Education and myopia: a Mendelian randomisation study

Dr Edward Mountjoy1,2, postgraduate researcher, Dr Neil M Davies1,2, research fellow, Denis Plotnikov3, postgraduate researcher, Prof George Davey Smith1,2, professor, Dr Santiago Rodriguez1,2, senior lecturer, Ms Cathy E Williams2, reader, Prof Jeremy A Guggenheim3†, professor, Dr Denize Atan4†, consultant senior lecturer

Affiliations:

1MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol BS8 2BN
2Population Health Sciences, Oakfield House, Bristol Medical School, University of Bristol, Bristol BS8 2BN
3School of Optometry and Vision Sciences, Cardiff University, Cardiff CF24 4HQ
4Translational Health Sciences, Biomedical Sciences Building, Bristol Medical School, University of Bristol, Bristol BS8 1TD

*Correspondence to:
Dr Denize Atan, Denize.Atan@bristol.ac.uk, @DenizeAtan

The Corresponding Author has the right to grant on behalf of all authors and do grant on behalf of all authors, a worldwide licence to the Publishers and its licensees in perpetuity, in all forms, formats and media (whether known now or created in the future), to i) publish, reproduce, distribute, display and store the Contribution, ii) translate the Contribution into other languages, create adaptations, reprints, include within collections and create summaries, extracts and/or, abstracts of the Contribution, iii) create any other derivative work(s) based on the Contribution, iv) to exploit all subsidiary rights in the Contribution, v) the inclusion of electronic links from
Abstract

Objective To determine whether more years spent in education is a causal risk factor for myopia, or myopia for more years in education.

Design Bidirectional, two-sample Mendelian randomisation study, using genetic variants as proxies for years spent in education and myopia to minimise bias from confounding and reverse causation. Publically available genetic data from two consortia were applied to a large, independent population cohort.

Setting Genetic proxies for myopia and years of education were derived from two large genome wide association studies, from 23andMe and the Social Science Genetic Association Consortium (SSGAC), respectively. Standard regression analyses of the association between myopic refractive error and years of education in UK Biobank participants were performed and compared with the results of bidirectional Mendelian randomisation analyses to determine: (1) the causal effect of education on myopia; and (2) the causal effect of myopia on education. Finally, the results were analysed for evidence of confounding.

Participants Adult men and women from England, Scotland and Wales in the UK Biobank cohort with available information for years of completed education and refractive error (N=67,798).

Main exposure and outcome measures Mendelian randomisation analyses were performed in two directions. In the first, the exposure was the genetic predisposition to myopia, measured with 44 genetic variants strongly associated with myopia in 23andMe, and the outcome was years in education. In the second, the exposure was
the genetic predisposition to higher levels of education, measured with 69 genetic
variants from SSGAC, and the outcome was refractive error.

Results Conventional regression analyses of the observational data suggested that
every additional year of education was associated with a more myopic refractive
error of -0.18 Dioptres (D) per year (95% confidence intervals (CI): -0.19 to -0.17;
p<2e-16). Mendelian randomisation analyses suggested the true causal effect was
even stronger: -0.27 D/year (95% CI: -0.37 to -0.17; p=4e-8). By contrast, there was
little evidence to suggest myopia affected education (years in education per Dioptre
of refractive error = -0.008 years/D, 95% CI: -0.041 to 0.025, p=0.6). Sensitivity
analyses showed minimal evidence for genetic confounding that could have biased
the causal effect estimates.

Conclusions This study shows that exposure to more years in education contributes
to the rising prevalence of myopia. Increasing the length of education may
inadvertently increase myopia prevalence and potential future visual disability.

What this study adds

Section 1: What is already known

Myopia, or short-sight, is one of leading causes of visual disability in the World. The
global prevalence is rising rapidly and has reached epidemic levels in the developed
countries of East and Southeast Asia. For more than a century, numerous
observational studies have reported strong associations between educational
outcomes and myopia, but whether increasing exposure to education causes
myopia, children with myopia are more studious, or indeed, an association with
socioeconomic position leads to both myopia and higher levels of education was not
known with any certainty, since randomising children to different levels of education would be unethical.

Section 2: What this study adds

This study shows that more time spent in education is a causal risk factor for a greater level of myopia. Though an increased level of education has numerous benefits to population health and economics, this must be tempered by the rise in myopia prevalence caused by exposure to more years in education. This study highlights a need for further research and discussion about how educational practices might be improved to achieve better outcomes without adversely affecting the population’s vision.

Summary statistic:

For every additional year in education, there is an increase in myopic refractive error of -0.27 Dioptres/year (95% CI: -0.37 to -0.17; p=4e-8). Thus, the cumulative effect of more years in education on refractive error means that a University graduate from the UK with 17 years of education would, on average, be at least -1D more myopic than an individual who left school at 16 (with 12 years of education). Myopia of this magnitude would be sufficient to necessitate the use of glasses for driving.
Study question Do more years spent in education cause increasing levels of myopia (short-sight)?

Methods Participants were adults from the UK Biobank cohort who had visual assessments to measure refractive error (short- or long-sight or no refractive error) and had provided information about their education in health questionnaires (N=67,798). Genetic variants that could be used as proxies for myopia and years spent in education were derived from two large genome wide association studies, 23andMe and the Social Science Genetic Association Consortium respectively. The genetic proxies were used in bidirectional Mendelian randomisation analyses to determine whether more years spent in education was a causal risk factor for myopia, or vice versa.

Study answer and limitations More time spent in education was a causal risk factor for myopia, whereas myopia was not a causal risk factor for more time in education. For every year in education, there was an increase in myopic refractive error of -0.27 Dioptries/year (95% CI: -0.37 to -0.17; p=4e-8). This study did not investigate how exposure to more years in education causes myopia. Instead, the results highlight the need for further research and discussion about how educational practices may be improved to achieve better outcomes without adversely affecting the population’s vision.

What this study adds This study shows that more time spent in education is a causal risk factor for myopia (short-sight).

Funding, competing interests, data sharing This study was funded by the Medical Research Council, Global Education Program of the Russian Federation.
government, National Eye Research Centre, National Institute for Health Research (NIHR) and Economics and Social Research Council (ESRC). There were no competing interests. Code implementing the statistical methods to analyse the data are available online.
Introduction

Myopia, or short-sight, is one of the leading causes of visual disability in the World, and the prevalence is rising rapidly \(^1\)\(^2\). Myopia is a refractive defect of the eye causing light to focus in front of, instead of on, the retina, usually because the axial length of the eye is too long. The result is that distant objects appear blurred while close objects appear clear (short-sight). The symptoms of myopia can be alleviated with spectacles, contact lenses or refractive surgery, but irrespective of visual correction, the risk of complications from potentially blinding conditions like retinal detachment, glaucoma and myopic maculopathy, increases with the longer axial lengths associated with high myopia \(^3\)\(^-\)\(^5\). Currently, 30-50\% of adults in the United States and Europe are myopic, with epidemic levels of 80-90\% reported in school leavers aged 17-18 in Singapore, South Korea, China and other high-income East and Southeast Asian countries \(^1\)\(^2\)\(^5\)\(^-\)\(^8\), where myopic maculopathy has become one the most frequent causes of untreatable blindness \(^7\). Based on existing trends, the number of individuals affected by myopia worldwide is expected to rise from 1.4 billion currently, to 5 billion by 2050, affecting \~\)50\% of the world population \(^7\). Almost 10\% of these individuals (\~\)9 million people) will have high myopia \(^7\).

For more than a century, myopia has been associated with higher levels of educational attainment \(^9\)\(^10\), but despite evidence from observational studies for an association between myopia and years of schooling or educational attainment, causal evidence for a role of education on myopia is lacking \(^6\)\(^11\)\(^-\)\(^13\). Both myopia and educational attainment have a heritable component \(^14\)\(^-\)\(^20\), however genetics cannot explain the rapid rise in myopia prevalence over 1-2 generations. The current epidemic in myopia prevalence, particularly pathological and high levels of myopia, appears to be linked to an increasingly earlier age of onset and higher rate of myopia.
progression in childhood21,22 since myopia tends to remain relatively stable during adulthood (until myopic shifts occur secondary to the development of cataracts) 23.

Randomised controlled trials have demonstrated convincingly that time spent outdoors in childhood partially protects against myopia development 24,25, but the association between myopia and time spent by children doing near work activities, such as reading, is less consistent across studies 11,26. Furthermore, the time children spend outdoors is typically independent of their near work activities, as measures of the two are generally uncorrelated 27-29. Consequently, it is not known with any certainty whether exposure to more years in education causes myopia, children with myopia spend more time on near work leading to better educational outcomes, children with myopia are more intelligent, or indeed, an association with another confounding factor, such as socioeconomic position, leads to more years in education and myopia 6,11-13,30 since randomised trials limiting education in children would be unethical.

Mendelian randomisation (MR) is a type of instrumental variable (IV) analysis 31 that uses genetic variants associated with a risk factor, e.g. education, as proxies for an environmental exposure to make causal inferences about the impact of the exposure on the outcome of interest, e.g. myopia. It is an approach designed to reduce bias from confounding and reverse causation, to which observational epidemiology studies are susceptible. It exploits the fact that genotypes are randomly assigned at conception. Hence, Mendelian randomisation has been likened to a randomised trial by genotype, since genetic variants are not modifiable and largely free from confounding 32,33. With the recent availability of large-scale genome-wide association study (GWAS) data for educational attainment 34 (N=293,723) and myopia 15 (N=191,843) together with the genotypes of approximately 488,000 participants in
the UK Biobank, an investigation of the causal relationship between years in education and myopia by bidirectional MR analyses became possible with unprecedented statistical power. Hence, this study was able to address the question “Is more time spent in education a causal risk factor for myopia?”

Methods

Study cohorts

1. 23andMe

Pickrell et al. reported the results of a GWAS for self-reported myopia in a sample of N=191,843 individuals of European descent (106,086 cases, 85,757 controls) carried out by the personal genomics company 23andMe. Myopia was ascertained by the questionnaire item, “Have you ever been diagnosed by a doctor with nearsightedness (near objects are clear, far objects are blurry)?”.

2. SSGAC

Okbay et al. reported the results of a large meta-analysis of GWAS for educational attainment in individuals of European descent (N=293,723). Educational attainment was defined as whether the participant attained a given level of schooling and was based on the International Standard Classification of Education (ISCED 1997) scale.

3. UK Biobank

Cross-sectional data from the baseline assessment of the UK Biobank project was collected between 2006 to 2010. UK Biobank recruited 502,664 participants aged 40 to 69 years old through 22 assessment centres across the UK. Participants were genotyped using one of two platforms: the Affymetrix UK BiLEVE Axiom array or the Affymetrix UK Biobank Axiom array. All participants completed sociodemographic
questionnaires, which included questions on past educational and professional qualifications. In the latter stages of recruitment, an ophthalmic assessment was introduced, which approximately 23% of participants completed.

(i) Definition of education

Time spent in education was determined by questionnaire as defined by the question age completed full-time education (variable 845) in UK Biobank (N=336,826 participants completed the questionnaire at the baseline visit). The question was ascertained only for participants that did not have a college or University degree (variable 6138, answer 1). To harmonise the educational outcome measure in UK Biobank (time spent in education) with the number of years spent in schooling (EduYears) variable in the SSGAC study, participants with a college or University degree were coded as having left full-time education at the age of 21. Similarly, participants who reported their age completed full-time education was less than 15 years were assigned a value of 15 years. As schooling systems differ between countries, only participants born in England, Scotland or Wales were included in the analyses (variables 1647, 20115).

(ii) Definition of refractive error

Measures of visual function were not performed from the start of recruitment for UK Biobank. Consequently, only a subset of participants underwent measurements of refractive error (N=127,412). Refractive error was measured by non-cycloplegic autorefraction (Tomey RC5000 autorefractor) after removal of habitual spectacles or contact lenses. Although cycloplegic eye drops were not used (meaning that the effect of accommodation on measurements of refractive error was not controlled), only adult subjects were recruited to UK Biobank in whom the effects of accommodation would be minimal. Up to 10 measurements were taken.
Measurements were excluded if the autorefractor reading was flagged as unreliable (variables 5090/5091). Spherical power (variables 5085/5084) and cylindrical power (variables 5086/5087) were averaged over repeat measurements. Mean spherical equivalent (MSE) refractive error for each eye was calculated ($Spherical\ power + 0.5 \ast Cylindrical\ power$). The mean of the left and right MSE (aveMSE) was taken as the participant’s refractive error in Dioptres (D) and used in subsequent analyses (N=127,412). For participants with repeat measurements from separate visits (baseline visit and subsequent visits), only the baseline measurement was used. Individuals with pre-existing eye conditions that could affect refractive error were excluded from the analyses, namely: cataracts (variables 6148, 5324, 5441), refractive laser eye surgery (variable 5325), injury or trauma resulting in vision loss (variable 5419), or corneal graft surgery (variable 5328). For example, cataracts are associated with a myopic shift in refractive error. A total of 10,984 individuals with pre-existing eye conditions were excluded.

In total, 69,798 participants had valid education, refractive error and genetic data available (Figure 1).

(iii) Genotype data

The genetic data in UK Biobank underwent rigorous quality control procedures and was phased and imputed against a reference panel of Haplotype Reference Consortium (HRC), UK10K and 1000 Genomes Phase 3 haplotypes. Due to an issue with the imputation of UK10K and 1000 Genomes variants, analyses were restricted to HRC variants only. Samples were excluded based on the following genotype-based criteria: non-European ancestry, relatedness, mismatch between
genetic sex and self-reported gender, putative aneuploidy (variable 22019), outlying heterozygosity, and excessive missingness (variable 22027).

Statistical analyses

1. Ordinary Least Squares (OLS) observational analyses

Observational associations between refractive error and years spent in education were assessed using linear regression adjusted for sex and age in UK Biobank. The regression was then repeated with adjustment for additional potentially confounding variables (for example, breastfeeding has been reported to be associated with both refractive error and education): Townsend deprivation index (TDI), birth weight, whether breastfed, and geographic coordinates of place of birth rounded to the nearest kilometre (northing and easting coordinates).

2. Generation of instrumental variables for Mendelian randomisation

Pickrell et al. reported the 50 variants most strongly associated with myopia in 23andMe. Six variants (rs5022942, rs10887265, rs71041628, rs34016308, rs11658305 and rs201140091) were not in the HRC panel, leaving 44 for use as genetic instrumental variables in the MR analysis (Supplementary Data Table).

Okbay et al. used UK Biobank as a replication cohort. Therefore, only genetic variants and summary statistics from their discovery analysis were used in this study (available at: http://ssgac.org/documents/EduYears_Discovery_5000.txt [accessed 30/03/2017]). The authors identified 74 variants associated with educational attainment in SSGAC. Five variants (rs9320913, rs148734725, rs544990728, rs114598875, rs8005528) were not in the HRC panel, leaving 69 variants for use as instrumental variables (Supplementary Data Table).
Multiple genetic variants were combined into a single weighted allele score for each trait. An allele score, compared to individual variants, has been shown to improve the coverage properties and reduce the bias of instrumental variable estimates. Effect size estimates from the original GWAS publications were used to weight variants when constructing allele scores. Variants were harmonised with UK Biobank to ensure correct coding of the effect allele. Genotype probabilities were converted to effect allele (a) and non-effect allele (A) dosages. Allele scores were calculated by summing the product of the weights and dosages across all n variants:

\[\text{Dosage} = \text{Prob}(Aa) + 2 \times \text{Prob}(aa) \]

\[\text{Allele score} = \sum_{i=1}^{n} \text{weight}_i \times \text{dosage}_i \]

The proportion of variance in the phenotype variable explained by the allele score instrumental variable was calculated by regressing the phenotype on its respective allele score.

3. Implementation of MR

MR was implemented using the two-stage least squares method in the R package \textit{ivpack}. \textit{Age} and \textit{sex} were included as covariates. The strength of association in the first stage regressions between allele score and exposure were assessed with F-tests, to assess the risk of weak instrument bias. Statistical power was assessed using the mRnd online calculator for a Type I error level \(\alpha = 0.05 \) (available at: \text{http://cnsgenomics.com/shiny/mRnd/}).

4. Sensitivity analyses

(i) Confounding
Confounding bias plots\(^{47,48}\) were used to assess relative bias in the instrumental variable estimate compared to standard multivariable regression. Such analyses are designed to quantify the bias present in an MR analysis in a manner analogous to examining the effect of adjusting or not adjusting for a potential confounder in a standard regression analysis. Additionally, suspected confounding factors were included as covariates in supplementary analyses (Supplementary Table 4). The confounding variables considered\(^{42,49,50}\) were the first 10 genetic *principal components* (PC), Townsend Deprivation Index (TDI), birth weight, breastfeeding as an infant, and place of birth (*northing* and *easting* coordinates).

(ii) Horizontal (genetic) pleiotropy

Two sensitivity analyses (MR-Egger and weighted median MR) were used to investigate the degree of bias in the initial MR causal estimates due to pleiotropic effects. MR-Egger is not valid for studies in which the instrumental variable-exposure and instrumental variable-outcome associations are calculated in the same sample (as was done for the main analyses in this study). Therefore, MR-Egger was run as a split sample analysis, by randomly splitting the sample in half (groups A & B). The associations of the variants and time spent in education and refractive error for each group are given in the Supplementary Data Table. MR-Egger and weighted median methods were implemented using the R package TwoSampleMR\(^{51}\) (available at: github.com/MRCIEU/TwoSampleMR).

(iii) Measurement error

To ensure the association between time spent in education and myopia was not an artefact of the non-normal distribution of the *age completed full-time education* variable, time spent in education was recoded using two alternative methods: (1)
dichotomisation into age >16 years when completed education and age ≤16 years when completed education; and (2) excluding individuals who attended college or University. The results were compared with the original analyses using the continuous variable age completed full-time education.

The Durbin-Wu-Hausman (DWH) test is a method to check for the presence of endogenous variables in a regression model; the presence of such variables leads to biased effect estimates \(^{52,53}\). Effect estimates from the observational analysis and second-stage instrumental analysis were tested for endogeneity using the DWH test.

Patient Involvement

Patients were not involved in the design or conduct of this study.

Results

Observational analyses: higher levels of education are associated with myopia

In agreement with previous studies \(^{6,13,30}\), participants in UK Biobank who had spent longer in full-time education were more myopic; in other words, they had increasingly negative refractive errors (Table 1). The relationship was linear for those leaving full-time education between the ages of 15 to 18 years, meaning that every additional year in education was associated with a higher myopic refractive error by -0.25D per year. For those leaving full-time education after the age of 18, the rate slowed to -0.10D/year (Figure 2). On average, every additional year spent in education was associated with a more myopic refractive error of -0.18D/year (95% Confidence Intervals [CI]: -0.19 to -0.17, \(p<2\times10^{-16}\)). The association was largely unaffected by adjustment for measured potential confounders, including socioeconomic position.
(Townsend Deprivation Index), birth weight, breastfeeding as an infant, and place of birth (northing and easting coordinates) (Table 1).

Mendelian randomisation analyses: more time spent in education causes myopia

Bidirectional MR was used to assess the causality and direction of the association between time spent in education and refractive error. Bidirectional MR analyses consist of two separate MR calculations - one in each direction. Firstly, the causal effect of education on myopia was calculated using a weighted education allele score as the instrumental variable. Secondly, the causal effect of myopia on time spent in education was calculated using a weighted myopia allele score as the instrumental variable. The allele score for time spent in education was derived from genetic variants identified by Okbay et al. in a large meta-analysis of GWAS of individuals of European descent (N=293,723). Likewise, the allele score for myopia was derived from genetic variants reported by Pickrell et al. in a GWAS of self-reported myopia (N=191,843).

The myopia allele score explained 4.32% (F=3155) of the variance in average mean spherical equivalent refractive error of participants in UK Biobank. The education allele score explained 0.71% (F=464) of the variance in time spent in education of participants in UK Biobank. These genetic variants were selected to use as instrumental variables because of their robust association with time spent in education and myopia, allowing us to construct strong aggregate instrumental variables for making MR inferences. The large F-statistics suggested that these analyses would not be affected by weak instrument bias.
Thus, using the allele score for time spent in education as the instrumental variable, MR analysis showed that every additional year spent in education resulted in a more myopic refractive error of -0.27 D/year (95%CI, -0.37 to -0.17, p=4e-8) (Table 2; Figure 3). The MR effect estimate was even greater in magnitude than the observational estimate (-0.27 vs. -0.18 D) suggesting that unmeasured confounders may have attenuated the latter relationship. Conversely, using the myopia allele score as the instrumental variable in MR analyses provided little evidence that refractive error affected time spent in education ($\beta_{IV} = -0.008$ yr/D, 95% CI -0.041 to 0.025, p=0.6) (Table 2; Figure 3). With a sample size of N=69,798, there was 80% power to detect an effect of time spent in education on refractive error ≥ 0.14D/yr. In the reciprocal direction, there was 80% power to detect an effect ≥ 0.048yr/D (Supplementary Figure 1), suggesting that this study had sufficient power to detect an effect of myopia on education, if present.

Sensitivity analyses: the results of Mendelian randomisation are robust to potential bias

(i) Confounding

MR analyses are based on two pertinent assumptions: (i) the genetic instrumental variables are not associated with any confounders of the exposure-outcome relationship; and (ii) the genetic instrumental variables are only associated with the outcome via the exposure.

In tests of the association between the allele scores for time spent in education and myopia with potential confounders, there was evidence that the geographical co-ordinate, *northing* (measured northward distance in UK) was negatively associated with time spent in education ($\beta = -1.6e-6$, 95% CI, -1.8e-6 to -1.5e-6) and positively
with refractive error ($\beta = 1.2e-6$, 95% CI 9.8e-7 to 1.3e-6). *Northing* was also
associated with the time spent in education ($p=7e-5$) and myopia ($p=6e-3$) allele
scores (Supplementary Table 2). Compared to standard regression, the confounding
bias plot suggested that inclusion of the *northing* variable in the instrumental variable
analysis would result in a greater degree of bias for the education allele score
(Figure 4A) but not for the myopia allele score (Figure 4B).

In contrast, the geographical *easting* coordinate was positively associated with time
spent in education ($\beta = 8.9e-7$, 95% CI, 6.8e-7 to 1.1e-6) and negatively associated
with refractive error ($\beta = -1.0e-6$, 95% CI, -1.3e-6 to -8.1e-6). It was weakly
associated with the myopia allele score ($p=0.01$). However, there was little evidence
to suggest a greater degree of bias in the instrumental variable analysis compared to
a standard regression with the inclusion of the *easting* variable (Figure 4B).

Sensitivity analyses suggested that confounding bias from the geographical
coordinates had negligible impact on the MR results (Supplementary Table 4).

One further confounding variable, *population stratification principal component 9*
(*PC9*), incurred a greater degree of bias in the instrumental variable regression
compared to observational least squares regression. Additional analyses showed
that *PC9* was associated with a self-reported place-of-birth in Wales (Supplementary
Figure S2) and also with a -0.17 D (95% CI, -0.05 to -0.28) more myopic refractive
error, on average ($p=4e-3$) compared to those who reported being born in England.

An MR sensitivity analysis that adjusted for *PC1-10* provided very similar results to
those prior to adjustment (Supplementary Table 4), suggesting that confounding due
to *PC9* did not lead to appreciable bias.
While education legislation has not been different in England and Wales while the UK Biobank participants were in education, Scottish schools normally finish one year earlier and University degrees are correspondingly one year longer. This difference would impact on the years spent in education for Scottish individuals moving to England to attend University, and vice versa. However, the results of an MR sensitivity analysis restricted to participants born in England were essentially unchanged (Supplementary Table 4), providing evidence that imprecision in quantifying years spent in education due to differences in school leaving age did not adversely affect the results.

(ii) Horizontal (genetic) pleiotropy

Under the second assumption of MR, genetic variants with pleiotropic effects are invalid instrumental variables. This can be problematic when genetic variants are used without regard for the biological mechanisms through which they affect the exposure, e.g. if the genetic variants associated with more years in education also caused myopia independently of the education phenotype. MR-Egger, Weighted Mode and Weighted Median methods are alternative methods of integrating instrumental variable estimates across individual SNPs. These methods allow some of the assumptions of MR to be relaxed providing valid tests for causality despite the presence of invalid instrumental variables, e.g. due to genetic pleiotropy. If the results across different MR methods are divergent, this may indicate that genetic pleiotropy is creating bias. However, all methods yielded similar causal estimates in magnitude and direction, such that increasing time spent in education led to a more myopic refractive error (by -0.17 to -0.40 D/year), while there was little evidence that a more myopic refractive error led to more time spent in education (Supplementary Table 3). With MR-Egger, a deviation of the intercept estimate from zero suggests
the existence of genetic pleiotropy, i.e. where certain genetic variants affect the
outcome via a different biological pathway from the exposure under investigation. In
practice, there was little evidence that the Egger intercept deviated from zero either
for more time in education causing refractive error (intercept=0.007, SE=0.006,
p=0.2) or refractive error causing more time in education (intercept=-0.002,
SE=0.007, p=0.8), indicating that there was little evidence for directional genetic
pleiotropy.

(iii) Measurement error

Encoding time spent in education as a dichotomous trait (>16 years vs ≤16 years of
age when completed full-time education) produced the same pattern of causality as
the continuous variable, age completed full-time education; i.e. more time spent in
education had an effect on refractive error (βIV = -0.35 D/LOD(education) where LOD
is the logarithm of odds for having spent >16 vs ≤16 years in education, 95% CI -
0.48 to -0.22) while refractive error did not have an effect on time spent in education
(βIV = -0.0004 LOD(education)/D, 95% CI -0.03 to 0.03) (Supplementary Table 4).

When individuals who had attended University or college were excluded from the
analyses, there was a similar point estimate of the effect of time spent in education
on refractive error (βIV = -0.23 D/yr, 95% CI -0.48 to 0.02, p=0.07) with larger
standard errors. This was attributable, in part, to the reduced sample size
(N=45,535). Again, there was little evidence that refractive error had an effect on
time spent in education (βIV = -0.004 yr/D, 95% CI -0.04 to 0.03, p=0.8)
(Supplementary Table 4).

Using the DWH test for endogeneity, there was weak evidence that the instrumental
variable estimate using the time spent in education allele score differed from the
observational point estimate (DWH-p=0.06), with the instrumental variable estimate suggesting a larger negative association (Table 2). There was strong evidence that the instrumental variable estimate using the myopia allele score was a departure from the observational point estimate (DWH-p<2e-16) (Table 2).

Discussion

Principal findings

In this study, there was strong evidence that more time spent in education is a causal risk factor for myopia. More specifically, every additional year in education caused an increase in myopic refractive error of -0.27 Dioptres/year (95% CI: -0.37 to -0.17; p=4e-8). Thus, the cumulative effect of more years in education on refractive error means that a person attending University would be likely to have at least -1D more myopia compared to an individual who left school at age 16. A difference of this magnitude would blur vision on a Snellen visual acuity chart to 6/18 and affect the ability to drive without glasses. Individuals with myopia, by definition, have better near vision than distance vision and require less accommodative effort for near work and study, and so myopia has been proposed as an educational advantage. Despite the general perception that individuals with myopia are more studious than those without myopia, there was little evidence that myopia caused people to remain in education for longer.

Strengths and limitations of study

MR is a particularly powerful approach for testing causal hypotheses in epidemiology. The large sample size and robustly-associated genetic instrumental variables used here meant that causal effects could be estimated with high precision.

Consistent with other studies, the allele score for myopia explained only a small
Likewise, the education allele score explained only a small fraction of the variance (0.71%) in time spent in education of participants in UK Biobank. However, power calculations confirmed these effects were sufficient to draw solid inferences from the MR analysis results presented here (Supplementary Figure S1). Given the ubiquity of exposure to education in populations with available genotype data, it is not possible to assess individuals who were completely free of the outcome, specifically education. Nor is it ethical to randomise children to different levels or years in education to assess the impact on refractive error. The advantage of MR is that participants are grouped based on their genotype - randomly allocated at conception and so analogous to a randomised controlled trial in which genetic variants are used as proxies for an environmental exposure to make causal inferences about the impact of the exposure on the outcome of interest. However, it is not possible to determine exactly which components of educational practices in the last 5-7 decades have led to increases in myopic refraction using MR. Though more robust to confounding than standard observational studies, MR is not entirely immune. There was some evidence of confounding by the variables *northing* and *PC9*, of which the latter identified individuals from Wales. Although there are some differences between the education system in England & Wales compared with Scotland, the results held true when analyses were restricted to individuals from England. Another limitation of this study was selection bias. UK Biobank participants have been shown to be more highly educated, have healthier lifestyles and have fewer self-reported adverse health outcomes than expected in comparison to the general UK population. This selection bias could have led to bias in both the observational and MR effect estimates.
When using MR, it is not necessary to know how the genetic variants used in the analysis cause the exposure. Yet, without knowing the function of the genetic variants and how they influence the traits described here, it is possible that some SNPs may influence the outcome through a pathway that does not involve the exposure, i.e. through horizontal pleiotropy. For example, educational outcomes and intelligence are highly correlated, and if intelligence caused myopia through a pathway that did not involve exposure to education, this could cause bias in the MR causal effect estimate (Supplementary Figure 3a). In contrast, vertical pleiotropy refers to SNPs that influence the outcome via an intermediate phenotype, e.g. if some SNPs affect exposure to education through their influence on intelligence. Vertical pleiotropy acting through intelligence would not bias the MR causal estimate obtained here (Supplementary Figure 3b). Sensitivity analyses (MR-Egger and mode-based MR; Supplementary Table S3) suggested little evidence of unbalanced horizontal pleiotropy in the relationship between education and myopia, though such bias cannot be ruled out unequivocally.

Comparison with other studies

In agreement with a substantial number of epidemiological studies dating back more than 100 years \(^6^{13^{30}}\), the observational analyses in this study showed that more highly educated participants in UK Biobank were more myopic. The results of bidirectional MR analyses demonstrated that this association arises from exposure to factors related to education on myopia. The current epidemic of myopia in developed East and Southeast Asian countries over the last 1-2 generations appears to coincide with widening exposure to primary and secondary education, whereas educational outcomes, e.g. in scientific, reading and mathematical literacy, are less clearly associated with myopia, since many Western countries achieve top
international rankings in student assessments without the same high prevalence rates of myopia. Moreover, there are countries with poorly developed education systems in which myopia prevalence is low, and hence any causal relationship between intelligence and myopia is unlikely. There are other well-established associations between myopia and urbanization, reduced light exposure, socioeconomic position, near work and prenatal factors, and several of these factors either confound the relationship between education and myopia or may work synergistically to exacerbate the effect, e.g. in countries where myopia prevalence is particularly high. Despite the robust associations between exposure to education and myopia reported by many of these previous studies, they have not demonstrated causality. Only one study has addressed the causal relationship between education and myopia: in an MR analysis of 3 European-ancestry cohorts (combined N=5,649), Cuellar-Partida et al. reported that each year of education led to a more myopic refractive error of -0.46 D/year (p=1e-3). However, the study was under-powered and the authors did not investigate the possibility of horizontal genetic pleiotropy or reverse causation. Moreover, their methodology risked violating the key assumptions of MR because they used several thousand SNPs (N=17,749) to construct a polygenic risk score as an instrumental variable for their measure of education. The number of SNPs used in this previous study means it was more likely to include: (1) pleiotropic variants with direct effects on both exposure to education and refractive error; and (2) SNPs that are in linkage disequilibrium (LD) with refractive error variants. The much larger sample size in this study permitted the use of a small number of strongly associated variants as instrumental variables for exposure to education and refractive error. Thus, the risk of LD between the major risk variants for the two traits explaining the underlying associations between
education and myopia was mitigated. Crucially, the analyses in this study provided strong evidence that the relationship arose from a causal effect of exposure to education on refractive error, and not via reverse causation or confounding by influences such as socioeconomic position.

Exactly how increasing levels of education cause myopia cannot be inferred from MR analyses, although the known environmental risk factors for myopia provide intriguing clues. Children from developed East and Southeast Asian countries consistently report that they spend less time outdoors than children from Australia or the US and randomised controlled trials have demonstrated that time spent outdoors during childhood protects against myopia development. Therefore, lack of time outdoors is a plausible mediator in the causal pathway linking more time spent in education and myopia. Furthermore, engaging in higher levels of near work activities, such as reading, is associated with the incidence and progression of myopia, albeit less consistently than time spent outdoors. Yet, measures of time spent on near work activities and time spent outdoors are generally uncorrelated. Thus, lack of time outdoors and excessive near work may not be the only routes mediating the effects of exposure to education on myopia. Children with myopia tend to engage in less physical activity, such as sports, but physical activity per se does not appear to be protective. Others have correlated higher light exposure with lower myopia risk, and it is possible that individuals who spend more years in education have less exposure to natural light. The progression of myopia is faster in winter months, thus supporting the hypothesis that exposure to natural light is important. This hypothesis has been one of the main drivers for recent investment in “Bright Light Classrooms” to protect against myopia in South-East Asia. Whether these classrooms provide any protection...
against myopia that replicates the effects of increasing time spent outdoors is not currently known until the impact of this intervention has been measured. The best recommendation, based on the highest quality available evidence at the moment, is for children to spend more time outside (https://www.nhs.uk/conditions/short-sightedness/).

Conclusions and policy implications

In summary, this study provides strong evidence that more time spent in education is a causal risk factor for myopia. With the rapid rise in the global prevalence of myopia and the economic burden of myopia and its vision-threatening complications, the findings of this study have important implications for educational practices. Axial eye growth occurs predominantly during the school years and since levels of myopia tend to stabilise in adulthood, any interventions to halt or prevent myopia need to be delivered in childhood. Policy makers should be aware that the educational practices used to educate children and to promote personal and economic health may have the unintended consequence of causing increasing levels of myopia and later visual disability as a result.

Competing interests

All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf and declare: no support from any organisation for the submitted work; no financial relationships with any organisations that might have an interest in the submitted work in the previous three years; no other relationships or activities that could appear to have influenced the submitted work.
Contributors:

DA and JG conceived the project. EM, DP, and ND cleaned and analysed the data with input from GDS. EM wrote the first draft of the manuscript with DA and JG. DA and JG revised the draft. All authors contributed to data interpretation, critical revisions and final approval.

Funding

EM is funded by the Medical Research Council (MRC) and Bristol Centre for Systems Biomedicine; DP by the Global Education Program of the Russian Federation government; JAG & CW by the National Eye Research Centre (grant SAC015) and CEW by the NIHR (Senior Research Fellowship SRF-2015-08-005); NMD by the Economics and Social Research Council (ESRC) (Future Research Leaders grant [ES/N000757/1]). GDS works in the MRC Integrative Epidemiology Unit at the University of Bristol [MC_UU_12013/1, MC_UU_12013/8, MC_UU_12013/9]. The funders had no role in the study design, data collection, analysis, interpretation, writing, nor the decision to submit the article for publication.

Data sharing

Participants consented to data sharing as described in the population cohorts and are not identifiable in these analyses.

The UK Biobank Resource and Access Committee approved this research (application #8786). Anonymised phenotype and genetic data are available from UK Biobank on application. Additional ethical approval was not required.

Code implementing the statistical methods to analyse the data are available from https://github.com/edm1/myopia-education-MR.

Transparency
The corresponding author (DA) is guarantor of the paper and affirms that the manuscript is an honest, accurate and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned have been explained.

A CC BY licence is required.
References

47. Davies NM. An even clearer portrait of bias in observational studies? *Epidemiology* 2015;26(4):505-08. doi: 10.1097/EDE.0000000000000302

65. Williams KM, Bentham GC, Young IS, et al. Association Between Myopia, Ultraviolet B Radiation Exposure, Serum Vitamin D Concentrations, and Genetic Polymorphisms in Vitamin D Metabolic Pathways in a Multicountry

Figures

Figure 1. Numbers of participants in UK Biobank that passed validation for the MR study. MSE = Mean Spherical Error.

(figure_1.pdf)
Figure 2. Observational association between age completed full-time education and refractive error.

Graph of refractive error (y-axis) in Dioptres (D) against age completed full-time education (x-axis) for 69,798 individuals in UK Biobank with 95% Confidence Intervals (CI). On average, more educated individuals had higher levels of myopia (more negative refractive error).

(figure_2.png)
Figure 3. Results of bidirectional Mendelian randomisation show that higher levels of education cause higher levels of myopia (more negative refractive error) but myopia does not cause higher levels of education in UK Biobank.

(A) 69 variants associated with educational attainment in Okbay et al. (2016) were linked to higher levels of myopia (more negative Mean Spherical Error [MSE]) in UK Biobank (UKB) with 95% confidence intervals (w 95%CI); (B) 44 variants associated with myopia (more negative MSE) in Pickrell et al. (2016) were not linked with more time spent in education in UK Biobank (UKB) with 95% confidence intervals (w 95%CI). Regression line and standard errors fitted using robust linear regression.
Figure 4. Confounding bias plots.

Plots showing the relative bias in the instrumental variable estimate (blue) and standard multivariable regression estimate (red) from potential confounders including: place of birth (northing and easting coordinates), Townsend Deprivation Index, age, sex, breastfeeding, birth weight, and the first 10 genetic principal components (PC), when (A) estimating the effect of time spent in education on refractive error; and (B) estimating the effect of refractive error on time spent in education. Townsend deprivation index (TDI) was natural log-transformed.
Tables

Table 1. Observational association between time spent in education and refractive error.

Time spent in education was defined as the age full time education was completed in years (yrs) and *refractive error* was defined as the average measured mean spherical equivalent refractive error in Dioptres (D). Model A included *sex* and *age* as covariates. Model B included *age*, *sex*, *Townsend Deprivation Index (TDI)*, *birth weight*, *whether breastfed*, *northing* and *easting* coordinates.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Model A</th>
<th>Model B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>Effect size</td>
<td>p-value</td>
</tr>
<tr>
<td>Time spent in education (yrs)</td>
<td>Refractive error (Dioptres)</td>
<td>69,798</td>
<td>-0.178 (-0.185 to -0.170) D/yr</td>
</tr>
<tr>
<td>Refractive error (Dioptres)</td>
<td>Time spent in education (yrs)</td>
<td>69,798</td>
<td>-0.154 (-0.161 to -0.147) yr/D</td>
</tr>
</tbody>
</table>
Table 2. Causal association between time spent in education and refractive error.

Results of conventional multivariable linear regression and bidirectional MR. All regressions included *age* and *sex* as covariates.
Abbreviation: DWH =Durbin-Wu-Hausman test for endogeneity.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>N</th>
<th>Observational estimate (OLS)</th>
<th>MR regression</th>
<th></th>
<th></th>
<th>p-value</th>
<th></th>
<th></th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time spent in education (years [yrs])</td>
<td>Refractive error (Dioptres [D])</td>
<td>69,798</td>
<td>-0.178 (-0.185 to -0.170) D/yr</td>
<td>0.71%</td>
<td>0.06</td>
<td>-0.270 (-0.368 to -0.173) D/yr</td>
<td>4e-8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Refractive error (Dioptres [D])</td>
<td>Time spent in education (years [yrs])</td>
<td>69,798</td>
<td>-0.154 (-0.161 to -0.147) yr/D</td>
<td>4.32%</td>
<td><2e-16</td>
<td>-0.008 (-0.041 to 0.025) yr/D</td>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Supplementary Figures and Tables

Supplementary Figure 1. Mendelian randomisation power calculation for the available sample size in UK Biobank (N=69,798). Causal association of: (A) time spent in education (years [yrs]) on refractive error (Dioptres [D]) using allele score with $R^2=0.0073$ (80% power = 0.14 D/yr); and (B) refractive error on time spent in education using allele score with $R^2=0.0442$ (80% power = 0.048 yr/D).

(figure_S1.png)
Supplementary Figure 2. Genetic principal component 9 (PC9) is associated with self-reported place-of-birth in Wales and with refractive error. (A) Scatter plot of geographic coordinates for place-of-birth vs. PC9 level. (B) Refractive error distribution in Dioptres (D) by PC9 level category. White rectangle shows inter-quartile range. Black circle shows median.

(figure_S2.png)
Supplementary Figure 3. Schematic representations of horizontal and vertical pleiotropy in the relationship between the instrumental variables, education and IQ. (A) Horizontal pleiotropy could lead to bias in the MR causal estimate, but only if there is a causal path between IQ and myopia. In communities with no formal education system there is a very low prevalence of myopia, making such a causal path between IQ and myopia unlikely. (B) Vertical pleiotropy would not lead to bias in the MR causal estimate.

(figure_S3.pdf)
Supplementary Table 1. Baseline characteristics of UK Biobank cohort for refractive error, age completed education and potential confounder variables.

Refractive errors (in Dioptres) were defined as: (i) myopia ≤ 0.75; (ii) -0.75 < emmetropia < 0.75; (iii) hypermetropia ≥ 0.75.

Townsend deprivation index (TDI) was natural log-transformed.

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (N=69,798)</th>
<th>Myopic (N=21,055)</th>
<th>Emmetropic (N=25,209)</th>
<th>Hypermetropic (N=23,534)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean or %</td>
<td>SD</td>
<td>Mean or %</td>
<td>SD</td>
</tr>
<tr>
<td>Refractive error (D)</td>
<td>-0.271 (-0.291 to -0.251)</td>
<td>2.679</td>
<td>-3.329 (-3.361 to -3.297)</td>
<td>2.385</td>
</tr>
<tr>
<td>Age completed education (years)</td>
<td>18.15 (18.13 to 18.17)</td>
<td>2.50</td>
<td>18.80 (18.76 to 18.83)</td>
<td>2.39</td>
</tr>
<tr>
<td>Age (years)</td>
<td>57.09 (57.03 to 57.14)</td>
<td>7.81</td>
<td>55.97 (55.86 to 56.07)</td>
<td>7.70</td>
</tr>
<tr>
<td>Sex</td>
<td>- Male</td>
<td>47.2%</td>
<td>-</td>
<td>47.4%</td>
</tr>
<tr>
<td></td>
<td>- Female</td>
<td>52.8%</td>
<td>-</td>
<td>52.6%</td>
</tr>
<tr>
<td>Birth weight</td>
<td>3.325 (3.320 to 3.330)</td>
<td>0.637</td>
<td>3.310 (3.302 to 3.318)</td>
<td>0.622</td>
</tr>
<tr>
<td>Breastfed</td>
<td>- Yes</td>
<td>78.6%</td>
<td>-</td>
<td>78.3%</td>
</tr>
<tr>
<td></td>
<td>- No</td>
<td>20.4%</td>
<td>-</td>
<td>20.7%</td>
</tr>
<tr>
<td>Townsend deprivation index</td>
<td>-0.012 (-0.016 to -0.008)</td>
<td>0.495</td>
<td>-0.012 (-0.019 to -0.005)</td>
<td>0.493</td>
</tr>
<tr>
<td>Northing</td>
<td>3.016e+5 (3.007e+5 to 3.024e+5)</td>
<td>1.135e+5</td>
<td>2.955e+5 (2.930e+5 to 2.971e+5)</td>
<td>1.162e+5</td>
</tr>
<tr>
<td>Easting</td>
<td>4.279e+5 (4.272e+5 to 4.286e+5)</td>
<td>8.911e+4</td>
<td>4.318e+5 (4.305e+5 to 4.330e+5)</td>
<td>9.089e+4</td>
</tr>
</tbody>
</table>
Supplementary Table 2. Observational (OLS) associations of confounding variables with education and myopia allele scores and outcomes.

Only associations that are concordant with the observational direction of effect between time spent in education and refractive error are shown. These include *northing* and *easting* geographical coordinates, and genetic population stratification principal components 8 and 9.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>N</th>
<th>Beta</th>
<th>SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easting</td>
<td>Refractive error</td>
<td>69797</td>
<td>-1.0e-6 (-1.3e-6 to -8.1e-7)</td>
<td>1.1e-7</td>
<td><2e-16</td>
</tr>
<tr>
<td>Easting</td>
<td>Education</td>
<td>69797</td>
<td>8.9e-7 (6.8e-7 to 1.1e-6)</td>
<td>1.1e-7</td>
<td><2e-16</td>
</tr>
<tr>
<td>Easting</td>
<td>Myopia allele score</td>
<td>69797</td>
<td>3.8e-8 (8.6e-9 to 6.7e-8)</td>
<td>1.5e-8</td>
<td>1e-2</td>
</tr>
<tr>
<td>Easting</td>
<td>Education allele score</td>
<td>69797</td>
<td>6.1e-9 (-2.2e-9 to 1.4e-8)</td>
<td>4.2e-9</td>
<td>2e-1</td>
</tr>
<tr>
<td>Northing</td>
<td>Education</td>
<td>69797</td>
<td>-1.6e-6 (-1.8e-6 to -1.5e-6)</td>
<td>8.3e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Northing</td>
<td>Refractive error</td>
<td>69797</td>
<td>1.2e-6 (9.8e-7 to 1.3e-6)</td>
<td>8.9e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Northing</td>
<td>Education allele score</td>
<td>69797</td>
<td>-1.3e-8 (-2.0e-8 to -6.7e-9)</td>
<td>3.3e-9</td>
<td>7e-5</td>
</tr>
<tr>
<td>Northing</td>
<td>Myopia allele score</td>
<td>69797</td>
<td>-3.2e-8 (-5.5e-8 to -9.2e-9)</td>
<td>1.2e-8</td>
<td>6e-3</td>
</tr>
<tr>
<td>PC8</td>
<td>Education</td>
<td>69798</td>
<td>2.7e-2 (1.7e-2 to 3.7e-2)</td>
<td>4.9e-3</td>
<td>3e-8</td>
</tr>
<tr>
<td>PC8</td>
<td>Refractive error</td>
<td>69798</td>
<td>-1.2e-2 (-2.3e-2 to -2.2e-3)</td>
<td>5.2e-3</td>
<td>2e-2</td>
</tr>
<tr>
<td>PC8</td>
<td>Education allele score</td>
<td>69798</td>
<td>4.2e-4 (4.2e-5 to 8.1e-4)</td>
<td>1.9e-4</td>
<td>3e-2</td>
</tr>
<tr>
<td>PC8</td>
<td>Myopia allele score</td>
<td>69798</td>
<td>1.1e-3 (-2.9e-4 to 2.4e-3)</td>
<td>6.9e-4</td>
<td>1e-1</td>
</tr>
<tr>
<td>PC9</td>
<td>Education</td>
<td>69798</td>
<td>-2.1e-2 (-2.5e-2 to -1.7e-2)</td>
<td>2.3e-3</td>
<td><2e-16</td>
</tr>
<tr>
<td>PC9</td>
<td>Education allele score</td>
<td>69798</td>
<td>-3.1e-4 (-4.8e-4 to -1.3e-4)</td>
<td>9.1e-5</td>
<td>8e-4</td>
</tr>
<tr>
<td>PC9</td>
<td>Myopia allele score</td>
<td>69798</td>
<td>-7.8e-4 (-1.4e-3 to -1.5e-4)</td>
<td>3.2e-4</td>
<td>2e-2</td>
</tr>
<tr>
<td>PC9</td>
<td>Refractive error</td>
<td>69798</td>
<td>5.6e-3 (8.0e-4 to 1.0e-2)</td>
<td>2.4e-3</td>
<td>2e-2</td>
</tr>
</tbody>
</table>
Supplementary Table 3. Causal estimates of time spent in education on refractive error and refractive error on time spent in education using methods implemented in MR-Base and a split sample in UK Biobank.

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Method</th>
<th>N SNPs</th>
<th>Beta</th>
<th>SE</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time spent in education</td>
<td>Refractive error</td>
<td>MR Egger</td>
<td>67</td>
<td>-0.399</td>
<td>0.125</td>
<td>2e-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighted median</td>
<td>67</td>
<td>-0.206</td>
<td>0.099</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse variance weighted</td>
<td>67</td>
<td>-0.271</td>
<td>0.070</td>
<td>1e-4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple mode</td>
<td>67</td>
<td>-0.169</td>
<td>0.547</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighted mode</td>
<td>67</td>
<td>-0.231</td>
<td>0.529</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MR Egger</td>
<td>43</td>
<td>-0.002</td>
<td>0.057</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighted median</td>
<td>43</td>
<td>0.003</td>
<td>0.037</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inverse variance weighted</td>
<td>43</td>
<td>-0.014</td>
<td>0.026</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Simple mode</td>
<td>43</td>
<td>-0.091</td>
<td>0.071</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weighted mode</td>
<td>43</td>
<td>0.030</td>
<td>0.049</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Supplementary Table 4. Table of MR results from sensitivity analyses using alternative encodings of educational exposure and outcome, additional covariates and England-only restriction.

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Exposure</th>
<th>Outcome</th>
<th>Covariates</th>
<th>N</th>
<th>TSLS Beta</th>
<th>TSLS SE</th>
<th>TSLS P</th>
<th>Weak instr P</th>
<th>DWH P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age</td>
<td>69798</td>
<td>-0.270</td>
<td>-0.368 to -0.173</td>
<td>0.049</td>
<td>4e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education (England only)</td>
<td>Refractive error</td>
<td>sex + age</td>
<td>68152</td>
<td>-0.269</td>
<td>-0.369 to -0.171</td>
<td>0.050</td>
<td>8e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + genechip</td>
<td>69798</td>
<td>-0.270</td>
<td>-0.368 to -0.173</td>
<td>0.049</td>
<td>4e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + PC1-10</td>
<td>69798</td>
<td>-0.277</td>
<td>-0.376 to -0.179</td>
<td>0.050</td>
<td>3e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + birthweight</td>
<td>42511</td>
<td>-0.272</td>
<td>-0.399 to -0.146</td>
<td>0.064</td>
<td>2e-5</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + breastfed</td>
<td>53601</td>
<td>-0.307</td>
<td>-0.417 to -0.200</td>
<td>0.055</td>
<td>2e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + northing</td>
<td>69797</td>
<td>-0.264</td>
<td>-0.363 to -0.166</td>
<td>0.050</td>
<td>1e-7</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + easting</td>
<td>69797</td>
<td>-0.268</td>
<td>-0.366 to -0.171</td>
<td>0.049</td>
<td>5e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education</td>
<td>Refractive error</td>
<td>sex + age + TDI</td>
<td>69737</td>
<td>-0.271</td>
<td>-0.371 to -0.173</td>
<td>0.050</td>
<td>6e-8</td>
<td><2e-16</td>
</tr>
<tr>
<td>Education</td>
<td>Education (Dichotomised)</td>
<td>Refractive error</td>
<td>sex + age</td>
<td>69798</td>
<td>-0.347</td>
<td>-0.482 to -0.220</td>
<td>0.064</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Education</td>
<td>Education (No college)</td>
<td>Refractive error</td>
<td>sex + age</td>
<td>45535</td>
<td>-0.228</td>
<td>-0.479 to 0.018</td>
<td>0.124</td>
<td>7e-2</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age</td>
<td>69798</td>
<td>-0.008</td>
<td>-0.041 to 0.025</td>
<td>0.017</td>
<td>6e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education (England only)</td>
<td>sex + age</td>
<td>68152</td>
<td>-0.009</td>
<td>-0.042 to 0.025</td>
<td>0.017</td>
<td>6e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education (No college)</td>
<td>sex + age</td>
<td>45535</td>
<td>-0.004</td>
<td>-0.035 to 0.027</td>
<td>0.016</td>
<td>8e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education (Dichotomised)</td>
<td>sex + age</td>
<td>69798</td>
<td>0.000</td>
<td>-0.028 to 0.028</td>
<td>0.014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + genechip</td>
<td>69798</td>
<td>-0.009</td>
<td>-0.041 to 0.025</td>
<td>0.017</td>
<td>6e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + PC1-10</td>
<td>69798</td>
<td>-0.011</td>
<td>-0.044 to 0.022</td>
<td>0.017</td>
<td>5e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + birthweight</td>
<td>42511</td>
<td>0.016</td>
<td>-0.026 to 0.057</td>
<td>0.021</td>
<td>5e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + breastfed</td>
<td>53601</td>
<td>0.007</td>
<td>-0.030 to 0.044</td>
<td>0.019</td>
<td>7e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + northing</td>
<td>69797</td>
<td>-0.011</td>
<td>-0.044 to 0.022</td>
<td>0.017</td>
<td>5e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + easting</td>
<td>69797</td>
<td>-0.009</td>
<td>-0.042 to 0.024</td>
<td>0.017</td>
<td>6e-1</td>
<td><2e-16</td>
</tr>
<tr>
<td>Myopia</td>
<td>Refractive error</td>
<td>Education</td>
<td>sex + age + TDI</td>
<td>69737</td>
<td>-0.008</td>
<td>-0.040 to 0.026</td>
<td>0.017</td>
<td>7e-1</td>
<td><2e-16</td>
</tr>
</tbody>
</table>
Supplementary Data Table. Genetic variants used as instrumental variables for time spent in education and myopia in this study. Summary statistics are shown for associations with (1) time spent in education/myopia in the original study, (2) time spent in education and refractive error in the full UK Biobank sample, (3) time spent in education and refractive error in the two UK Biobank split sample groups.

(supplementary_data_table_online_only_18-03-27.docx)