In situ characterization of the deposition of anatase TiO$_2$ on rutile TiO$_2$(110)

Ashley R. Head, Niclas Johansson, Yuran Niu, Olesia Snezhkova, Shilpi Chaudhary, Joachim Schnadt, Hendrik Bluhm, Chaoyu Chen, José Avila, and Maria-Carmen Asensio

Citation: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36, 02D405 (2018); doi: 10.1116/1.5005533
View online: https://doi.org/10.1116/1.5005533
View Table of Contents: http://avs.scitation.org/toc/jva/36/2
Published by the American Vacuum Society

Articles you may be interested in

Time evolution of ion fluxes incident at the substrate plane during reactive high-power impulse magnetron sputtering of groups IVb and VIb transition metals in Ar/N$_2$

The band structure of the quasi-one-dimensional layered semiconductor TiS$_3$(001)

Initial reactions of ultrathin HfO$_2$ films by in situ atomic layer deposition: An in situ synchrotron photoemission spectroscopy study
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36, 02D402 (2018); 10.1116/1.5015946

Atomic layer deposition of 2D and 3D standards for synchrotron-based quantitative composition and structure analysis methods
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36, 02D403 (2018); 10.1116/1.5025240

The inherent transport anisotropy of rutile tin dioxide (SnO$_2$) determined by van der Pauw measurements and its consequences for applications

Magnetic properties of iron doped zirconia as a function of Fe concentration: From ab initio simulations to the growth of thin films by atomic layer deposition and their characterization by synchrotron radiation
Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 36, 02D404 (2018); 10.1116/1.5016028
In situ characterization of the deposition of anatase TiO₂ on rutile TiO₂(110)

Ashley R. Head and Niclas Johansson
Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden

Yuran Niu
MAX IV Laboratory, Lund University, Box 118, 22100 Lund, Sweden

Olesia Snezhkova, Shilpi Chaudhary, and Joachim Schnadt
Division of Synchrotron Radiation Research, Department of Physics, Lund University, Box 118, 22100 Lund, Sweden

Hendrik Bluhm
Chemical Sciences Division and Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Chaoyu Chen, José Avila, and Maria-Carmen Asensio
ANTARES Beamline, Synchrotron SOLEIL, Université Paris-Saclay, L’Orme des Merisiers, Saint Aubin-BP 48, 91192 Gif sur Yvette Cedex, France

(Received 18 September 2017; accepted 12 February 2018; published 27 February 2018)

Growing additional TiO₂ thin films on TiO₂ substrates in ultrahigh vacuum (UHV)-compatible chambers have many applications for sample preparation, such as smoothing surface morphologies, templating, and covering impurities. However, there has been little study into how to control the morphology of TiO₂ films deposited onto TiO₂ substrates, especially using atomic layer deposition (ALD) precursors. Here, the authors show the growth of a TiO₂ film on a rutile TiO₂(110) surface using titanium tetraisopropoxide (TTIP) and water as the precursors at pressures well below those used in common ALD reactors. X-ray absorption spectroscopy suggests that the relatively low sample temperature (175 °C) results in an anatase film despite the rutile template of the substrate. Using ambient pressure x-ray photoelectron spectroscopy, the adsorption of TTIP was found to be self-limiting, even at room temperature. No molecular water was found to adsorb on the surface. The deposited thickness suggests that an alternate chemical vapor deposition growth mechanism may be dominating the growth process. This study highlights the possibility that metal oxide film deposition from molecular precursors is an option for sample preparations in common UHV-compatible chambers. © 2018 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/1.5005533

I. INTRODUCTION

Thin film deposition of TiO₂ is routinely performed using methods such as atomic layer deposition (ALD), chemical vapor deposition (CVD), and pulsed laser deposition (PLD). These thin films are used in dye-sensitized solar cells and other photocatalytic applications. TiO₂ is easily deposited on different substrates in deposition reactors, with the choice of several molecular precursors. Ways to control the morphology, impurity concentration, and crystalline phase using ALD are fairly well-known; previous studies have shown that epitaxial growth of TiO₂ films is possible using ALD, CVD, and other deposition techniques on substrates with similar lattices, such as Al₂O₃ (0001), SrTiO₃, LaAlO₃, RuO₂, and SnO₂ nanowires. In contrast, there are fewer investigations on the deposition of thin TiO₂ films on various TiO₂ substrates. Homoeptaxial films of both anatase and rutile TiO₂ have been grown on TiO₂ substrates using ALD, PLD, and molecular beam epitaxy, but the growth of anatase TiO₂ on rutile TiO₂ via ALD has not been reported, to the best of our knowledge.

Depositing additional TiO₂ films onto TiO₂ substrates could potentially be useful in several applications. Surface defects or rough morphologies of a previously prepared surface could be repaired. Since it is difficult to grow bulk anatase TiO₂ crystals, naturally formed ones that contain impurities are used often in surface science studies, and, in our experience, commercial rutile TiO₂ crystals can have Si or K contamination. Epitaxial growth of TiO₂ could cover such impurities. Complex surfaces could be synthesized by using a variety of templates, including molecules, nanoparticles, or patterned self-assembled monolayers or polymers to selectively deposit additional TiO₂ on a substrate. Mixed anatase/rutile TiO₂ materials and the interface between the two phases have shown enhanced photocatalytic behavior over one phase alone. Understanding conditions for homoeptaxial and heteroepitaxial growth is important for such applications.
Of great interest in the surface science community are spectroscopic and microscopic studies of pristine surfaces, largely conducted in ultrahigh vacuum (UHV) conditions. Investigations of the adsorption of ALD precursors on surfaces are commonplace, but there are few studies of CVD processes and cyclic processes of ALD in UHV-compatible chambers. Feasibility of such deposition could offer a new option to grow materials in UHV-compatible chambers, including a way to obtain a smooth or impurity-free surface, especially when fairly low temperatures during the deposition are required. Here, we investigate the deposition of TiO₂ from two common deposition precursors, titanium tetraisopropoxide (TTIP) and water, on a rutile TiO₂(110) crystal at 175 °C.

II. EXPERIMENT

A. Ambient pressure XPS

The experiments were performed at the APXPS end station of beamline 11.0.2 (Ref. 33) at Lawrence Berkeley National Laboratory’s Advanced Light Source. A rutile TiO₂(110) crystal (SurfaceNet GmbH, Germany) was cleaned with cycles of Ar⁺ sputtering (1 keV, 5 × 10⁻⁶ mbar, 5 mA) and annealing to 620 °C until no carbon was detected in the x-ray photoelectron (XP) spectra. The deposition was performed by introducing alternating pressures of TTIP (99.999%, Sigma-Aldrich) and water in the analysis chamber via a precision leak valve. In contrast to industrial ALD reactors, no carrier gas was used. Instead of inert purging steps, evacuation of the precursors was performed. The pressures are mentioned in the text. As discussed below, the experimental chamber is difficult to restore to UHV conditions after dosing TTIP in the mTorr regime without a standard UHV bakeout; however, dosing at lower pressures (1 × 10⁻⁶ Torr and below) allowed for recovery of UHV conditions without background TTIP after a day of standard pumping of the analysis chamber. Several experiments were conducted with the same crystal. Sputter and anneal cycles were always performed before each new series of experiments. Occasionally, depending on the background conditions, introducing our TiO₂ crystal into the analysis chamber resulted in immediate reaction with background TTIP. All spectra shown below were collected starting with a clean, carbon-free surface immediately prior to dosing TTIP. However, the data plotted in Fig. 2 are from an experiment that did contain TTIP on the initial surface. This experimental iteration was chosen because it had the most precursor dosing cycles and contains peak area changes that are representative of all experiments.

Unless mentioned otherwise, the sample was kept at 175 °C during dosing, as monitored by a K-type thermocouple. The spectra were referenced to the Fermi level of gold foil in good ohmic contact with the titania crystal. A polynomial background was removed from the spectra. A least squares fitting analysis was used with Voigt functions. The combined resolution of the beamline and the electron energy analyzer was better than 0.30 eV. In order to minimize damage to the molecules from the photon beam, each spectrum was collected on a new area of the sample and the collection time of each spectrum was minimized. More information on the observed photon-induced effects is given in Sec. S1 of the supplementary material.

B. X-ray absorption spectroscopy

A TiO₂ film was deposited on a clean rutile TiO₂(110) crystal by performing ten precursor dosing cycles (each half-cycle used a precursor pressure of 1 × 10⁻⁷ Torr for 10 min at 175 °C). The sample was transported ex situ to the experimental chamber of the ANTARES beamline (Synchrotron SOLEIL, France), where it was heated to 200 °C in vacuum at a pressure lower than 1 × 10⁻⁹ mbar. The spectra were collected in three modes: total electron yield (TY), partial electron yield (PY), and fluorescence yield (FY). In the partial electron yield, both the O K-edge and the Ti L-edge were collected with a 2 eV kinetic energy window centered at 15 eV. The photon energy was calibrated by taking the difference in kinetic energy of a suitable XPS line excited by first and second order photons transmitted by the beamline’s monochromator.

C. LEED

A TiO₂ film was deposited as for the XAS study and examined in situ using micro-low-energy electron diffraction (μ-LEED) in an ACLEEM instrument (Elmitec GmbH) at beamline I311 on the MAX II storage ring of the MAX IV Laboratory (Lund, Sweden). The film was removed and examined using ex situ AFM.

III. RESULTS

A. Spectroscopy

Aspects of the surface chemical reactions of the deposition of TiO₂ from TTIP and water were investigated by collecting XP spectra while dosing the precursors on a rutile TiO₂(110) surface. Figure 1(a) shows the C 1s spectra while dosing TTIP at 1 × 10⁻⁵ Torr at 150 °C and at 0.014 Torr at...
The similar intensity of the C 1s spectra in Fig. 1(a) shows no pressure or temperature dependence on TTIP adsorption in this pressure regime. The increase in binding energy that often accompanies multilayer formation is also absent. The C 1s spectra agree with previous studies of surface-bound TTIP (Refs. 24 and 25) and are fit with two peaks in Fig. 1(b). The larger peak at 285.19 eV is the ionization from the methyl carbons, and the smaller peak at 286.70 eV is from the \(-\text{OCH}\) group. The area ratio of the peaks is 2 CH\(_3\):1 \(-\text{OCH}\), as in the intact molecule. Once water is dosed, the amount of carbon decreases and both C 1s peaks shift by 150 meV toward lower binding energy, as seen in Fig. 1(b). This shift is cyclic and occurs in the three dosing cycles that were monitored.

Figure 2 details the cyclic changes in the C 1s intensity. Initially, a background pressure of TTIP results in a significant amount of carbon on the surface, but the coverage is not saturated since the intensity increases upon dosing at \(1 \times 10^{-5}\)Torr. Upon dosing water at a pressure of \(5 \times 10^{-6}\)Torr, more than half of the carbon remains. Evacuation of the water removes more carbon, and it is difficult to distinguish between nonideal ALD behavior and adsorption of TTIP lingering in the background.

Figure 3(a) shows the O 1s spectrum of the clean TiO\(_2\) substrate, with the large gray peak from the bulk oxygen signal and the small light gray peak from surface hydroxyl groups.\(^3\) The TTIP exposure [Fig. 3(b)] attenuates the bulk signal, and the signal from the isopropyl group of the TTIP appears as a broad component at 531.4 eV. During the water dosing [Fig. 3(c)], the signal from the hydroxyl groups at 531.8 eV (Ref. 35) overlaps with the peak of the isopropyl groups that remain. With removal of some isopropyl groups, the attenuation of the bulk oxide peak lessens. Notably absent from the O 1s spectrum during the water exposure is a signal from absorbed molecular water around a binding energy of 534 eV\(^,3^\),\(^6\). The Ti 2p\(_{3/2}\) spectrum of the clean TiO\(_2\) is shown in Fig. 4. The low binding energy shoulder indicates Ti\(^{3+}\) at oxygen vacancy sites.\(^1\)\(^6\) After three full precursor dosing cycles, the intensity of the Ti\(^{3+}\) shoulder is reduced in comparison to the starting surface, indicating a filling or covering of the defects.

To determine if the crystal structure of the deposited TiO\(_2\) film was continuing the rutile phase of the TiO\(_2\) substrate, Ti L-edge and O K-edge XAS data were collected on a film grown from ten precursor dosing cycles. Using three detectors simultaneously, the absorption spectra (Fig. 5) were...
collected in three modes with different surface sensitivities: partial electron yield, total electron yield, and fluorescence yield. In the more surface-sensitive partial and total yield modes, the intensities of the peaks at 459.5 and 460.5 eV in the Ti absorption spectra are similar to that of anatase TiO$_2$, shown in the top spectrum of Fig. 5(a). The relatively more bulk-sensitive fluorescence mode spectrum in Fig. 5(a) looks less anatase and is likely a mixture of signals from both the surface anatase and the rutile bulk. The phase depicted in the O absorption spectra is more difficult to discern in Fig. 5(b). The fluorescence yield Ti L-edge data are rather noisy, especially compared with those of the O K-edge; the higher signal in the O spectrum is due to the increased probability of fluorescence.37

B. Morphology characterization

The morphology of the thicker film grown with ten precursor dosing cycles was also investigated. Without exposing the sample to the atmosphere, a low energy electron diffraction image was collected using μ-LEED. μ-LEED was used here because a typical LEED with a larger beam size damaged the film too quickly and produced the LEED pattern of the substrate only. Figure 6 shows a μ-LEED image that is similar to that of a clean rutile TiO$_2$(110) (1 \times 1) surface, except that four spots are missing, as indicated with the white circles. The weak intensity, especially the disappearances, can indicate that the film growth is not homogenous.

IV. DISCUSSION

A. Deposition process

The precursor dosing during the deposition of TiO$_2$ from TTIP and H$_2$O was monitored using APXPS. In comparison to standard deposition processes, no carrier gas was used. Additionally, instead of an inert gas purge step that is used in ALD, the precursors were evacuated. The standard UHV experimental chamber used is not designed to have a gas flow across the sample; thus, it is unlikely that an inert gas purge step would be more effective than precursor evacuation. Some APXPS instrumentation is designed with a gas flow in front of the sample,38 and the effect of a purge step in such a setup would be a feasible experiment.

Previous reports show that TTIP absorbs to a surface in a self-limiting fashion independent of pressure in the temperature range of 100–250°C.31 The C 1s spectra in Fig. 1(a) confirm that this behavior is also true down to 25°C and up to 0.014 Torr. This result lies in contrast with the study of TTIP on MoO$_x$ where no evidence of TTIP adsorption on room temperature MoO$_x$ was found in XPS data.25 Interestingly, there is a reproducible shift in the C 1s binding energies between the dosing of the different precursors [Fig. 1(b)]. Band bending effects do not generate this shift since the other core levels remain constant. This binding energy decrease could be due to stabilizing effects of intermolecular
interactions between the large isopropoxide groups; as the isopro-
opoxide ligands are replaced by hydroxyl groups, the remaining, less sterically hindered ligands may be able to more effectively screen the positive photohole. A second possibility is anchored in initial state effects. The more electron-rich hydroxyl groups will push more electron density onto the Ti atom and slightly to the isopropoxide ligand, decreasing the C 1s binding energy. However, it is unclear if such a subtle change in ligands would indeed cause a binding energy shift. The bulkier isopropoxide group would be more efficient at screening a charge, which may cancel any binding energy decrease from an initial state effect. Unfortunately, there is little literature on such binding energy shifts. Some insight can be gleaned from Si 2p binding energy shifts of similar systems. Upon comparing hydroxyl groups on Si (100) and ethoxy groups on Si (111), the binding energy of the surface Si atoms shifts by \(+0.9\) eV upon binding to either group (i.e., the hydroxyl and ethoxy groups donate the same amount of electron density to Si). Furthermore, final state effects are responsible for the increased Si 2p binding energy of tetramethoxysilane (170.70 eV) compared to tetraethoxysilane (107.56 eV). Thus, it is unclear if the extra electron density provided by the hydroxyl group would be sufficient to overcome screening effects by the isopropoxide ligands in our system.

From quartz crystalline microbalance studies, it has been calculated that about 2.2–2.5 ligands leave per TTIP adsorption on the surface during the standard ALD mechanism.
coverage calculations in the current study are difficult since
the film and the substrate are the same material. Previous stud-
ies have shown that water does not remove all the isoproxide
ligands from the surface, suggesting that 30% of the ligands
remain.31 A background pressure of TTIP in the analysis
chamber prevents quantification of the amount of isopropyl
groups remaining on the surface, as there could be mixing
between the precursors. The amount of carbon on the surface
upon immediate introduction of the sample into the analysis
chamber and after evacuation of the water indicates that the
background TTIP pressure is significant. However, when dos-
ing TTIP and water in a more controlled UHV environment at
lower pressures, where mixing between the precursors is not
expected, the water still does not remove all the isopropyl ligands (see Fig. S4). Furthermore, Lee and coworkers reported that carbon remained on the surface throughout the ALD process after water exposure.41 It has been suggested that longer exposures to water could remove more carbon;31 however, we did not see such behavior, even up to a pressure of 0.080 Torr of water (see Fig. S3).

Johnson and Stair reported that a CVD mechanism domi-
nates the deposition process at low precursor pressures (at and
lower than 3 \times 10^{-6} \text{ Torr}) at 100 °C on a MoOx substrate.25

Their analysis is based on the quantification of Ti and C XPS
data. The mechanism proposes dehydration of the isoproxide
ligand on the Ti sites. The low TTIP flux at a modest tempera-
ture is thought to slow the kinetics of the ALD process enough
to allow the alternative CVD process to occur. With the sub-
strate and the film material being the same in our study, quan-
tification of Ti and C on the surface is challenging. Since the
dehydration occurs on a Ti site, it is feasible that the low-
temperature CVD could occur on our TiO2 substrate.

B. Thin film properties

The morphology of the film shows a corrugated surface, as
seen in the AFM image in Fig. 7(b). The uneven thickness in the AFM image can explain the missing spots in the
LEED pattern. A film with ordered atoms but containing sur-
face imperfections, such as uneven layers, can cause a
decrease in LEED spot intensities.42

It is challenging to estimate the thickness of the film since
the substrate and the film are the same material. Using a
growth per cycle of 0.05 nm/cycle from a typical ALD study,31 a lower limit to the film thickness can be estimated
to be about 0.5 nm. With the background TTIP and water
pressures in the chamber during the experiments, it is likely
that the film is even thicker, and XAS data, indeed, point
toward a larger thickness. Quantitative analysis of XAS data
is difficult, but the nearly complete anatase fingerprint in the
partial and total electron Ti L-edge spectra [Fig. 5(a)] indi-
cates that the film extends almost the entire probing depth of
the detection methods, which is on the order of 10 nm for
semiconductors using total electron yield.37 A thickness of
10 nm is not attainable from a purely ALD process. This
thickness implies that there is an extensive precursor overlap
that increases the growth or that the low-temperature CVD
mechanism reported by Johnson and Stair is occurring.25

The fluorescence yield spectrum probes deeper into the
bulk (on the order of 50–100 nm),37 and so, a larger rutile
TiO2 contribution is apparent and dampens the anatase pro-
file in the Ti L-edge spectrum. With such a deep probing
depth, the lack of a more distinct rutile spectrum in the fluo-
rescence yield also hints at a thicker anatase film. An amor-
pous morphology can be excluded since the region between
459 and 463 eV would be a featureless peak with no discern-
able splitting.43 Because absorption spectra of the anatase
and rutile phases have less distinct features in the O adsorp-
tion spectrum, it is more challenging to identify the phase in
the spectra. The O K-edge fluorescence yield spectrum is
clearly rutile with three distinct peaks around 540, 543, and
546 eV; this result matches the rutile phase seen in the Ti
L-edge spectrum. These rutile peaks are also present in the
partial and total yield spectra, but they are less distinct. It is
unclear if the indeterminate nature of the peaks is due to the
sample collection method (position of the detector, incident
angle of the photons, etc.) or if the anatase phase of the film
is dampening the rutile signature.

The crystal structure of deposited TiO2 depends on the
deposition temperature, molecular precursors, and substrate.3
Generally, for TTIP and water on metal oxide substrates,
V. CONCLUSIONS

Depositing TiO$_2$ at 175°C using alternating TTIP and H$_2$O dosing with pressures at and below 1 × 10$^{-5}$Torr resulted in a film that appears to be anatase from the Ti L-edge XAS data. Despite the rutile template of the substrate, the temperature may be the prevailing factor in determining the crystalline phase. The XAS suggest a film thickness of at least 10 nm, which is unrealistic for ten ideal ALD cycles; the large thickness suggests that a CVD mechanism could play a dominate role in the deposition. The film morphology was found by AFM and μ-LEED to be corrugated. Using APXPS, the adsorption of TTIP was independent of pressure, even at room temperature. Molecular water adsorption on the surface was not detected. This study builds on our previous investigations of ALD (Ref. 27) and CVD (Ref. 21) with APXPS by showing that a film can be grown by dosing molecular precursors in a conventional UHV chamber using precursor pressures lower than typical industrial deposition reactors. APXPS experiments of ALD and CVD processes could be further improved by using a setup that has a smaller volume of gas and a gas flow over the sample; precursor mixing could be avoided, and a purge step could be effectively introduced. Overall, this study highlights the potential of using synchrotron techniques in understanding fundamental reactions of deposition processes and characterizing the phase of film growth.

ACKNOWLEDGMENTS

Anders Sandell is thanked for the XAS data of anatase TiO$_2$. The staff at the Advanced Light Source, SOLEIL, and MAX IV Laboratory synchrotron light sources are gratefully acknowledged for assistance during beamtimes. This work was supported by Vetenskapsrådet (Grant Nos. 2010-5080 and 2011-4241) and by the European Commission through the Marie Curie Initial Training Network SMALL (Grant No. 2011-4241) and by the European Commission through the Horizon 2020 Framework Programme under Grant No. 646307. The staff at the Advanced Light Source, SOLEIL, and MAX IV Laboratory synchrotron light sources are gratefully acknowledged for assistance during beamtimes. This work was supported by Vetenskapsrådet (Grant Nos. 2010-5080 and 2011-4241) and by the European Commission through the Marie Curie Initial Training Network SMALL (Grant No. 2011-4241) and by the European Commission through the Horizon 2020 Framework Programme under Grant No. 646307.

17. C. P. Canlas et al., Nat. Chem. 4, 1030 (2012).
44. See supplementary material at https://doi.org/10.1116/1.5005533 for additional APXPS spectra.