Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration

Csicsvari, Jozsef, O'Neill, Joseph ORCID: https://orcid.org/0000-0003-1886-8476, Allen, Kevin and Senior, Timothy 2007. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. European Journal of Neuroscience 26 (3) , pp. 704-716. 10.1111/j.1460-9568.2007.05684.x

[thumbnail of Csicsvari_et_al-2007-European_Journal_of_Neuroscience.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

On the linear track, the recent firing sequences of CA1 place cells recur during sharp wave ⁄ ripple patterns (SWRs) in a reverse temporal order [Foster & Wilson (2006) Nature, 440, 680–683]. We have found similar reverse-order reactivation during SWRs in open-field exploration where the firing sequence of cells varied before each SWR. Both the onset times and the firing patterns of cells showed a tendency for reversed sequences during SWRs. These effects were observed for SWRs that occurred during exploration, but not for those during longer immobility periods. Additionally, reverse reactivation was stronger when it was preceded by higher speed (> 5 cm ⁄ s) run periods. The trend for reverse-order SWR reactivation was not significantly different in familiar and novel environments, even though SWR-associated firing rates of both pyramidal cells and interneurons were reduced in novel environments as compared with familiar. During exploration-associated SWRs (eSWR) place cells retain place-selective firing [O’Neill et al. (2006) Neuron, 49, 143–155]. Here, we have shown that each cell’s firing onset was more delayed and firing probability more reduced during eSWRs the further the rat was from the middle of the cell’s place field; that is, cells receiving less momentary place-related excitatory drive fired later during SWR events. However, even controlling for place field distance, the recent firing of cells was still significantly correlated with SWR reactivation sequences. We therefore propose that both place-related drive and the firing history of cells contribute to reverse reactivation during eSWRs.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Psychology
Publisher: Wiley-Blackwell
ISSN: 0953-816X
Date of First Compliant Deposit: 7 February 2018
Last Modified: 03 May 2023 20:36
URI: https://orca.cardiff.ac.uk/id/eprint/108635

Citation Data

Cited 99 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics