
This is an Open Access document downloaded from ORCA, Cardiff University's institutional

repository: http://orca.cf.ac.uk/109236/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Jones, Gareth, Hill, David, Cardus Figueras, Ana and Jones, Simon 2018. IL-27 - a double agent in

the IL-6 family. Clinical and Experimental Immunology 193 (1) , pp. 37-46. 10.1111/cei.13116 file 

Publishers page: http://dx.doi.org/10.1111/cei.13116 <http://dx.doi.org/10.1111/cei.13116>

Please note: 

Changes made as a result of publishing processes such as copy-editing, formatting and page

numbers may not be reflected in this version. For the definitive version of this publication, please

refer to the published source. You are advised to consult the publisher’s version if you wish to cite

this paper.

This version is being made available in accordance with publisher policies. See 

http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications

made available in ORCA are retained by the copyright holders.



IL-27	–	a	double	agent	in	the	IL-6	family	

Gareth	W	Jones
1,2,*

,	David	G	Hill
1,2
,		Anna	Cardus	Figueras

1,2
	&		Simon	A	Jones

1,2,*
	

	

Division	of	 Infection	&	 Immunity,	 The	School	of	Medicine,	Cardiff	University,	Heath	Campus,	

Cardiff	CF14	4XN,	Wales,	UK	

Systems	Immunity	University	Research	Institute,	College	of	Biomedical	&	Life	Sciences,	Cardiff	

University			

	

	

Abstract–	

The	cytokine	interleukin	(IL)-6	is	a	major	therapeutic	target	for	the	treatment	of	various	inflammatory	

and	autoimmune	diseases.	While	IL-6	receives	considerable	attention	in	studies	of	innate	and	adaptive	

immunity,	 the	 IL-6-related	 family	 member	 IL-27	 is	 increasingly	 recognized	 for	 its	 effects	 on	 cellular	

proliferation,	 differentiation	 and	 leukocyte	 effector	 functions.	 Both	 cytokines	 activate	 responses	 in	

myeloid	 and	 stromal	 tissue	 cells	where	 they	 direct	 the	 transition	 from	 innate	 to	 adaptive	 immunity.	

However,	they	are	frequently	identified	as	lymphokines	that	control	responses	in	T	cells	and	B	cells.	In	

this	 regard,	 IL-27	 often	 opposes	 the	 action	 of	 IL-6.	Here,	we	will	 review	 the	 role	 of	 IL-6	 and	 IL-27	 in	

inflammation,	 with	 a	 particular	 focus	 on	 inflammatory	 arthritis,	 and	 discuss	 their	 importance	 in	 the	

diagnosis,	stratification	and	treatment	of	autoimmune	disease.		
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The	IL-6	family	of	cytokines	–	

All	members	 of	 the	 interleukin	 (IL)-6	 family	 share	 a	 common	 130kDa	 glycoprotein	 signal-transducing	

receptor	 (gp130,	CD130).	 In	 this	 regard,	 receptors	 for	 IL-11,	oncostatin-M	(OSM),	ciliary	neurotrophic	

factor	 (CNTF),	 cardiotrophin-1	 (CT-1),	 leukemia	 inhibitory	 factor	 (LIF)	 and	 the	 cardiotrophin-like	

cytokine	 (CLC)	 all	 utilize	 gp130	 to	 transmit	 cytokine	 responses.	 These	 IL-6-related	 cytokines	 are	

structurally	 related	 and	 each	 contain	 4	 long	α-helical	 chains,	which	 are	 arranged	 in	 an	 up-up-down-

down	topography	[1].	In	contrast,	the	IL-6-related	cytokine	IL-27	is	a	heterodimeric	cytokine	consisting	

of	 two	 independent	 subunits	 termed	 IL-27p28	 (also	 known	 as	 IL-30)	 and	 EBI3	 [2].	 IL-27	 therefore	

resembles	IL-12	(which	comprises	IL-12p40	and	IL-12p35),	and	the	related	IL-23	(IL-23p19	and	IL-12p40)	

and	IL-35	(IL-12p40	and	EBI3)	inflammatory	cytokines	(Figure-1)	[3].	However,	IL-27	also	shares	several	

characteristics	 common	to	 the	 IL-6	cytokine	 family.	First,	 the	 receptor	complex	 for	 IL-27	contains	 the	

IL-27	 receptor-α	 (IL-27Rα,	 also	 known	 as	WSX-1	 and	 TCCR)	 subunit	 together	 with	 gp130	 [4].	 While	

gp130	 is	 universally	 expressed	 in	 all	 tissues	 and	 organs,	 IL-27Rα	 is	mostly	 restricted	 to	 lymphocytes,	

monocytes	and	osteoclasts	[1,	3].	The	cognate	α-subunit	of	the	IL-6	receptor	(IL-6R,	CD126)	also	shows	

a	 similarly	 restricted	 pattern	 of	 expression	 and	 is	 found	 on	 hepatocytes,	 leukocyte	 subsets	 and	

megakaryocytes	 [5].	 Second,	EBI3	 shares	 close	 sequence	 identity	with	 IL-6R	 [3,	6].	 In	 this	 regard,	 the	

soluble	IL-6R	when	bound	to	IL-6	resembles	a	heterodimeric	cytokine	reminiscent	of	IL-12,	IL-23,	IL-27	

and	 IL-35	 [5-7].	 Third,	 IL-6	 and	 IL-27	 receptor	 activation	 leads	 to	 signaling	 through	 the	 latent	

transcription	 factors	 Signal	 Transducer	 and	 Activator	 of	 Transcription-1	 (STAT1)	 and	 STAT3	 [8].	

Interleukin-27	is	however	the	only	member	of	the	IL-6-related	cytokine	family	to	predominantly	signal	

via	STAT1	instead	of	STAT3	[1,	3].	Consequently	IL-6	and	IL-27	elicit	both	common	and	distinct	biological	

outcomes,	and	IL-27	can	often	limit	IL-6/STAT3-driven	events.		

	

The	inflammatory	significance	of	IL-6	and	IL-27	–	

Based	on	the	biological	properties	of	IL-6,	this	cytokine	was	originally	named	interferon	β2,	hepatocyte	

stimulating	 factor,	 cytotoxic	 T	 cell	 differentiation	 factor,	 B	 cell	 differentiation	 factor	 and	 B	 cell	

stimulatory	 factor-2.	These	broad	definitions	 identify	 IL-6	as	a	 lymphokine	and	activator	of	 the	acute	

phase	 response	 [5].	 However,	 clinical	 experience	 with	 the	 blocking	 anti-IL-6R	 monoclonal	 antibody	

tocilizumab	 has	 helped	 unearth	 roles	 for	 IL-6	 in	 the	 control	 of	 lipid,	 glucose	 and	 iron	 metabolism,	

regulation	 of	 the	 neuroendocrine	 system,	 and	 changes	 in	 psychological	 wellbeing	 that	 include	 pain,	

fatigue,	 mood	 and	 depression	 (Figure-2)	 [5].	 Thus,	 IL-6	 often	 displays	 features	 of	 a	 hormone.	 In	

contrast,	IL-27	is	primarily	associated	with	the	control	of	innate	and	adaptive	immunity	to	infection	[3,	

9].	 Interleukin-27	was	first	recognized	as	a	pro-inflammatory	cytokine	due	to	its	ability	to	support	the	

development	of	 interferon	(IFN)-γ	 secreting	T-helper	cells.	For	example,	 IL-27	promotes	expression	of	

IFN-γ,	 the	 transcriptional	 master	 regulator	 T-bet,	 STAT1	 and	 IL-12Rβ2	 [2,	 8,	 10-12].	 These	 activities	
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closely	 resemble	 those	 of	 IL-12.	 However,	 subsequent	 studies	 have	 shown	 that	 IL-27	 is	 a	 negative	

regulator	of	IL-2	and	can	restrict	development	of	immune	responses	(Figure-3)	[13-18].	For	example,	IL-

27	 is	 required	 for	 the	 development	 of	 T-bet
+
,	 CXCR3

+
	 Treg	 populations	 following	 Th1-mediated	

inflammation	 using	 Toxoplasma	 gondii	 challenged	 IL-27R-deficient	mice	 [14].	 In	 this	 regard	 the	 anti-

inflammatory	properties	of	type-I	interferons	are	largely	attributed	to	the	upregulation	of	IL-27	and	the	

subsequent	 promotion	 of	 IL-10	 [19-21].	 Consistent	 with	 these	 observations,	 prominent	

immunosuppressive	roles	were	discovered	for	IL-27	through	investigations	in	mouse	models	of	chronic	

infection	and	autoimmunity	 [22-26].	 In	 the	absence	of	a	 regulatory	 IL-27	signal,	 IL-27R-deficient	mice	

developed	 profound	 or	 lethal	 T	 cell-mediated	 pathology	 [13,	 16,	 27,	 28].	 In	 this	 context	 IL-27	 often	

antagonises	 the	 actions	 of	 IL-6.	While	 IL-6	 supports	 the	 development	 and	 expansion	 of	 T	 helper	 cell	

responses	[5],	IL-27	has	emerged	as	an	inhibitor	of	Th17	activities	and	in	a	model	of	helminth	infection	

limits	 Th2	 responses	 through	 inhibiting	 GATA3	 expression	 (Figure-3)	 [8,	 18,	 29].	 While	 additional	

investigations	are	required	to	 fully	explore	the	wider	biological	 functions	of	 IL-27,	emerging	data	also	

highlight	potential	roles	for	IL-27	in	the	control	of	pain	[30],	myeloid	cell	activation	[31-37]	and	stromal	

tissue	responses	(Figure-2)	[38-40].	Thus,	IL-6	and	IL-27	contribute	to	inflammation	and	the	regulation	

of	both	innate	and	adaptive	immune	responses.		

	

Although	the	receptor	complex	for	IL-27	signaling	remains	fixed,	composed	of	IL-27Rα	and	gp130,	the	

signaling	mechanisms	 employed	 by	 IL-6	 are	 highly	 complex	 (Figure-1),	 and	 it	 is	 often	 challenging	 to	

understand	 how	 IL-6	 receptor	 signaling	 can	 elicit	 a	 diverse	 array	 of	 biological	 responses.	 Three	 very	

distinct	 forms	 of	 IL-6	 receptor	 signaling	 have	 now	 been	 proposed.	 These	 are	 termed	 classical	 IL-6	

receptor	signaling,	IL-6	trans-signaling,	which	is	reliant	on	the	presence	of	a	soluble	form	of	IL-6R	(sIL-

6R),	and	a	newly	reported	mechanism	called	IL-6	trans-presentation	[5,	41,	42].	In	contrast,	IL-27	uses	a	

classical	IL-27	receptor	system	based	on	the	cellular	expression	of	IL-27Rα	and	gp130.	However,	the	IL-

27p28	subunit	of	 IL-27	has	also	been	 reported	 to	antagonize	 IL-6-mediated	T	cell	 responses,	and	can	

potentially	 bind	 the	 IL-6R	 (Figure-1)	 [18,	 43,	 44].	 So	 why	 does	 IL-6	 adopt	 these	 different	 forms	 of	

signaling?	 Here,	 it	 is	 important	 to	 note	 that	 IL-6	 contributions	 to	 both	 the	 regulation	 of	 immune	

homeostasis	and	inflammatory	responses	are	relevant	to	infection,	trauma	or	injury	[5].	During	health,	

classical	 IL-6	 receptor	 signaling	 promotes	 the	 maintenance	 of	 normal	 physiology.	 For	 example,	 IL-6	

controls	 various	metabolic	 processes	 and	 tissue	 renewal	 or	 regeneration	 [5].	 In	 contrast,	 IL-6	 trans-

signaling	 is	more	widely	associated	with	the	regulation	of	 inflammatory	processes	relevant	to	disease	

[5,	41].	This	distinction	 is	not	however	black	and	white.	 In	this	regard,	classical	 IL-6	receptor	signaling	

controls	both	the	acute	phase	response	and	the	generation	of	certain	effector	CD4	T	cell	populations	

[5].	 Similarly,	 IL-6	 trans-signaling	has	been	 linked	 to	processes	 including	hematopoiesis	and	 the	 sleep	

REM	cycle	[45,	46].	The	newly	described	IL-6	trans-presentation	mode	of	cell	activation	is	a	juxtacrine	
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mechanism	of	 IL-6	 signaling	 that	promotes	 the	engagement	of	dendritic	 cells	with	T	 cells	 [42].	While	

further	work	 is	 required	to	establish	 the	precise	biological	 significance	of	 IL-6	 trans-presentation,	 this	

mode	of	cell	activation	may	control	 immunological	processes	 in	 tissues	 that	 rely	on	resident	 immune	

cells	 to	mount	 an	 appropriate	 response	 to	 antigen	 challenge.	 These	 locations	may	 include	 sites	with	

immune	privilege	such	the	brain	or	eye.		

		

In	 the	 accompanying	 sections,	 we	 will	 consider	 the	 roles	 of	 IL-6	 and	 IL-27	 in	 the	 progression	 of	

inflammatory	disease	and	will	focus	on	their	involvement	in	rheumatoid	arthritis.	

	

The	significance	of	genetic	polymorphisms	linked	with	IL-6	and	IL-27	–	

Several	lines	of	genetic	evidence	support	a	role	for	IL-6	and	IL-27	in	autoimmunity,	cancer	and	infection.	

Genome-wide	 association	 studies	 and	 analyses	 of	 genetic	 polymorphisms	 have	 identified	 several	

susceptibility	 loci	 relevant	to	 IL-6	and	 IL-27	that	predict	a	predisposition	for	autoimmune	disease.	For	

example,	a	single	nucleotide	polymorphism	proximal	to	the	IL6	(rs1800795)	transcriptional	start	site	is	

associated	with	an	increased	incidence	of	coronary	heart	disease,	idiopathic	juvenile	arthritis	and	other	

inflammatory	 conditions	 [47-50].	 Equally,	 genetic	 variants	 associated	with	 IL6st	 (gp130;	 rs10940495)	

and	IL6R	(rs2228145)	are	common	to	patients	with	cardiovascular	disease	and	rheumatoid	arthritis	[47-

50].	Several	polymorphisms	linked	with	IL27	(encoding	IL-27p28;	rs153109,	rs181206,	rs17855750)	also	

display	risk	susceptibilities	with	asthma,	certain	cancers,	metabolic	disorders	and	some	viral	infections	

[51-53].	 For	 example,	 rs153109	 is	 linked	 to	 more	 severe	 forms	 of	 rheumatoid	 arthritis	 [54].	 While	

additional	functional	genetic	studies	are	required	to	determine	the	biological	relevance	of	these	genetic	

variants,	 several	 contribute	 to	 changes	 in	 cytokine	 or	 cytokine	 receptor	 expression.	 For	 example,	

mutations	within	IL6R	(rs2228145)	and	IL6	(rs1800795)	contribute	to	elevations	in	circulating	sIL-6R	or	

IL-6,	 which	 reflected	 an	 altered	 risk	 of	 cardiovascular	 disease,	 enhanced	 susceptibility	 to	 insulin	

resistance,	obesity,	and	other	 inflammatory	complications	[47-50,	55-57].	Comparable	studies	of	 IL-27	

related	polymorphisms	require	further	investigation.	

	

The	therapeutic	opportunities	afforded	by	IL-6	and	IL-27	–	

The	 success	 of	 interleukin-6	 inhibitors	 in	 rheumatoid	 arthritis	 and	 related	 conditions	 illustrates	 the	

prominent	role	this	cytokine	plays	in	the	underlining	pathology.	There	are	now	several	biological	drugs	

that	 target	 the	 cytokine	 itself	 (e.g.,	 clazakizumab,	 olokizumab,	 vobarilizumab,	 sirukumab),	 the	 IL-6R	

(e.g.,	tocilizumab,	sarilumab),	or	the	soluble	form	of	IL-6R	(e.g.,	olamkicept)	[5].	Some	of	these	are	now	

approved	 for	 the	 treatment	 of	 rheumatoid	 arthritis,	 systemic	 juvenile	 arthritis,	 polyarticular	 juvenile	

idiopathic	arthritis,	giant	cell	arteritis,	and	Castleman’s	disease.	In	addition,	Janus	kinase	inhibitors	(e.g.,	

tofacitinib,	baracitinib,	ruxolitinib)	also	impact	IL-6	receptor	signaling	as	part	of	their	mode	of	action	[5,	
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41].	While	these	drugs	are	well	tolerated	and	offer	clinical	benefit,	the	development	of	sirukumab	was	

recently	stopped	following	a	negative	review	from	the	FDA.	However,	the	anti-inflammatory	properties	

of	 IL-27	 suggests	 that	 an	 IL-27	 supplementation	 intervention	 may	 offer	 an	 alternate	 therapeutic	

strategy.	 For	 example,	 studies	 in	 experimental	models	 of	 inflammatory	 arthritis,	 and	 ex	 vivo	 culture	

systems	show	that	 IL-27	 inhibits	the	expansion	of	 IL-17	secreting	CD4	T	cells	(Th17	cells),	restricts	the	

development	of	ectopic	 lymphoid	aggregates,	and	can	 reduce	 the	 severity	of	 joint	damage	and	bone	

erosion	[58-60].	No	clinical	trials	have	however	been	conducted	to	explore	this	approach	in	more	detail.	

A	 similar	 strategy	 was	 previously	 adopted	 to	 test	 the	 anti-arthritic	 properties	 of	 recombinant	 IL-11.	

However	clinical	 trials	with	recombinant	 IL-11	 in	 rheumatoid	arthritis	 failed	to	reach	clinical	endpoint	

and	 were	 suspended	 [61].	 The	 biology	 of	 IL-27,	 and	 its	 particular	 influence	 on	 adaptive	 immune	

responses	(Figure-3),	means	that	IL-27	may	be	a	more	attractive	intervention	therapy.		

	

In	rheumatoid	arthritis,	synovial	IL-6	and	IL-27	levels	correspond	with	differences	in	disease	activity	[58,	

62-64].	 For	 example,	 IL-6	 expression	 correlates	with	 poor	 disease	 prognosis	 including	 elevated	 acute	

phase	 activity,	 fatigue	 and	 increased	 cardiovascular	 risk.	 In	 contrast,	 synovial	 IL-27	 levels	 correspond	

with	a	reduction	 in	 IL-17	and	 IL-6,	and	the	Th17	chemoattractant	CCL20	[62].	Thus,	elevated	 levels	of	

synovial	 IL-27	 in	 inflamed	 rheumatoid	 arthritis	 joints	may	 reflect	 an	effort	 to	 counteract	 a	 persistent	

adaptive	 immune	 response.	 These	 findings	 are	 also	 reflected	 by	 studies	 in	 mice.	 Histological	

assessments	 of	 joint	 synovitis	 revealed	 that	 local	 IL-27-treatment	 resulted	 in	 suppressed	 leukocyte	

infiltration,	 synovial	 hyperplasia,	 cartilage	 and	 bone	 erosion,	 vascularization,	 and	 IL-6	 and	 IL-17	

expression	 in	 inflamed	 joints	 [59].	 Systemic	 administration	 of	 IL-27	 during	 collagen-induced	 arthritis	

also	reduced	type	II	collagen-specific	antibody	titers	and	serum	levels	of	IL-17	and	IL-6	[58].	Analysis	of	

the	peripheral	 immune	CD4	T	cell	 response	also	revealed	that	 IL-27	 inhibited	the	generation	of	 IL-17-

producing	 collagen-specific	 T	 cells,	 but	 promoted	 an	 increase	 in	 IL-10	 secreting	 CD4	 T	 cells	 and	

suppressive	regulatory	T	 (Treg)	cells	 that	 regulate	the	expression	of	cytotoxic	T-lymphocyte	antigen	4	

(CTLA-4)	 and	 programmed	 cell	 death	 protein	 1	 (PD-1)	 [65].	 Interestingly,	 mice	 lacking	 IL-12p35	 also	

develop	 a	mild	 form	 of	 antigen-induced	 arthritis.	 This	 was	 attributed	 to	 an	 increased	 production	 of	

IL-27	and	IL-10,	and	the	expansion	of	Treg	cells	[66].	In	this	regard,	IL-12p35	acts	to	suppress	the	action	

of	IL-27	during	inflammatory	arthritis,	and	blockade	of	IL-27	activity	was	shown	to	restore	the	severity	

of	 synovitis	 [66].	 The	 above	 studies	 highlight	 the	 therapeutic	 potential	 of	 IL-27	 for	 the	 treatment	 of	

inflammatory	arthritis	and	other	diseases	associated	with	autoimmune	T	cell-mediated	pathology.	

	

IL-6	and	IL-27	in	inflammatory	arthritis	–	

Interleukin-6	is	the	archetypal	member	in	the	IL-6-related	cytokine	family.	While	many	of	these	factors	

elicit	 similar	 biological	 responses	 in	 vitro,	 IL-6	 often	 displays	 an	 over-riding	 influence	 on	 the	 same	
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responses	 in	 vivo.	 Experiments	 in	 animal	 models	 show	 that	 IL-6-deficient	 mice	 are	 protected	 from	

various	 forms	 of	 disease	 [5,	 41,	 67].	 For	 example,	 the	 induction	 of	 inflammatory	 arthritis	 in	 IL-6	

deficiency	is	associated	with	an	absence	of	synovial	infiltration,	synovial	hyperplasia	and	joint	damage	

(reviewed	 in	 [67]).	 This	 is	 not	 true	 for	 other	 cytokines	 in	 the	 IL-6	 family.	 In	models	 of	 arthritis,	 IL-11	

Receptor-α	 (IL-11Rα)-KO	 mice	 and	 OSM	 Receptor-β	 (OSMRβ)-KO	 mice	 develop	 disease	 severity	

comparable	 to	 wild	 type	 controls	 [68].	 However,	 there	 may	 be	 a	 context	 dependent	 caveat	 to	 this	

generalization	 [69-72].	 For	 example,	 interleukin-11	 regulates	 many	 anti-inflammatory	 outcomes	 in	

arthritis,	 which	 fuelled	 the	 aforementioned	 clinical	 trials	 with	 recombinant	 IL-11	 [61,	 73,	 74].	 The	

relationship	between	 IL-6	and	 IL-27	 is	however	different.	 In	models	of	 inflammation,	 IL-27	deficiency	

contributes	 to	 a	 more	 active	 pathology	 that	 includes	 the	 development	 of	 a	 more	 severe	 form	 of	

synovitis,	and	enhanced	adaptive	immune	responses	that	are	reflected	by	an	increase	in	effector	CD4	T	

cell	numbers	and	antibody	responses	[60].	Thus,	IL-6	and	IL-27	acting	via	a	common	signaling	receptor	

subunit	 elicit	 contrasting	 inflammatory	 outcomes	 that	 influence	 the	 initiation,	 maintenance	 and	

severity	of	joint	pathology.	While	these	activities	primarily	pertain	to	the	control	of	adaptive	immunity,	

both	cytokines	have	influences	on	stromal	tissue	responses	to	inflammation.	For	example,	IL-6	and	IL-

27	 play	 important	 roles	 in	 bone	 remodeling,	 where	 an	 imbalance	 between	 bone	 resorption	 and	

formation	contributes	to	bone	destruction	in	inflammatory	arthritis	[75-78].	Here,	Il27ra	deficient	mice	

with	 experimental	 arthritis	 displayed	 severe	 synovitis	 and	 synovial	 hyperplasia,	 and	 an	 increased	

incidence	 of	 focal	 bone	 erosions	 [60].	 Systemic	 delivery	 of	 IL-27	 reversed	 the	 development	 of	 these	

inflammatory	 parameters	 and	 inhibited	 osteoclastogenesis	 [79].	 Notably,	 the	 action	 of	 IL-27	 on	

inflammation-driven	 bone	 destruction	 can	 be	 both	 direct	 and	 indirect.	 For	 example,	 IL-27	 abrogates	

RANKL	 responsiveness	 in	 osteoclast	 precursors	 and	 suppresses	 signaling	 downstream	 of	 RANK	 [36].	

Interleukin-27	has	also	been	shown	 to	 inhibit	 the	production	of	RANKL	 in	activated	CD4
+
	 T	 cells	 [80].	

The	 impact	 of	 IL-27	 on	 bone	 turnover	 is	 however	 not	 unexpected,	 and	 other	 IL-6	 related	 cytokines	

including	IL-11,	OSM,	LIF	and	CNTF	also	control	aspects	of	bone	homeostasis	[81-84].	In	summary,	both	

IL-6	 and	 IL-27	 contribute	 to	 the	 control	 of	 synovitis	 and	 associated	 changes	 in	 cartilage	 and	 bone	

erosion.	

	

IL-27	suppresses	synovial	ectopic	lymphoid-like	structure	development	–	

Interleukin-6	 and	 IL-27	 are	 both	 lymphokines	 that	 control	 the	 survival,	 proliferation	 and	 effector	

characteristics	of	T	 cells	and	B	cells	and	are	 thus	poised	 to	 shape	adaptive	 immune	 responses	within	

inflamed	joints.	IL-6	has	long	stood	as	a	key	mediator	in	the	generation	of	antibody	responses	and	the	

formation	of	germinal	center	reactions	[85,	86].	Recent	studies	have	also	highlighted	the	importance	of	

B	 cell-derived	 IL-6	 in	 promoting	 class-switch	 recombination	 of	 autoantibodies	 and	 spontaneous	

germinal	center	formation	that	are	required	for	establishing	systemic	lupus	erythematosus	in	mice	[87].	
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While	IL-27	has	also	been	shown	to	drive	the	secretion	of	IL-21	in	T	follicular	helper	cells	and	support	

germinal	center	function	[88],	the	IL-27p28	subunit	can	counteract	IL-6-driven	antibody	responses	and	

inhibit	germinal	center	development	[43].	Consistent	with	these	roles,	overexpression	of	IL-6	and	the	IL-

6R	in	mice	results	in	spontaneous	inflammation	featuring	the	formation	of	lymph	node-like	structures	

in	the	lung	[89].	Similar	lymphocytic	aggregates	called	ectopic	lymphoid-like	structures	(ELS;	also	called	

tertiary	lymphoid	structures,	TLS)	are	a	histopathological	hallmark	of	tissue	inflammation	in	a	number	

of	 autoimmune	 diseases,	 cancers	 and	 infection	 [90].	 New	 approaches	 such	 as	 ultrasound-directed	

small-needle	 synovial	 biopsy,	 combined	with	 histopathological	 assessment	 of	 joint	 inflammation,	 has	

provided	new	 insight	 into	disease	heterogeneity	 in	 rheumatoid	 arthritis	 [91].	Here,	 based	on	 cellular	

and	molecular	signatures,	synovitis	can	be	classed	into	three	pathotypes	called	‘follicular’,	‘diffuse’	and	

‘pauci-immune’.	While	diffuse	pathology	is	characterized	by	a	typical	random	infiltration	of	leukocytes	

primarily	 composed	 of	 macrophages	 and	 some	 T	 cells,	 the	 follicular	 pathotype	 features	 highly-

organized	 and	 segregated	 aggregates	 of	 T	 and	 B	 cells	 accompanied	 by	 CD21+	 follicular	 dendritic	 cell	

networks,	active	germinal	centers	and	high	endothelial	venules	(HEV).	ELS	are	associated	with	the	local	

priming	of	immune	cells	and	autoantibody	responses	[92,	93].	

	

Notably,	our	recent	evaluation	of	IL27	and	EBI3	expression	(encoding	IL-27p28	and	EBI3	respectively)		in	

the	diffuse	 synovial	 pathotype	mirrored	previous	 studies	 that	 identified	 heightened	 levels	 of	 IL-27	 in	

rheumatoid	 arthritis	 joint	 tissues	 as	 compared	 with	 control	 osteoarthritis	 joints	 [60].	 However,	

compared	to	patients	with	diffuse	pathology,	the	follicular	form	of	disease	was	associated	with	reduced	

expression	of	IL27.	Notably,	IL27RA	was	highly	expressed	in	the	follicular	form	of	rheumatoid	arthritis,	

and	cells	expressing	the	IL-27R	were	localized	at	ELS.	These	observations	suggest	that	distinct	cytokine	

networks	govern	the	development	of	synovial	pathotypes,	and	that	 the	absence	of	a	 regulatory	 IL-27	

signal	may	contribute	to	the	development	of	a	follicular	form	of	disease	that	is	linked	with	severe	local	

and	peripheral	inflammation	and	inferior	responses	to	biological	therapy	(e.g.,	anti-TNF)	[94-96].	

	

Early	 investigations	 into	 the	 endogenous	 role	 of	 IL-27	 in	 inflammatory	 arthritis	 revealed	 a	 pro-

inflammatory	role	in	proteoglycan-induced	arthritis	[97].	While	this	observation	in	IL-27R-deficient	mice	

appears	to	contradict	the	therapeutic	effect	that	has	been	observed	following	treatment	with	IL-27	in	

experimental	arthritis	[58,	59,	65,	79,	98],	this	may	reflect	the	importance	of	a	robust	Th1	cell	response	

for	 driving	 the	 proteoglycan-induced	 arthritis	 model.	 Our	 studies	 using	 IL-27R-deficient	 mice	 in	 the	

mBSA	 antigen-induced	 arthritis	 model	 revealed	 that	 these	 mice	 develop	 exacerbated	 joint	

inflammation,	synovial	hyperplasia,	and	cartilage	and	bone	erosion	that	was	accompanied	by	elevated	

peripheral	 Th17	 cell	 and	mBSA-specific	 antibody	 responses	 [60].	 Reflecting	 the	observation	 that	 IL27	

expression	 was	 reduced	 in	 synovial	 biopsies	 from	 rheumatoid	 arthritis	 patients	 with	 a	 follicular-rich	
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form	of	 disease,	 IL-27R-deficient	mice	 developed	 synovial	 ectopic	 lymphoid-like	 structures	 that	were	

associated	with	 the	expression	of	homeostatic	 cytokines	 (e.g.,	Lta,	 Ltb)	and	chemokines	 (e.g.,	Cxcl13,	

Ccl21)	 [60].	 Thus,	 while	 IL-6	 can	 promote	 ELS	 development	 in	 inflamed	 tissues,	 IL-27	 is	 a	 negative	

regulator	of	ELS.	An	 inhibitory	role	 for	 IL-27	at	ELS	 is	consistent	with	observations	 in	other	models	of	

inflammation	that	have	linked	heightened	Th17-type	effector	responses	(e.g.,	elevated	expression	of	IL-

17,	 IL-17F,	 IL-22,	 IL-21)	with	ELS	development	 [99-101].	 ELS	development	 in	 antigen-induced	arthritis	

was	associated	with	the	local	expression	of	IL-17	and	IL-21	[60],	and	effector	cytokines	linked	with	the	

Th17	 programme	 (e.g.,	 IL-17F,	 IL-21,	 IL-23,	 IL-22)	 have	 also	 been	 implicated	 in	 synovial	 lymphoid	

neogenesis	in	clinical	rheumatoid	arthritis	[102].	The	inhibitory	control	of	effector	Th17-type	responses	

by	IL-27	may	therefore	offer	opportunities	to	identify	new	therapeutic	targets	for	the	treatment	of	the	

follicular	form	of	rheumatoid	arthritis.	

	

Concluding	remarks–		

Cytokines	 that	 signal	 via	 the	 Jak-STAT	pathway	are	 increasingly	viewed	as	 therapeutic	 targets	 for	 the	

treatment	 of	 autoimmune	 diseases,	 infection	 and	 cancer.	 These	 include	 drugs	 that	 block	 IL-6	 (e.g.,	

olokizumab,	 clazakizumab,	 tocilizumab),	 IL-12p40	 (e.g.,	 ustekinumab),	 IL-21,	 IL-23p19	 (e.g.,	

risankizumab,	 guselkumab,	 tildrakizumab,	mirikizumab)	 or	 GM-CSF	 (e.g.,	mavrilimumab)	 signaling,	 or	

members	 of	 the	 Jak	 protein	 family	 (e.g.,	 tofacitinib,	 baracitinib,	 ruxolitinib).	 When	 considering	 the	

immuno-modulatory	 or	 anti-inflammatory	 properties	 of	 IL-27	 it	 is	 tempting	 to	 consider	 how	 IL-27	

intervention	 would	 supplement	 these	 therapies.	 	 Here,	 the	 capacity	 of	 IL-27	 to	 inhibit	 Th17	

development,	 and	 to	 promote	 the	 expression	 of	 checkpoint	 regulators	 and	 Treg	 activity,	mirrors	 the	

therapeutic	 responses	 linked	 with	 tocilizumab	 treatment	 [3,	 5].	 However,	 further	 investigations	 are	

required	 to	assess	 the	 context-dependent	 inflammatory	activities	of	 IL-27.	 These	may	 require	 clinical	

trials	 in	 humans.	While	 primary	 clinical	 endpoints	 will	 undoubtedly	 fixate	 on	 improvements	 in	 local	

tissue	 inflammation	 and	 damage,	 the	 wider	 implications	 of	 systemic	 inflammation	 are	 becoming	

equally	 important.	For	example,	a	metabolic	shift	associated	with	the	systemic	activation	of	T	cells	 in	

PD-1-deficient	mice	was	recently	shown	to	impact	the	generation	of	brain	monoamines	and	changes	in	

emotional	behavior	[103].	In	this	respect,	the	bioactivity	of	IL-27	is	interesting	since	IL-27	promotes	the	

expression	of	PD-1	 ligand	PD-L1	 [104].	Thus,	an	 IL-27	 intervention	may	offer	opportunities	 to	explore	

whether	 IL-27	can	bring	about	 improvement	 in	disease	activity	and	patient	wellbeing.	Such	strategies	

would	 be	 relevant	 to	 clinical	 indications	 where	 IL-17	 or	 Th17	 driven	 outcomes	 promote	 disease	

progression	 (e.g.,	psoriasis).	The	question	 is	whether	supplementation	with	recombinant	 IL-27	can	be	

used	as	a	standalone	intervention	or	an	adjunct	therapy	in	conditions	where	biological	drugs	that	target	

IL-6,	IL-12,	IL-17	or	IL-23	are	effective.	Several	of	the	benefits	associated	with	IL-6	blockade	relate	to	the	
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impact	 of	 therapy	 on	 altered	 metabolic	 processes	 (e.g.,	 anaemia	 through	 altered	 iron	 metabolism),	

fatigue	and	patient	wellbeing.	It	is	unclear	whether	recombinant	IL-27	would	elicit	similar	outcomes.		

	

In	 summary,	 IL-6	 and	 IL-27	 appear	 to	work	 in	 coordinated	 fashion,	with	 IL-27	 often	 suppressing	 the	

action	 of	 IL-6.	 These	 differences	 in	 biological	 activities	 reflect	 changes	 in	 the	 control	 of	 transcription	

factors	 STAT1	and	STAT3	and	may	also	 relate	 to	differences	 in	 the	 cytokine	 receptor	 subunits.	While	

further	work	 is	 required	 to	 fully	appreciate	 the	associations	between	 IL-6	and	 IL-27,	 the	current	data	

offers	 interesting	perspectives	on	how	an	 IL-27	 intervention	may	 supplement	existing	biological	 drug	

therapies	against	IL-6,	or	members	of	the	IL-12	cytokine	family.		

	

Acknowledgements	–	

GWJ	 and	 SAJ	 are	 supported	 by	 an	 Arthritis	 Research	 UK	 Career	 Development	 Fellowship	 (reference	

20305)	and	programme	grant	(reference	20770)	respectively.	DGH	is	supported	by	a	Medical	Research	

Council	PhD	studentship	and	Life	Science	Research	Network	Wales,	a	research	initiative	funded	through	

the	Welsh	Government’s	Sêr	Cymru	program.		

	

Competing	interests	–	

SAJ	 has	 received	 funding	 support	 from	 Hoffman	 la	 Roche,	 GSK,	 Ferring	 Pharmaceuticals	 and	

NovImmune	SA,	and	during	the	 last	5	years	he	has	acted	as	an	advisory	consultant	 for	Roche,	Chugai	

Pharmaceuticals,	 NovImmune	 SA,	 Genentech,	 Sanofi	 Regeneron,	 Johnson	 &	 Johnson,	 Janssen	

Pharmaceuticals,	 Eleven	Biotherapeutics	 and	UCB.	GWJ	has	 received	 funded	 for	GSK	 and	undertakes	

collaborative	research	with	MedImmune.	DGH	and	ACF	declare	no	competing	interests.	

	 	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 10	

References–	

1.	 Heinrich,	 P.C.,	 et	 al.,	Principles	of	 interleukin	 (IL)-6-type	 cytokine	 signalling	and	 its	 regulation.	

Biochem	J,	2003.	374(Pt	1):	p.	1-20.	

2.	 Pflanz,	 S.,	 et	 al.,	 IL-27,	 a	 heterodimeric	 cytokine	 composed	 of	 EBI3	 and	 p28	 protein,	 induces	

proliferation	of	naive	CD4+	T	cells.	Immunity,	2002.	16(6):	p.	779-90.	

3.	 Yoshida,	H.	 and	C.A.	Hunter,	The	 immunobiology	of	 interleukin-27.	 Annu	Rev	 Immunol,	 2015.	

33:	p.	417-43.	

4.	 Pflanz,	S.,	et	al.,	WSX-1	and	glycoprotein	130	constitute	a	signal-transducing	receptor	for	IL-27.	J	

Immunol,	2004.	172(4):	p.	2225-31.	

5.	 Hunter,	 C.A.	 and	 S.A.	 Jones,	 IL-6	 as	 a	 keystone	 cytokine	 in	 health	 and	 disease.	 Nat	 Immunol,	

2015.	16(5):	p.	448-57.	

6.	 Jones,	 L.L.	 and	 D.A.A.	 Vignali,	Molecular	 interactions	 within	 the	 IL-6/IL-12	 cytokine/receptor	

superfamily.	Immunologic	research,	2011.	51(1):	p.	5-14.	

7.	 Gearing,	 D.P.	 and	 D.	 Cosman,	Homology	 of	 the	 p40	 subunit	 of	 natural	 killer	 cell	 stimulatory	

factor	(NKSF)	with	the	extracellular	domain	of	the	interleukin-6	receptor.	Cell,	1991.	66(1):	p.	9-

10.	

8.	 Lucas,	 S.,	 et	 al.,	 IL-27	 regulates	 IL-12	 responsiveness	 of	 naive	 CD4+	 T	 cells	 through	 Stat1-

dependent	and	-independent	mechanisms.	Proc	Natl	Acad	Sci	U	S	A,	2003.	100(25):	p.	15047-52.	

9.	 Artis,	D.,	 et	 al.,	The	 IL-27	 receptor	 (WSX-1)	 is	 an	 inhibitor	of	 innate	and	adaptive	elements	of	

type	2	immunity.	J	Immunol,	2004.	173(9):	p.	5626-34.	

10.	 Chen,	 Q.,	 et	 al.,	 Development	 of	 Th1-type	 immune	 responses	 requires	 the	 type	 I	 cytokine	

receptor	TCCR.	Nature,	2000.	407(6806):	p.	916-20.	

11.	 Takeda,	 A.,	 et	 al.,	Cutting	 edge:	 role	 of	 IL-27/WSX-1	 signaling	 for	 induction	 of	 T-bet	 through	

activation	of	STAT1	during	initial	Th1	commitment.	J	Immunol,	2003.	170(10):	p.	4886-90.	

12.	 Yoshida,	 H.,	 et	 al.,	WSX-1	 is	 required	 for	 the	 initiation	 of	 Th1	 responses	 and	 resistance	 to	 L.	

major	infection.	Immunity,	2001.	15(4):	p.	569-78.	

13.	 Villarino,	 A.V.,	 et	 al.,	 IL-27	 limits	 IL-2	 production	 during	 Th1	 differentiation.	 J	 Immunol,	 2006.	

176(1):	p.	237-47.	

14.	 Hall,	A.O.,	et	al.,	The	cytokines	interleukin	27	and	interferon-gamma	promote	distinct	Treg	cell	

populations	required	to	limit	infection-induced	pathology.	Immunity,	2012.	37(3):	p.	511-23.	

15.	 Stumhofer,	 J.S.,	 et	 al.,	 Interleukins	 27	 and	 6	 induce	 STAT3-mediated	 T	 cell	 production	 of	

interleukin	10.	Nat	Immunol,	2007.	8(12):	p.	1363-71.	

16.	 Villarino,	 A.,	 et	 al.,	 The	 IL-27R	 (WSX-1)	 is	 required	 to	 suppress	 T	 cell	 hyperactivity	 during	

infection.	Immunity,	2003.	19(5):	p.	645-55.	

17.	 Young,	A.,	et	al.,	Cutting	edge:	suppression	of	GM-CSF	expression	in	murine	and	human	T	cells	

by	IL-27.	J	Immunol,	2012.	189(5):	p.	2079-83.	

18.	 Stumhofer,	 J.S.,	 et	 al.,	 Interleukin	 27	 negatively	 regulates	 the	 development	 of	 interleukin	 17-

producing	 T	 helper	 cells	 during	 chronic	 inflammation	 of	 the	 central	 nervous	 system.	 Nat	

Immunol,	2006.	7(9):	p.	937-945.	

19.	 Iyer,	 S.S.,	 A.A.	 Ghaffari,	 and	 G.	 Cheng,	 Lipopolysaccharide-mediated	 IL-10	 transcriptional	

regulation	 requires	 sequential	 induction	 of	 type	 I	 IFNs	 and	 IL-27	 in	macrophages.	 J	 Immunol,	

2010.	185(11):	p.	6599-607.	

20.	 Patin,	 E.C.,	 et	 al.,	 IL-27	 Induced	 by	 Select	 Candida	 spp.	 via	 TLR7/NOD2	 Signaling	 and	 IFN-β	

Production	Inhibits	Fungal	Clearance.	J	Immunol,	2016.	197(1):	p.	208-21.	

21.	 Clement,	 M.,	 et	 al.,	 Cytomegalovirus-Specific	 IL-10-Producing	 CD4+	 T	 Cells	 Are	 Governed	 by	

Type-I	 IFN-Induced	 IL-27	 and	 Promote	 Virus	 Persistence.	 PLoS	 Pathog,	 2016.	 12(12):	 p.	

e1006050.	

22.	 Hamano,	S.,	et	al.,	WSX-1	is	required	for	resistance	to	Trypanosoma	cruzi	infection	by	regulation	

of	proinflammatory	cytokine	production.	Immunity,	2003.	19(5):	p.	657-67.	

23.	 Batten,	M.,	et	al.,	Cutting	edge:	IL-27	is	a	potent	inducer	of	IL-10	but	not	FoxP3	in	murine	T	cells.	

J	Immunol,	2008.	180(5):	p.	2752-6.	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 11	

24.	 Findlay,	 E.G.,	 et	 al.,	 Essential	 role	 for	 IL-27	 receptor	 signaling	 in	 prevention	 of	 Th1-mediated	

immunopathology	during	malaria	infection.	J	Immunol,	2010.	185(4):	p.	2482-92.	

25.	 Sun,	 J.,	 et	 al.,	 CD4+	 T	 cell	 help	 and	 innate-derived	 IL-27	 induce	 Blimp-1-dependent	 IL-10	

production	by	antiviral	CTLs.	Nat	Immunol,	2011.	12(4):	p.	327-34.	

26.	 Liu,	F.D.,	et	al.,	Timed	action	of	IL-27	protects	from	immunopathology	while	preserving	defense	

in	influenza.	PLoS	Pathog,	2014.	10(5):	p.	e1004110.	

27.	 Batten,	 M.,	 et	 al.,	 Interleukin	 27	 limits	 autoimmune	 encephalomyelitis	 by	 suppressing	 the	

development	of	interleukin	17-producing	T	cells.	Nat	Immunol,	2006.	7(9):	p.	929-36.	

28.	 Stumhofer,	 J.S.,	 et	 al.,	 Interleukin	 27	 negatively	 regulates	 the	 development	 of	 interleukin	 17-

producing	 T	 helper	 cells	 during	 chronic	 inflammation	 of	 the	 central	 nervous	 system.	 Nat	

Immunol,	2006.	7(9):	p.	937-45.	

29.	 Diveu,	 C.,	 et	 al.,	 IL-27	 blocks	 RORc	 expression	 to	 inhibit	 lineage	 commitment	 of	 Th17	 cells.	 J	

Immunol,	2009.	182(9):	p.	5748-56.	

30.	 Fonseca,	 M.M.,	 et	 al.,	 (153)	 The	 interleukin	 27	 (IL-27)	 protects	 mice	 from	 neuropathic	 pain	

development	 through	 up-regulation	 of	 anti-inflammatory	 cytokine	 IL-10.	 The	 Journal	 of	 Pain.	

18(4):	p.	S14-S15.	

31.	 Mascanfroni,	I.D.,	et	al.,	IL-27	acts	on	DCs	to	suppress	the	T	cell	response	and	autoimmunity	by	

inducing	 expression	 of	 the	 immunoregulatory	molecule	 CD39.	 Nat	 Immunol,	 2013.	 14(10):	 p.	

1054-63.	

32.	 Morandi,	F.,	et	al.,	 IL-27	 in	human	secondary	 lymphoid	organs	attracts	myeloid	dendritic	 cells	

and	impairs	HLA	class	I-restricted	antigen	presentation.	J	Immunol,	2014.	192(6):	p.	2634-42.	

33.	 Wang,	S.,	et	al.,	Augmentation	of	antigen-presenting	and	Th1-promoting	functions	of	dendritic	

cells	by	WSX-1(IL-27R)	deficiency.	J	Immunol,	2007.	179(10):	p.	6421-8.	

34.	 Kalliolias,	 G.D.,	 R.A.	 Gordon,	 and	 L.B.	 Ivashkiv,	 Suppression	 of	 TNF-alpha	 and	 IL-1	 signaling	

identifies	a	mechanism	of	homeostatic	 regulation	of	macrophages	by	 IL-27.	 J	 Immunol,	 2010.	

185(11):	p.	7047-56.	

35.	 Kalliolias,	G.D.	and	L.B.	Ivashkiv,	IL-27	activates	human	monocytes	via	STAT1	and	suppresses	IL-

10	 production	 but	 the	 inflammatory	 functions	 of	 IL-27	 are	 abrogated	 by	 TLRs	 and	 p38.	 J	

Immunol,	2008.	180(9):	p.	6325-33.	

36.	 Kalliolias,	 G.D.,	 et	 al.,	 Interleukin-27	 inhibits	 human	 osteoclastogenesis	 by	 abrogating	 RANKL-

mediated	 induction	 of	 nuclear	 factor	 of	 activated	 T	 cells	 c1	 and	 suppressing	 proximal	 RANK	

signaling.	Arthritis	Rheum,	2010.	62(2):	p.	402-13.	

37.	 Robinson,	C.M.	and	G.J.	Nau,	Interleukin-12	and	interleukin-27	regulate	macrophage	control	of	

Mycobacterium	tuberculosis.	J	Infect	Dis,	2008.	198(3):	p.	359-66.	

38.	 Dibra,	 D.,	 et	 al.,	 Expression	 of	WSX1	 in	 tumors	 sensitizes	 IL-27	 signaling-independent	 natural	

killer	cell	surveillance.	Cancer	Res,	2009.	69(13):	p.	5505-13.	

39.	 Seita,	J.,	et	al.,	Interleukin-27	directly	induces	differentiation	in	hematopoietic	stem	cells.	Blood,	

2008.	111(4):	p.	1903-12.	

40.	 Yoshimoto,	T.,	et	al.,	Antiproliferative	activity	of	IL-27	on	melanoma.	J	Immunol,	2008.	180(10):	

p.	6527-35.	

41.	 Jones,	S.A.,	 J.	Scheller,	and	S.	Rose-John,	Therapeutic	strategies	 for	 the	clinical	blockade	of	 IL-

6/gp130	signaling.	J	Clin	Invest,	2011.	121(9):	p.	3375-83.	

42.	 Heink,	 S.,	 et	 al.,	 Trans-presentation	 of	 IL-6	 by	 dendritic	 cells	 is	 required	 for	 the	 priming	 of	

pathogenic	TH17	cells.	Nat	Immunol,	2017.	18(1):	p.	74-85.	

43.	 Stumhofer,	 J.S.,	 et	 al.,	A	 role	 for	 IL-27p28	as	an	antagonist	 of	gp130-mediated	 signaling.	Nat	

Immunol,	2010.	11:	p.	1119-26.	

44.	 Garbers,	 C.,	 et	 al.,	 An	 interleukin-6	 receptor-dependent	 molecular	 switch	 mediates	 signal	

transduction	of	the	IL-27	cytokine	subunit	p28	(IL-30)	via	a	gp130	protein	receptor	homodimer.	J	

Biol	Chem,	2013.	288(6):	p.	4346-54.	

45.	 Oyanedel,	 C.N.,	 et	 al.,	 Peripheral	 and	 central	 blockade	 of	 interleukin-6	 trans-signaling	

differentially	affects	sleep	architecture.	Brain,	Behavior,	and	Immunity,	2015.	50(Supplement	C):	

p.	178-185.	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 12	

46.	 Peters,	 M.,	 A.M.	 Muller,	 and	 S.	 Rose-John,	 Interleukin-6	 and	 soluble	 interleukin-6	 receptor:	

direct	stimulation	of	gp130	and	hematopoiesis.	Blood,	1998.	92(10):	p.	3495-504.	

47.	 Collaboration,	I.R.G.C.E.R.F.,	et	al.,	Interleukin-6	receptor	pathways	in	coronary	heart	disease:	a	

collaborative	meta-analysis	of	82	studies.	Lancet,	2012.	379(9822):	p.	1205-13.	

48.	 Consortium,	C.A.D.,	et	al.,	Large-scale	association	analysis	 identifies	new	risk	 loci	 for	coronary	

artery	disease.	Nat	Genet,	2013.	45(1):	p.	25-33.	

49.	 Fishman,	 D.,	 et	 al.,	The	 effect	 of	 novel	 polymorphisms	 in	 the	 interleukin-6	 (IL-6)	 gene	 on	 IL-6	

transcription	 and	 plasma	 IL-6	 levels,	 and	 an	 association	 with	 systemic-onset	 juvenile	 chronic	

arthritis.	J	Clin	Invest,	1998.	102(7):	p.	1369-76.	

50.	 Stahl,	 E.A.,	 et	 al.,	 Genome-wide	 association	 study	 meta-analysis	 identifies	 seven	 new	

rheumatoid	arthritis	risk	loci.	Nat	Genet,	2010.	42(6):	p.	508-14.	

51.	 Posadas-Sánchez,	 R.,	 et	 al.,	 Interleukin-27	 polymorphisms	 are	 associated	 with	 premature	

coronary	artery	disease	and	metabolic	parameters	 in	 the	Mexican	population:	 the	genetics	of	

atherosclerotic	disease	(GEA)	Mexican	study.	Oncotarget,	2017.	8(38):	p.	64459-64470.	

52.	 Zhang,	M.,	et	al.,	Association	of	3	Common	Polymorphisms	of	IL-27	Gene	with	Susceptibility	to	

Cancer	 in	 Chinese:	 Evidence	 From	 an	 Updated	Meta-Analysis	 of	 27	 Studies.	 Medical	 Science	

Monitor	 :	 International	 Medical	 Journal	 of	 Experimental	 and	 Clinical	 Research,	 2015.	 21:	 p.	

2505-2513.	

53.	 Zicca,	E.,	et	al.,	 Interleukin	27	polymorphisms	in	HCV	RNA	positive	patients:	 is	there	an	impact	

on	response	to	interferon	therapy?	BMC	Infect	Dis,	2014.	14	Suppl	5:	p.	S5.	

54.	 Paradowska-Gorycka,	A.,	et	al.,	Association	of	single	nucleotide	polymorphisms	in	the	IL27	gene	

with	rheumatoid	arthritis.	Scand	J	Immunol,	2014.	80(4):	p.	298-305.	

55.	 Garbers,	 C.,	 et	 al.,	 The	 interleukin-6	 receptor	 Asp358Ala	 single	 nucleotide	 polymorphism	

rs2228145	confers	increased	proteolytic	conversion	rates	by	ADAM	proteases.	Biochim	Biophys	

Acta,	2014.	1842(9):	p.	1485-94.	

56.	 Esteve,	 E.,	 et	 al.,	Polymorphisms	 in	 the	 interleukin-6	 receptor	 gene	 are	 associated	with	 body	

mass	 index	 and	 with	 characteristics	 of	 the	 metabolic	 syndrome.	 Clin	 Endocrinol	 (Oxf),	 2006.	

65(1):	p.	88-91.	

57.	 Song,	Y.,	et	al.,	The	 interaction	between	the	 interleukin	6	 receptor	gene	genotype	and	dietary	

energy	intake	on	abdominal	obesity	in	Japanese	men.	Metabolism,	2007.	56(7):	p.	925-30.	

58.	 Niedbala,	 W.,	 et	 al.,	 Interleukin	 27	 attenuates	 collagen-induced	 arthritis.	 Annals	 of	 the	

rheumatic	diseases,	2008.	67(10):	p.	1474-9.	

59.	 Pickens,	 S.R.,	 et	 al.,	 Local	 expression	 of	 interleukin-27	 ameliorates	 collagen-induced	 arthritis.	

Arthritis	Rheum,	2011.	63(8):	p.	2289-98.	

60.	 Jones,	G.W.,	et	al.,	 Interleukin-27	 inhibits	ectopic	 lymphoid-like	structure	development	 in	early	

inflammatory	arthritis.	J	Exp	Med,	2015.	212(11):	p.	1793-802.	

61.	 Moreland,	 L.,	 et	 al.,	 Results	 of	 a	 phase-I/II	 randomized,	 masked,	 placebo-controlled	 trial	 of	

recombinant	human	interleukin-11	(rhIL-11)	in	the	treatment	of	subjects	with	active	rheumatoid	

arthritis.	Arthritis	Res,	2001.	3:	p.	247-252.	

62.	 Tanida,	S.,	et	al.,	IL-27-producing	CD14(+)	cells	infiltrate	inflamed	joints	of	rheumatoid	arthritis	

and	regulate	inflammation	and	chemotactic	migration.	Cytokine,	2011.	55(2):	p.	237-44.	

63.	 Wong,	 C.K.,	 et	 al.,	 Effects	 of	 inflammatory	 cytokine	 IL-27	 on	 the	 activation	 of	 fibroblast-like	

synoviocytes	in	rheumatoid	arthritis.	Arthritis	Res	Ther,	2010.	12(4):	p.	R129.	

64.	 Shen,	H.,	et	al.,	Increased	levels	of	interleukin-27	in	patients	with	rheumatoid	arthritis.	Arthritis	

Rheum,	2011.	63(3):	p.	860-1.	

65.	 Moon,	S.J.,	et	al.,	In	vivo	action	of	IL-27:	reciprocal	regulation	of	Th17	and	Treg	cells	in	collagen-

induced	arthritis.	Exp	Mol	Med,	2013.	45:	p.	e46.	

66.	 Vasconcellos,	 R.,	 et	 al.,	 IL-12p35	 subunit	 contributes	 to	 autoimmunity	 by	 limiting	 IL-27-driven	

regulatory	responses.	J	Immunol,	2011.	187(6):	p.	3402-12.	

67.	 Kallen,	K.-J.,	The	role	of	transsignalling	via	the	agonistic	soluble	IL-6	receptor.	Biochim	Biophys	

Acta,	2002.	1592:	p.	323-343.	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 13	

68.	 Wong,	 P.K.,	 et	 al.,	 Interleukin-6	 modulates	 production	 of	 T	 lymphocyte-derived	 cytokines	 in	

antigen-induced	arthritis	and	drives	inflammation-induced	osteoclastogenesis.	Arthritis	Rheum,	

2006.	54:	p.	158-168.	

69.	 Hams,	E.,	et	al.,	Oncostatin	M	receptor-beta	signaling	limits	monocytic	cell	recruitment	in	acute	

inflammation.	J	Immunol,	2008.	181(3):	p.	2174-2180.	

70.	 Esashi,	E.,	et	al.,	Oncostatin	M	deficiency	leads	to	thymic	hypoplasia,	accumulation	of	apoptotic	

thymocytes	and	glomerulonephritis.	Eur	J	Immunol,	2009.	39:	p.	1664-1670.	

71.	 West,	N.R.,	et	al.,	Oncostatin	M	drives	 intestinal	 inflammation	and	predicts	response	to	tumor	

necrosis	 factor-neutralizing	 therapy	 in	 patients	 with	 inflammatory	 bowel	 disease.	 Nat	 Med,	

2017.	23(5):	p.	579-589.	

72.	 Schafer,	S.,	et	al.,	IL11	is	a	crucial	determinant	of	cardiovascular	fibrosis.	Nature,	2017.	

73.	 Hermann,	 J.A.,	 et	 al.,	 Important	 immunoregulatory	 role	 of	 interleukin-11	 in	 the	 inflammatory	

process	in	rheumatoid	arthritis.	Arthritis	Rheum,	1998.	41:	p.	1388-1397.	

74.	 Walmsley,	 M.,	 et	 al.,	 An	 anti-inflammatory	 role	 for	 interleukin-11	 in	 established	 murine	

collagen-induced	arthritis.	Immunology,	1998.	95:	p.	31-37.	

75.	 Kondo,	Y.,	et	al.,	Pre-treatment	interleukin-6	levels	strongly	affect	bone	erosion	progression	and	

repair	detected	by	magnetic	resonance	imaging	in	rheumatoid	arthritis	patients.	Rheumatology	

(Oxford),	2017.	56(7):	p.	1089-1094.	

76.	 Finzel,	 S.,	 et	 al.,	 Interleukin-6	 receptor	 blockade	 induces	 limited	 repair	 of	 bone	 erosions	 in	

rheumatoid	arthritis:	a	micro	CT	study.	Ann	Rheum	Dis,	2013.	72(3):	p.	396-400.	

77.	 Shukla,	P.,	et	al.,	 Interleukin	27	(IL-27)	Alleviates	Bone	Loss	 in	Estrogen-deficient	Conditions	by	

Induction	of	Early	Growth	Response-2	Gene.	J	Biol	Chem,	2017.	292(11):	p.	4686-4699.	

78.	 Larousserie,	 F.,	 et	 al.,	 Frontline	 Science:	 Human	 bone	 cells	 as	 a	 source	 of	 IL-27	 under	

inflammatory	conditions:	role	of	TLRs	and	cytokines.	J	Leukoc	Biol,	2017.	101(6):	p.	1289-1300.	

79.	 Park,	 J.S.,	 et	 al.,	 Interleukin-27	 suppresses	 osteoclastogenesis	 via	 induction	 of	 interferon-

gamma.	Immunology,	2012.	137(4):	p.	326-35.	

80.	 Kamiya,	 S.,	 et	 al.,	 IL-27	 suppresses	 RANKL	 expression	 in	 CD4+	 T	 cells	 in	 part	 through	 STAT3.	

Immunol	Lett,	2011.	138(1):	p.	47-53.	

81.	 Sims,	N.A.	and	J.M.	Quinn,	Osteoimmunology:	oncostatin	M	as	a	pleiotropic	regulator	of	bone	

formation	and	resorption	in	health	and	disease.	Bonekey	Rep,	2014.	3:	p.	527.	

82.	 Nicola,	N.A.	and	J.J.	Babon,	Leukemia	inhibitory	factor	(LIF).	Cytokine	Growth	Factor	Rev,	2015.	

26(5):	p.	533-44.	

83.	 Pasquin,	S.,	M.	Sharma,	and	J.F.	Gauchat,	Ciliary	neurotrophic	 factor	 (CNTF):	New	facets	of	an	

old	 molecule	 for	 treating	 neurodegenerative	 and	 metabolic	 syndrome	 pathologies.	 Cytokine	

Growth	Factor	Rev,	2015.	26(5):	p.	507-15.	

84.	 Sims,	 N.A.,	 et	 al.,	 Interleukin-11	 receptor	 signaling	 is	 required	 for	 normal	 bone	 remodeling.	 J	

Bone	Miner	Res,	2005.	20(7):	p.	1093-102.	

85.	 Deng,	C.,	et	al.,	Resistance	to	experimental	autoimmune	myasthenia	gravis	in	IL-6-deficient	mice	

is	 associated	 with	 reduced	 germinal	 center	 formation	 and	 C3	 production.	 J	 Immunol,	 2002.	

169(2):	p.	1077-83.	

86.	 Kopf,	M.,	et	al.,	Interleukin	6	influences	germinal	center	development	and	antibody	production	

via	a	contribution	of	C3	complement	component.	J	Exp	Med,	1998.	188(10):	p.	1895-906.	

87.	 Arkatkar,	 T.,	 et	 al.,	B	 cell-derived	 IL-6	 initiates	 spontaneous	 germinal	 center	 formation	 during	

systemic	autoimmunity.	J	Exp	Med,	2017.	214(11):	p.	3207-3217.	

88.	 Batten,	M.,	 et	 al.,	 IL-27	 supports	 germinal	 center	 function	by	 enhancing	 IL-21	production	and	

the	function	of	T	follicular	helper	cells.	J	Exp	Med,	2010.	207(13):	p.	2895-906.	

89.	 Goya,	S.,	et	al.,	Sustained	interleukin-6	signalling	leads	to	the	development	of	lymphoid	organ-

like	structures	in	the	lung.	J	Pathol,	2003.	200(1):	p.	82-7.	

90.	 Jones,	G.W.,	D.G.	Hill,	and	S.A.	Jones,	Understanding	Immune	Cells	in	Tertiary	Lymphoid	Organ	

Development:	It	Is	All	Starting	to	Come	Together.	Front	Immunol,	2016.	7:	p.	401.	

91.	 Orr,	 C.,	 et	 al.,	 Synovial	 tissue	 research:	 a	 state-of-the-art	 review.	 Nat	 Rev	 Rheumatol,	 2017.	

13(8):	p.	463-475.	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 14	

92.	 Takemura,	 S.,	 et	 al.,	T	 cell	 activation	 in	 rheumatoid	 synovium	 is	B	 cell	 dependent.	 J	 Immunol,	

2001.	167(8):	p.	4710-8.	

93.	 Humby,	 F.,	 et	 al.,	 Ectopic	 lymphoid	 structures	 support	 ongoing	 production	 of	 class-switched	

autoantibodies	in	rheumatoid	synovium.	PLoS	Med,	2009.	6(1):	p.	e1.	

94.	 Thurlings,	 R.M.,	 et	 al.,	 Synovial	 lymphoid	 neogenesis	 does	 not	 define	 a	 specific	 clinical	

rheumatoid	arthritis	phenotype.	Arthritis	Rheum,	2008.	58(6):	p.	1582-9.	

95.	 Canete,	 J.D.,	 et	 al.,	Clinical	 significance	of	 synovial	 lymphoid	neogenesis	 and	 its	 reversal	 after	

anti-tumour	necrosis	factor	alpha	therapy	in	rheumatoid	arthritis.	Ann	Rheum	Dis,	2009.	68(5):	

p.	751-6.	

96.	 Dennis,	 G.,	 Jr.,	 et	 al.,	 Synovial	 phenotypes	 in	 rheumatoid	 arthritis	 correlate	 with	 response	 to	

biologic	therapeutics.	Arthritis	Res	Ther,	2014.	16(2):	p.	R90.	

97.	 Cao,	Y.,	et	al.,	IL-27	induces	a	Th1	immune	response	and	susceptibility	to	experimental	arthritis.	

J	Immunol,	2008.	180(2):	p.	922-30.	

98.	 Rajaiah,	 R.,	 et	 al.,	 Interleukin-27	 and	 interferon-gamma	 are	 involved	 in	 regulation	 of	

autoimmune	arthritis.	J	Biol	Chem,	2011.	286(4):	p.	2817-25.	

99.	 Barone,	 F.,	 et	 al.,	 IL-22	 regulates	 lymphoid	 chemokine	 production	 and	 assembly	 of	 tertiary	

lymphoid	organs.	Proc	Natl	Acad	Sci	U	S	A,	2015.	

100.	 Rangel-Moreno,	 J.,	 et	 al.,	 The	 development	 of	 inducible	 bronchus-associated	 lymphoid	 tissue	

depends	on	IL-17.	Nat	Immunol,	2011.	12(7):	p.	639-46.	

101.	 Bombardieri,	 M.,	 et	 al.,	 Inducible	 tertiary	 lymphoid	 structures,	 autoimmunity,	 and	 exocrine	

dysfunction	in	a	novel	model	of	salivary	gland	inflammation	in	C57BL/6	mice.	J	Immunol,	2012.	

189(7):	p.	3767-76.	

102.	 Canete,	J.D.,	et	al.,	Ectopic	lymphoid	neogenesis	is	strongly	associated	with	activation	of	the	IL-

23	pathway	in	rheumatoid	synovitis.	Arthritis	Res	Ther,	2015.	17:	p.	173.	

103.	 Miyajima,	M.,	et	al.,	Metabolic	shift	 induced	by	systemic	activation	of	T	cells	 in	PD-1-deficient	

mice	perturbs	brain	monoamines	and	emotional	behavior.	Nat	Immunol,	2017.	18(12):	p.	1342-

1352.	

104.	 Hirahara,	 K.,	 et	 al.,	 Interleukin-27	 priming	 of	 T	 cells	 controls	 IL-17	 production	 in	 trans	 via	

induction	of	the	ligand	PD-L1.	Immunity,	2012.	36(6):	p.	1017-30.	

		

	 	



Jones,	GW.	et	al.,	2017	

IL-6	and	IL-27	in	inflammation	and	chronic	disease	

	 15	

Figure	Legends-	

	

Figure-1	–	The	biological	relationship	between	IL-6	and	IL-27	

The	illustration	shows	the	composition	of	the	IL-6	and	IL-27	receptor	complexes,	and	identifies	

the	Signal	Transducer	and	Activator	of	Transcription	(STAT)	factors	triggered	by	both	cytokines.	

Note	the	inclusion	of	gp130	in	both	receptors,	and	preferential	induction	of	STAT1	and	STAT3	

activity	(Bold	text).	For	the	IL-6	receptor	cassette	the	reader	should	note	the	various	IL-6	and	

IL-6R	blocking	therapies	currently	 in	clinical	development	or	clinical	utility.	Proteins	displayed	

in	the	orange	box	indicate	biological	entities	that	have	been	reported	to	engage	with	the	IL-6	

receptor,	 albeit	 at	 low	 affinity.	 Cytokines	 listed	 in	 the	 blue	 box	 showcase	 the	 protein	

composition	of	IL-27	related	heterodimeric	cytokines.	Common	subunits	are	colour	coded.	The	

IL-6:sIL-6R	 (and	 that	of	p28:sIL-6R)	 complex	 is	not	however	 stable	and	 the	cytokine-receptor	

undergoes	association	and	re-association	(indicated	by	the	+	symbol).	

	

Figure-2	–	The	functional	properties	of	IL-6	and	IL-27	

The	 biological	 properties	 of	 IL-6	 and	 IL-27	 have	 been	 broadly	 categorized	 under	 the	 terms	

‘Inflammation’,	 ‘Homeostasis’,	 and	 ‘Wellbeing’.	 Defined	 activities	 have	 been	 listed	 for	 each	

category	and	the	heatmap	identifies	the	relative	contribution	of	IL-6	and	IL-27	to	each	of	these	

processes.	The	definition	of	the	colour	coding	 is	 listed.	 It	should	be	noted	that	 IL-6	and	IL-27	

may	 regulate	 similar	 or	 distinct	 outcomes	 in	 each	 process	 and	 the	 reader	 is	 referred	 to	 the	

manuscript	text	and	review	articles	relevant	to	IL-6	or	IL-27	(references	[3,5]).	

	

Figure-3	–	Immuno-modulatory	action	of	IL-27	and	the	interface	with	IL-6	

IL-27	and	IL-6	together	coordinate	adaptive	immune	responses,	often	with	opposing	biological	

outcomes.	 In	an	inflammatory	microenvironment,	and	supported	by	accessory	cytokines,	 IL-6	

can	promote	the	differentiation	of	Th1,	Th2,	Th22	and	Th17	cells.	In	contrast,	IL-27	counteracts	

the	 IL-6-driven	 expansion	of	 Th17	 cells	 and	 inhibits	 the	 development	 of	 Th2	 and	 Th22	 cells.	

However,	IL-6	and	IL-27	can	both	promote	the	secretion	of	IL-10	in	a	number	of	effector	T	cell	

subsets,	and	can	drive	the	production	of	IL-21	in	T	helper	cells.	IL-27	drives	immunosuppressive	

effector	 characteristics	 in	 T	 cells	 including	 the	expression	of	 the	 immune	 checkpoints	PD-L1,	

PD1	and	CTLA4.	 In	 contrast	 to	 the	 inhibitory	action	of	 IL-6	on	Treg	 cells,	 IL-27	promotes	 the	

development	 of	 IL-10-producing	 T-bet
+
CXCR3

+
	 Treg	 cells	 and	 Tr1	 cells.	 IL-27	 also	 has	

immunosuppressive	roles	at	the	DC:T	cell	synapse,	for	example	through	promoting	expression	

of	PD-L1	on	DCs	and	inhibiting	MHC-I	expression.	Boxed	areas	highlight	opposing	roles	of	IL-27	

and	IL-6.	Figure	adapted	from	Yoshida	et	al.	(reference	[3]).	

	


