J−10 K0J
∗−1
0 − J∗−10 K ′

0J
∗−1
0 (17)

When the structural model is well specified K0 = K∗
0 and W (θ0) reduces to(

1 + 1

N

)
J−10 (I0 −K0)J

−1
0 .

22



The II Wald statistic for a DSGE model is given by

WS = (δ̂T − δ̄s(θ0))′W (θ0)−1(δ̂T − δ̄s(θ0)) (18)

where δ̂T is the ML estimation on the coefficients of the VAR using the actual

data and δ̄s(θ0) is the mean of the ML estimation on the coefficients of VAR

using simulated data. W (θ0) is the weighting matrix, which can obtained either

from bootstrap samples in equation (6) or from the asymptotic variance in

equation (17).
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