Calcineurin knockout mice show a selective loss of small spines

Hitoshi Okazakia,b, Akiko Hayashi-Takagia,b,c,d, Akira Nagaokaa, Makiko Negishia,b, Hasan Ucara,b, Sho Yagishitaa,b, Kazuhiro Ishiia,b, Taro Toyoizumie, Kevin Foxf, Haruo Kasaia,b,*

a Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
b International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
c Laboratory of Medical Neuroscience, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi-city, Gunma, Japan
d PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
e RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
f School of Bioscience, Cardiff University, Cardiff, UK

\textbf{A R T I C L E I N F O}

Keywords:
Dendritic spines
Synaptic plasticity
Schizophrenia
Calcineurin

\textbf{A B S T R A C T}

Calcineurin is required for long-term depression and activity-dependent spine shrinkage, and calcineurin mutations have been identified in patients with schizophrenia. Moreover, mice with conditional knockout of calcineurin B (CNB-KO) exhibit behavioral abnormalities suggestive of schizophrenia. Changes in the dendritic spines of these mice, however, have not been investigated. We therefore examined the dendritic spines of CNB-KO mice, and observed a significant reduction in small spines and an increase in large spines in the prefrontal and visual cortices. The effect of CNB-KO on the spine sizes was relatively moderate, possibly due to the presence of spontaneous fluctuations (dynamics) in the dendritic spines themselves. Thus, CNB-KO mice showed a spine phenotype similar to those recently reported in patients with schizophrenia.

1. Introduction

Calcineurin is the only serine/threonine phosphatase controlled by Ca2+/calmodulin [1], and is involved in various neuronal functions [2], including long-term depression (LTD) [3–5], spine shrinkage [6], and axonal guidance [7]. Calcineurin is a heterodimer comprising a catalytic subunit, calcineurin A (CNA), and a regulatory subunit, calcineurin B (CNB) [2]. CNB1 is an isoform of CNB and the only regulatory subunit expressed in the brain. In contrast, several different isoforms of CNA are expressed in the brain [8,9], with the PPP3CC-encoded γ isoform showing single-nucleotide polymorphisms in patients with schizophrenia [10–12]. CNB knockout (CNB-KO) mice exhibit certain behavioral abnormalities typically observed in schizophrenia [13], including impairments in hippocampus-dependent working memory and episodic-like memory, while contextual memory, cued fear conditioning, and spatial reference memory are all preserved [13,14].

To gain insight into the possible relationship between schizophrenic-like behavior and calcineurin dysfunction, it is valuable to study the effect of CNB-KO on spine structure in vivo—especially since CNB-KO should abolish activity-dependent decreases in spine size [6]. However, it is important to note that, in addition to activity-dependent spine enlargement and shrinkage, activity-independent slow changes in spine size occur [15–21]. Such intrinsic fluctuations (dynamics) have been detected in the presence of inhibitors for NMDAR, as well as voltage-dependent Ca2+ and Na+ channels, and are known to reflect cell metabolism [15,22]. A recent study revealed that such dynamics also occur in vivo, and are exacerbated in autism spectrum disorders [22], further emphasizing the need to take into account activity-independent spine dynamics when assessing the influence of activity-dependent changes on spine structures.

We examined visual area V1 and frontal area 2 (Fr2), which is the rodent analogue of the dorsolateral prefrontal cortex [23], to evaluate possible differences in the distribution of spine sizes between wild-type (WT) and CNB-KO mice. We found significant differences in the distribution of spine sizes in both cortical areas. These differences, however, were relatively small, consistent with the presence of intrinsic spine dynamics.

2. Materials and methods

2.1. CNB-KO mice

Forebrain-specific CNB knockout mice, which harbor yellow

* Corresponding author at: Laboratory of Structural Physiology, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
E-mail address: hkasai@m.u-tokyo.ac.jp (H. Kasai).

https://doi.org/10.1016/j.neulet.2018.02.006
Received 22 December 2017; Received in revised form 26 January 2018; Accepted 3 February 2018
Available online 07 February 2018
0304-3940/ © 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).
fluorescent protein (YFP H-line in [24]) in a small subset of neurons, were generated by mating a male mouse heterozygous for floxed CNB (CNB^{lox/lox} in [13]) and homozygous for the YFP allele (YFP^{+/−}) with a female CNB^{lox/lox} mouse carrying the α-calcium–calmodulin-dependent kinase II (αCaMKII)-Cre transgene (αCaMKII-Cre^{+/−}). This pairing led to the generation of CNB^{lox/lox}, αCaMKII-Cre^{+/−}, YFP^{+/−} mice for the CNB-KO group and CNB^{wild/wild}, αCaMKII-Cre^{−/−}, YFP^{−/−} for the littermate control (WT) group. The background strain used to generate the mutation was C57BL/6J. Mice were housed in a room with a 12-h light-dark cycle (lights on at 9:00 a.m.), with access to food and water ad libitum. Tail DNA was collected to identify the genotype of each animal by using polymerase chain reaction. All procedures were approved by the Animal Experiment Committee of the University of Tokyo. Procedures were carried out in accordance with the University of Tokyo Animal Care and Use Guidelines. All surgeries were performed under isoflurane anesthesia, and all efforts were made to minimize suffering.

2.2. Slice preparation

Mice were anesthetized with isoflurane, and transcardially perfused with 4% paraformaldehyde (PFA; pH 7.4); thereafter, their brains were dissected and post-fixed in 4% PFA for 12 h at room temperature. Coronal sections (150-μm) were obtained using a vibratome (VT1000, Leica Biosystems, Germany), and brain slices were subjected to free-floating immunofluorescence staining with a slight modification to the method described in a previous study [25]. In brief, the slices were permeabilized with perm/blocking buffer (2.5% normal goat serum [v/v] in phosphate-buffered saline [PBS] with 0.1% Triton X-100 [v/v]), followed by incubation for 48 h at 4 °C with the primary antibodies against anti-green fluorescent protein (anti-GFP, D153-3, MBL, Japan). After rinsing with PBS (8 times, 5 min each), the slices were stained with the Alexa 488 goat anti-Rat IgG and mounted on slides.

2.3. Image analysis

Measurements of spine head cross-sectional areas and densities were performed using National Institutes of Health ImageJ software. Before quantifying the spine area, we binarized each imaged dendrite using the following threshold: mean value plus 4 times the standard deviation of the background intensity around the dendrite.

2.4. Statistical analysis

Distributions of spine areas were compared using the Kolmogorov–Smirnov test. Two-way analyses of variance (ANOVAs), with genotype (i.e., CNB and wild-type) and cortical areas (i.e., Fr2 and V1) as between-subjects factors, were performed to assess differences in spine areas and densities. ANOVAs were performed using type II sum of squares (SS) to adjust for unequal sample sizes, along with post hoc Bonferroni multiple comparison tests. We calculated eta squared (η²), which represents the coefficient of determination for ANOVA, as

\[
η^2 = \frac{SS_{between}}{SS_{total}}
\]

where SS_{between} and SS_{total} represent the SS between groups and the overall SS, respectively. Within the WT and CNB-KO groups, spines were categorized into small (< 0.3 μm²) and large sizes using Fisher’s exact test.

3. Results

A confocal microscope was used to image spines in fixed slice preparations of YFP-expressing H-line mice mated with CNB-KO mice or their WT litter-mates. We investigated spines on the first branches of apical dendrites of layer 5 pyramidal neurons, where they appeared in layer 2/3 (located 200–300 μm away from the soma), in two neocortical areas (Fr2 and V1). Mice used in this study were aged P26–32 (Fig. 1), which is within the critical period for V1. In each case, spine head sizes were measured in the focal plane yielding the largest area in each case. Using this approach, we observed significant changes in the distribution of spine head sizes in both cortical areas of CNB-KO mice compared to control mice (Fig. 1B–E).

To assess whether small spines (< 0.3 μm²) were less frequent in the cortices of CNB-KO mice than in those of WT mice, we used Fisher’s exact test for WT and CNB-KO mice (Fig. 1B and C). We adopted 0.3 μm² as the threshold for the smallest spines because morphological plasticity has been shown to decrease by at least 0.3 μm² (~0.1 μm² in terms of volume) when assuming that spine heads are spherical [26,27]. We found that small spines were significantly less frequent, and large spines more frequent, in CNB-KOs than in WTs for both Fr2 and V1 cortices.

Previous studies have reported that mean spine head area varies by cortical region and that, in the mouse, spine heads are largest in the motor cortex [28]. Similarly, in this study, we found that mean spine head area varied between Fr2 and V1 in WT mice (Fig. 2), with spines in Fr2 being significantly larger than those in V1 (Fig. 2). On the other hand, mean spine areas in CNB-KO mice were larger in both Fr2 and V1 than in WT mice (Fig. 2). A two-way ANOVA showed a significant effect...
of genotype across the two cortical areas (15–18%; ANOVA: \(p < 0.001, \eta^2 = 0.014 \)) but no significant interaction between genotype and cortical area (\(p > 0.05 \)). Interestingly, the differences between WT and CNB-KO did not appear to be larger than the difference between the two cortical areas in WT or CNB-KO mice (21–24%; ANOVA: \(p < 0.001, \eta^2 = 0.021 \)). Moreover, overall, the difference in spine head size due to CNB knockout was rather small.

Since spine density is often affected in patients with schizophrenia [29–31], we also examined the number of spines in WT and CNB-KO mice. However, no significant difference in spine density was found between phenotypes for Fr2 nor V1; spine density (spine number/\(n \)) in Fr2 was 1.45 ± 0.08 (mean ± standard error < 0.001, Bonferroni method for multiple comparisons; ***). Mean spine areas were significantly determined by two-way analyses of variance. All spine area type and cortical area (ANOVA: \(p < 0.05 \)).

In conclusion, our current findings of a moderate reduction in small spine densities in CNB-KO mice are akin to observations made in patients with schizophrenia. Further, we hypothesize that CNB-KO-induced reductions were moderate because of the presence of spontaneous dynamics in dendritic spine sizes.

Acknowledgements

We thank T. Miyakawa for providing the CNB-KO mice and for the helpful discussions. We also thank Ogasawara, H. Ohno, Tajiri, M. and M. Nakamura for their technical assistance. This work was supported by Grants-in-Aid for Scientific Research (S) (No. 26221001 to HK), (B) (No. 26293260 to AH-T), Young Scientists (B) (15K18333 to SY) and Scientific Research on Innovative Areas (16H06396 to SY) from JSPS, and CREST (JPMJCR1652 to HK) from JST, and the SICP, Brain/MIND, Strategic Research Program for Brain Sciences projects (SRPBS, 17dm0107120h0002) from AMED (to HK), and World Premier International Research Center Initiative (WPI) from MEXT (to HK). TK was supported by an MRC/JST International collaborative award (MR/M501670/1). TT was supported by Brain/MINDS from AMED and RIKEN Brain Science Institute.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.neulet.2018.02.006.

References