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Approximation numbers of

weighted composition operators

G. Lechner∗, D. Li†, H. Queffélec‡, L. Rodríguez-Piazza§

December 24, 2017

Abstract

We study the approximation numbers of weighted composition op-
erators f 7→ w · (f ◦ ϕ) on the Hardy space H2 on the unit disc. For
general classes of such operators, upper and lower bounds on their ap-
proximation numbers are derived. For the special class of weighted
lens map composition operators with specific weights, we show how
much the weight w can improve the decay rate of the approximation
numbers, and give sharp upper and lower bounds. These examples are
motivated from applications to the analysis of relative commutants of
special inclusions of von Neumann algebras appearing in quantum field
theory (Borchers triples).

1 Introduction

In the study of composition operators Cϕ : f 7→ f ◦ϕ acting on a Hilbert
space H of analytic functions (on the unit disk D), one is typically inter-
ested in understanding how function-theoretic properties of ϕ are related
to operator-theoretic properties of Cϕ. Basic properties such as bounded-
ness or compactness of Cϕ are by now well characterized in terms of ϕ in
many cases [35, 16]. More recently, also the membership of Cϕ in various
smaller ideals I of bounded operators on H (such as the p-Schatten class),
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and more precisely the behavior of the approximation numbers an(Cϕ) of
Cϕ, was studied in depth in several papers (see e.g. [27, 25, 26, 28]).

If M(H) denotes the space of multipliers of H (those w ∈ H such that
wf ∈ H for each f ∈ H), we can twist a composition operator Cϕ, assumed
to map H to itself, by composing it on the left with the operator Mw of
multiplication by w ∈ M(H). We then get a so-called weighted composition
operator T =Mw Cϕ (see e.g. [24] or [12, 21]).

A careful distinction must be made between the multipliers of H, denoted
M(H), and those of Cϕ(H), denoted M(H,ϕ), namely those functions w ∈
H such that wf ∈ H for each f belonging to the range Cϕ(H), not necessarily
to the whole of H. For example, if H = H2 is the Hardy space, then
M(H) = H∞ consists of all bounded analytic functions on D. It can be
proved that (see [2, 14] and [19], respectively):

M(H2, ϕ) = H∞ ⇔ ϕ is a finite Blaschke product,

M(H2, ϕ) = H2 ⇔ ‖ϕ‖∞ < 1.

In this paper, we study approximation numbers of weighted composition
operators in the case of the Hardy space H = H2 of the disc, and a weight
w ∈ M(H) ⊂ M(H,ϕ). Then, since we are dealing with ideals, twisting
with the bounded operator Mw can but reinforce the membership in I, and
improve the rate of decay of approximation numbers.

There are (at least) three motivations for considering weighted compo-
sition operators: First, they form a natural and non-trivial generalization
of composition operators on H2(D). In this context, it is natural to ask
how much faster the approximation numbers an(MwCϕ) can decay in com-
parison to the an(Cϕ). For example, can MwCϕ be compact when Cϕ is
non-compact, or can the an(MwCϕ) decay quite fast when the an(Cϕ) decay
rather slowly? We will address these questions in the body of the text1.

As a second motivation, suppose CG
ϕ is a composition operator on a

Hardy space H2(G) over a simply connected region properly contained in
C. Then a choice of Riemann map τ : D → G induces a unitary between
H2(D) and H2(G) [17], and we can equivalently formulate CG

ϕ as an opera-
tor on H2(D). This operator on H2(D), however, turns out to be a weighted
composition operator MwτC

D
ϕτ

in general (see [36] and Section 3). Thus com-
position operators on domains other than D automatically produce weighted
composition operators on H2(D).

1Another application of weighted composition operators to the study of composition
operators on spaces of several complex variables can be found in [29].
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A third motivation for studying weighted composition operators comes
from applications in a completely different field, namely inclusions of von
Neumann algebras, used in mathematical physics to model quantum field
theories [20]. For N a von Neumann algebra with a cyclic and separating
vector Ω on a Hilbert space H, we will consider the Hilbert space D obtained
by closing the domain of the modular operator of (N ,Ω) [38] in its graph
norm. If N carries additional structure (a Borchers triple), this setting is
related to complex analysis because an irreducible component of D can be
naturally identified with a Hardy space H2(S) on a strip region S ⊂ C,
bounded by two lines parallel to R (see Section 3).

In applications in mathematical physics, one is interested in specific in-
clusions Ñ ⊂ N and their relative commutants, the size of which can be
controlled if a map built from the modular operator has sufficiently quickly
decaying approximation numbers [8]. On the level of the irreducible com-
ponent giving rise to the Hardy space H2(S), this condition translates to a
weighted restriction operator Rw : H2(S) → L2(R), f 7→ (w ·f)|R, where the
real line R lies in the interior of the strip, and w ∈ H∞(S) is an inner function
on S obtained from the inclusion Ñ ⊂ N . For the application in physics,
sharp upper bounds on the approximation numbers of Rw are desirable [1].

Mapping the strip S to the disc, Rw can be formulated as a Carleson
embedding operator (the definition of which we recall in Section 2.1). These
operators are often used in estimating approximation numbers of compo-
sition operators [25, 26]. In turn, we find from the strip picture that the
embedding operator can be estimated from above by special weighted com-
position operators on the disc, namely those whose symbol is a lens map
ϕ = ϕλ, 0 < λ < 1 (see Section 4 for the definition). This closes the connec-
tion to composition operators on H2(D), where the Cϕλ

are among the best
studied examples [25].

Given these motivations, this article is organized as follows. In Section 2,
we introduce our notation and setup, and study weighted composition opera-
tors with general symbols ϕ and weights w on the disc. After deriving a sim-
ple upper bound, we give an example how a weight can turn a non-compact
composition operator into a compact one. Regarding lower bounds, we show
that the worst possible behavior of the an(Cϕ) (exponential if ‖ϕ‖∞ < 1,
subexponential if ‖ϕ‖∞ = 1) is the same for the weighted operators MwCϕ.

In Section 3, we explain the links between modular theory of von Neu-
mann algebras, Hardy spaces on strips, and weighted restriction operators.
In that section we also show how weighted lens map composition operators
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appear. Section 3 can be read independently of the other parts of the article.

Finally, we consider in Section 4 the specific case of weighted lens map
composition operators MwCϕλ

as our primary example. In the case with-
out weight, the approximation numbers of Cϕλ

are known to decay like

e−c
√
n [26]. A natural question in this context is how close the decay rate

of the an(MwCϕλ
) can come to exponential decay e−cn (the optimal one in

the context of composition operators). For the weights motivated by the

considerations in Section 3, we show that an(MwCϕλ
) decays like e

−c n
logn .

2 Weighted composition operators on D

2.1 Preliminaries

We begin by recalling a few operator-theoretic and function-theoretic
facts. The approximation numbers an(T ) = an of an operator T : H → H
(with H a Hilbert space) are defined by

an = inf
rankR<n

‖T −R‖ ,

and T is compact if and only if limn→∞ an(T ) = 0. According to a result
of Allahverdiev [11, p. 155], an = sn, the n-th singular number of T . We
have the following alternative definition (a variant of Kolmogorov numbers)
of an(T ) [28], in which BH denotes the closed unit ball of H and d(g,A) the
distance of g to A ⊂ H:

(2.1) an(T ) = inf
dimE<n

[

sup
f∈BH

d(Tf, TE)
]

.

The definition of an(T ) also makes sense for T : X → Y an operator between
Banach spaces (see Theorem 2.8 to come).
Coming back to the hilbertian setting, two other useful alternative definitions
(respectively in terms of Bernstein and Gelfand numbers) are, denoting by
SE the unit sphere of a subspace E of H (see [11, Chapter 2], or [27]):

an(T ) = sup
dimE=n

[

inf
f∈SE

‖Tf‖
]

,(2.2)

an(T ) = inf
codimE<n

‖T|E‖ = inf
codimE<n

[

sup
f∈SE

‖Tf‖
]

.(2.3)

The following parameters 0 ≤ β−(T ) ≤ β+(T ) ≤ 1 were used in [28]:

β+(T ) = lim sup
n→∞

[

an(T )
]1/n

, β−(T ) = lim inf
n→∞

[

an(T )
]1/n

.
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When the limit exists, we denote it by β(T ). It is proved in [28] that this is
the case for T a composition operator on the Hardy, Bergman, or Dirichlet
space. Observe that β−(T ) = 1 signifies a subexponential decay for an(T ),
namely an(T ) ≥ e−nεn where εn > 0 and εn → 0.

Let now D be the open unit disk of the complex plane and H2 the usual
Hardy space of D. Recall [35, p. 12] that the norm of f(z) =

∑∞
n=0 fnz

n ∈ H2

is defined by ‖f‖22 =
∑∞

n=0 |fn|2, or alternatively by

(2.4) ‖f‖22 =
∫

T

|f∗(u)|2dm(u)

where m denotes the Haar measure of the unit circle T and f∗(u) is the (m-
almost everywhere existing by Fatou’s theorem) radial limit limr→1− f(ru),
often again denoted f(u).
The space of multipliers of H2 is isometrically isomorphic to the space H∞

of functions analytic and bounded on D [18]. This means that any function
w ∈ H∞ defines a bounded multiplication operator Mw : H2 → H2 by the
formula Mw(f) = wf and that

‖Mw‖ := sup
‖f‖2≤1

‖wf‖2 = ‖w‖∞ := sup
z∈D

|w(z)|.

If ϕ is a non-constant and analytic self-map of D (often called a symbol),
the associated composition operator Cϕ : H2 → H2 is defined by

Cϕ(f) = f ◦ ϕ.

The fact that Cϕ boundedly maps H2 to itself for any symbol ϕ is the well-
known subordination principle of Littlewood ([16, p. 29], [35, p. 16]).

Next, a positive and bounded measure µ on D is called a Carleson measure
(for H2) if the identity map Rµ, Rµ(f) = f maps H = H2 to L2(µ), that is
if there exists a constant C such that:

∫

D

|f(z)|2dµ(z) ≤ C‖f‖22 ∀f ∈ H2.

The best constant C is called the Carleson-norm of µ and is denoted ‖µ‖C .
That is ‖µ‖C = ‖Rµ‖2. Let us set

ρµ(h) := sup
ξ∈T

µ[S(ξ, h)]

where, for ξ ∈ T = ∂D, S(ξ, h) is the Carleson box

S(ξ, h) = {z ∈ D : |z − ξ| ≤ h}.
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With those notations, the Carleson embedding theorem [16, p. 37] gives a
geometric characterization of Carleson measures:

Theorem 2.1. Let µ be a positive and bounded measure on D. Then, µ is
a Carleson measure if and only if, for some constant K,

ρµ(h) ≤ Kh ∀h ∈]0, 1].

In this case, ‖µ‖C ≤ aK where a > 0 is an absolute constant.

Let again ϕ∗(u) = limr→1− ϕ(ru). Littlewood’s subordination principle
implies that mϕ = ϕ∗(m), the image under ϕ∗ of this Haar measure, is a
Carleson measure for H2, and we will write ρϕ instead of ρmϕ . We will also
write ‖.‖ instead of ‖.‖2 when there is no ambiguity.

The main subject of this article are weighted composition operators on
H2, defined in terms of a weight w (typically w ∈ H∞) and a symbol ϕ, ac-
cording to Tw,ϕ :=Mw Cϕ. Often we will denote this operator by T for short.

Depending on ϕ, the operator Cϕ can be compact or not. As we already
said, passing from Cϕ to MwCϕ can only improve this compactness, or the
behavior of singular numbers, thanks to the ideal property of both notions.
It is the purpose of this paper to investigate the question more closely.

2.2 A simple general upper bound

Throughout this section and the rest of this paper, we use the notation
A . B (resp. A & B) to indicate that A ≤ λB (resp. A ≥ λB) where λ
is a uniform positive constant, “uniform” being clear from the context. Let
ϕ be a symbol continuous on D, fixing 1, and w0 ∈ H∞ a weight. We set
γ(t) = ϕ(eit). We assume that ϕ(D) has no other contact points than 1 with
T and more precisely that:

(2.5) |t| ≤ π ⇒ 1− |γ(t)| ≥ ω(|t|) ,

where ω : [0, π] → R
+ is an increasing function with ω(0) = 0. We also set

(2.6) δw0(h) = sup
|t|≤ω−1(h)

|w0(γ(t))|.

We then have an upper bound for a special class of weights related to ϕ:
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Theorem 2.2. Let ϕ be a symbol satisfying (2.5), w0 a weight, w = w0 ◦ϕ,
T =Mw Cϕ, and an = an(T ). Then:

(2.7) an . inf
0<h<1

[

e−nh + δw0(h)
]

=: ρn.

Proof. The proof is close to that of [26, Thm. 5.1]. Let f = zng ∈ znH2 =:
E, a subspace of H2 of codimension n < n + 1. Assume that ‖f‖ = 1, so
that ‖g‖ = 1. We see that, given 0 < h < 1:

‖T (f)‖2 =
∫

T

|w0(ϕ(u))|2|ϕ(u)|2n|g(ϕ(u))|2dm(u)

=

∫

D

|w0(z)|2|z|2n|g(z)|2dmϕ(z)

=

∫

(1−h)D
|w0(z)|2|z|2n|g(z)|2dmϕ(z) +

∫

D

|z|2n|g(z)|2dµh(z)

. (1− h)2n + ‖µh‖C . e−2nh + ‖µh‖C ,

where µh denotes the restriction (trace) of the measure |w0|2dmϕ to the
annulus Ah = {z : 1− h < |z| < 1}. It remains to estimate ‖µh‖C , which we
do through Carleson’s embedding theorem.

Since µh is carried by Ah, we can consider only boxes S = S(ξ, r) with
0 < r ≤ h. Then

Ir :=

∫

1S(u)dµh(u) =

∫

1S(u)|w0(u)|2dmϕ(u)

=

∫

S∩ϕ(∂D)
|w0(u)|2dmϕ(u) ≤

(

sup
S∩ϕ(∂D)

|w0(u)|2
)

mϕ(S)

since mϕ is carried by ϕ(∂D). Now, if u = ϕ(eit) ∈ S and |t| ≤ π, then

ω(|t|) ≤ 1− |γ(t)| ≤ |ξ − γ(t)| ≤ r,

that is |t| ≤ ω−1(r). Therefore, Ir ≤ δ2w0
(r)ρϕ(r) . rδ2w0

(h), and by Car-
leson’s theorem:

‖µh‖C . sup
0<r<h

Ir
r

. δ2w0
(h),

giving an+1 . ρn in view of the alternative definition (2.3) of approximation
numbers, and ending the proof after a change of n+ 1 to n.
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2.3 From non-compactness to compactness

It is known that twisting a non-compact composition operator Cϕ with
a multiplication operator Mw can result in MwCϕ being compact (see, for
example, [19]). We now give a first application of Theorem 2.2, in which
this effect is demonstrated in terms of explicit estimates on approximation
numbers, which seems to be new.

Note that the compactness result of part ii) of the following theorem also
follows by applying [19, Thm. 2.8] to the specified symbol ϕ and weight w.

Theorem 2.3. Let ϕ(z) = 1+z
2 and w(z) = (1− z)α, α > 0. Then:

i) Cϕ is non-compact and indeed ‖Cϕ‖e = ‖Cϕ‖ =
√
2.

ii) T =Mw Cϕ is compact and its approximation numbers verify

an(T ) .
( logn

n

)α/2
.

In particular, a weighted composition operator T = MwCϕ can be compact
while its “compositional symbol” ϕ has no fixed point inside D.

Proof. Recall that ‖Cϕ‖e =: limn→∞ an(Cϕ) is the essential norm of Cϕ.
The first item i) is well-known ([34], see also [13]). For upper bounds, we
may use Theorem 2.2 since w = w0 ◦ ϕ where w0(z) = 2α (1− z)α.
Next, we observe that, for |t| ≤ π: 1− |γ(t)| = 1− cos(t/2) = 2 sin2(t/4) ≥
δt2, so that, up to absolute constants, we are allowed to take ω(h) = h2 and
ω−1(h) =

√
h in Theorem 2.2. Since |w0(γ(t))| . |1 − γ(t)|α ≤ |t|α, this

implies that δw0(h) . hα/2, and subsequently that

an(T ) . inf
0<h<1

[

e−nh + δw0(h)
]

. inf
0<h<1

[

e−nh + hα/2
]

.
( log n

n

)α/2

by taking h = C logn
n where C is a large numerical constant. This gives the

claimed upper bound.
Finally, the fixed point of ϕ is 1 and 1 /∈ D.

Remark: The simple estimates given here are not sharp (Theorem 4.1 will
give sharper results) and are just intended to show that multiplication by w
can improve the decay of approximation numbers. In particular, the loga-
rithmic factor can be dropped in the example of Thm. 2.3, and whereas the
estimate in Theorem 2.3 ii) give membership in the Hilbert-Schmidt class
for α > 1, one actually has the following stronger statement.
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Proposition 2.4. The following are equivalent in the previous example:

i) MwCϕ is Hilbert-Schmidt.

ii) α > 1/2.

Proof. If T =MwCϕ and if (en) is the canonical basis of H2, we find that

∞
∑

n=0

‖T (en)‖2 = 2

∫

T

|w(eiθ)|2
1− cos θ

dθ ≈
∫ π

0
θ2α−2dθ

and the latter integral is finite iff α > 1/2. Alternatively, we could use
‖T (en)‖ ≈ n−α/2−1/4.

2.4 Maximal general possible decay

It was proved in [26] that singular numbers of composition operators
never have a superexponential decay. The same holds for weighted compo-
sition operators.

Theorem 2.5. Let T = Mw Cϕ be a weighted composition operator. Then
β−(T ) > 0, that is, there exist positive constants δ and ρ such that for any
integer n ≥ 1:

an(T ) ≥ δρn.

Proof. We first recall that the interpolation constant Iz of a (finite or not)
sequence z = (zj) of distinct points of D is the smallest constant K such
that, for any bounded sequence c = (cj), one can find h ∈ H∞ such that

h(zj) = cj ∀j and ‖h‖∞ ≤ K sup
j

|cj |.

The connection between interpolation constants and reproducing kernels is
given by the well-known two-sided inequality [31, p. 302-303], valid for all
scalars λj :

(2.8) I−2
z

∑

j

|λj |2‖Kzj‖2 ≤
∥

∥

∥

∑

j

λjKzj

∥

∥

∥

2
≤ I2z

∑

j

|λj |2‖Kzj‖2.

We shall now rely on the following lemma:
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Lemma 2.6. Let u = (uj)1≤j≤n be a sequence of length n of points of D and
v = (vj) = (ϕ(uj))1≤j≤n. We assume that the vj’s (and hence the uj’s) are
distinct. Let Iv be the interpolation constant of v. Then if T =Mw Cϕ:

an(T ) &
(

inf
1≤j≤n

|w(uj)|
)

×
(

inf
1≤j≤n

√

1− |uj |2
)

× I−2
v .

Indeed, we use the “model space” E generated by the reproducing kernels
Ku1 , . . . ,Kun of H2 as well as the mapping equation for weighted composi-
tion operators

(2.9) T ∗(Ka) = w(a)Kϕ(a),

a well-known and readily verified fact since for all g ∈ H2:

〈g, T ∗(Ka)〉 = 〈Tg,Ka〉 = 〈w (g ◦ ϕ),Ka〉
= w(a) g(ϕ(a)) = w(a)〈g,Kϕ(a)〉 = 〈g, w(a)Kϕ(a)〉.

Now, (2.9) and estimates analog to those of [27] prove the lemma. We
provide some details. Let f =

∑n
j=1 λjKuj

∈ SE , the unit sphere of E. So
that, using (2.8) for the finite sequence u = (uj)1≤j≤n :

(2.10) 1 ≤ I2u

n
∑

j=1

|λj |2‖Kuj
‖2.

Similarly, since T ∗(f) =
∑n

j=1 λjw(uj)Kvj where vj = ϕ(uj), there holds:

(2.11) ‖T ∗(f)‖2 ≥ I−2
v

n
∑

j=1

|λj |2|w(uj)|2‖Kvj‖2.

Now, Iu ≤ Iv (if h ∈ H∞ interpolates c at v, h ◦ ϕ interpolates c at u), and
clearly ‖Kvj‖2 ≥ (1− |uj |2)‖Kuj

‖2 for all j. Lemma 2.6 ensues via (2.2). �

Finally, let U ⊂ D be a compact disk on which w does not vanish, let
δ = infU |w| > 0 and V be a closed disk with positive radius contained in
ϕ(U). Let (vj) be a sequence of n equidistributed points on ∂V and (uj) a
sequence of length n in U such that ϕ(uj) = vj . We know (see [18], p. 284)
that Iv ≤ Cn where C only depends on V . We set η2 = dist(U, ∂D) > 0.
Lemma 2.6 then gives us

an(T ) & δ × η × C−2n,

which ends the proof of Thm. 2.5.
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2.5 Maximal special possible decay

Theorem 2.5 proved that one never has superexponential decay for the ap-
proximation numbers an(MwCϕ). The following result indicates that, when
‖ϕ‖∞ = 1, then whatever the non-zero weight w, the numbers an(MwCϕ)
indeed have at most subexponential decay.

Theorem 2.7. Suppose that the symbol ϕ satisfies ‖ϕ‖∞ = 1. Let now
T = Mw Cϕ where w ∈ M(H2, ϕ), assumed to be compact. Then β(T ) = 1,
i.e. there exists a sequence (εn) of positive numbers with limit 0 such that

an(Cϕ) ≥ e−n εn .

Proof. We borrow from [28] some results on the Green capacity Cap(X) of
Borel subsets X of D.

• X ⊂ Y ⇒ Cap(X) ≤ Cap(Y ).

• Xj ↑ X ⇒ Cap(Xj) ↑ Cap(X).

• Cap(X) = Cap(∂X) = Cap(X) when X is connected and X ⊂ D.

• When the Xj ’s are connected, Cap(Xj) → ∞ if diamXj → 1, where
diam denotes the diameter of Xj for the pseudo-hyperbolic distance
ρ in D:

ρ(a, b) =
∣

∣

∣

a− b

1− ab

∣

∣

∣
·

We also set Γ(X) = exp(−1/Cap(X)). With these notations, we will now
prove the following extension of the main result of [28] to weighted compo-
sition operators, which implies Theorem 2.7.

Theorem 2.8. Let T = Mw Cϕ where ϕ is an arbitrary symbol, and let
w ∈ M(H2, ϕ). Then, β(T ) exists and moreover

β(T ) = Γ(ϕ(D)).

In particular, ‖ϕ‖∞ = 1 ⇒ β(T ) = 1.

For the upper bound we can assume (see the proof of the lower bound),
that ‖ϕ‖∞ < 1, so that Cϕ : H2 → H∞. Since w ∈ M(H2, ϕ), we have w ∈
H2 and Mw : H∞ → H2 is bounded. By the ideal property of approximation
numbers, we obtain

(2.12) an(T ) ≤ ‖Mw : H∞ → H2‖ × an(Cϕ : H2 → H∞).

11



But for each r with ‖ϕ‖∞ < r < 1, we can write ϕ = βr ◦ γr where

βr(z) = rz and γr(z) =
ϕ(z)
r , so that Cϕ = CγrCβr

, with Cβr
: H2 → H∞

and Cγr : H∞ → H∞, and (using again the ideal property of approximation
numbers) an(Cϕ : H2 → H∞) ≤ ‖Cβr

‖ × an(Cγr : H∞ → H∞). Now, using
a result of Widom (see [28], Theorem 3.6), we can assert that

(2.13) lim sup
n→∞

[

an(Cγr : H∞ → H∞)
]1/n ≤ Γ(γr(D)) = Γ

(ϕ(D)

r

)

.

This implies:

lim sup
n→∞

[

an(Cϕ : H2 → H∞)
]1/n ≤ Γ

(ϕ(D)

r

)

.

Letting r tend to 1− gives lim supn→∞
[

an(Cϕ : H2 → H∞)
]1/n ≤ Γ(ϕ(D)).

Inserting this estimate in (2.12) finally gives

lim sup
n→∞

[

an(T )
]1/n ≤ Γ(ϕ(D))

or else β+(T ) ≤ Γ(ϕ(D)).
For the lower bound, we will make use of a second result of H. Widom (see
[28]), in which K is a compact subset of D of positive capacity, and ‖ · ‖C(K)

denotes the sup-norm on the space of continuous functions on K:
If E is a subspace of H2 with dimE < n, there exists f ∈ BH∞ , the unit
ball of H∞, such that (a denoting a positive absolute constant)

(2.14) ‖f − h‖C(K) ≥ a[Γ(K)]n for all h ∈ E.

Now, since w is not identically 0, we can find a sequence (rj) with rj ↑ 1
such that |z| = rj ⇒ w(z) 6= 0, implying

δj := inf
|z|=rj

|w(z)| > 0.

Set Kj = ϕ(rjT) and let E ⊂ H2 with dimE < n. By (2.14), we can find
f ∈ BH∞ ⊂ BH2 such that, for all h ∈ E:

(2.15) ‖f − h‖C(Kj) ≥ a
[

Γ(Kj)
]n
.

It ensues that

‖w(f ◦ ϕ− h ◦ ϕ)‖C(rjT) ≥ (inf
rjT

|w|)(sup
rjT

|f ◦ ϕ− h ◦ ϕ)|)

≥ δj‖f − h‖C(Kj) ≥ aδj [Γ(Kj)
]n
.
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Moreover, we obviously have the inequality ‖g‖C(rjT) ≤ Lj‖g‖2 for all func-

tions g ∈ H2, where the positive constant Lj only depends on j. This implies

aδj
[

Γ(Kj)
]n ≤ ‖w(f◦ϕ−h◦ϕ)‖C(rjT) ≤ Lj‖w(f◦ϕ−h◦ϕ)‖2 = Lj‖Tf−Th‖2

so that, for some positive constant L′
j depending only on j:

d(Tf, TE) ≥ L′
j

[

Γ(Kj)
]n
.

Since this holds for every subspace E of H2 with dimE < n, we derive from
(2.1) that an(T ) ≥ L′

j

[

Γ(Kj)
]n

. Taking nth-roots and passing to lim inf as
n→ ∞, we get

(2.16) β−(T ) ≥ Γ(Kj).

To finish, we set

ωj = rj D, K ′
j = ϕ(ωj) = ϕ(ωj) ⊃ Kj .

Clearly, Cap(K ′
j) ≥ Cap(Kj). However, ∂ϕ(ωj) ⊂ ϕ(∂ωj) = Kj since ϕ(ωj)

is open. We hence get, using the reminded results on the capacity of con-
nected sets:

Cap(K ′
j) = Cap[ϕ(ωj)] = Cap[∂ϕ(ωj)] ≤ Cap(Kj).

So that Cap(K ′
j) = Cap(Kj) and that, using (2.16):

(2.17) β−(T ) ≥ Γ(K ′
j).

Letting j → ∞, we obtain, since K ′
j ↑ ϕ(D): β−(T ) ≥ Γ(ϕ(D)) and hence

β(T ) = Γ(ϕ(D)).
Now, suppose that ‖ϕ‖∞ = 1. By conformal invariance of the parameters
involved (β(Cϕ), Cap(ϕ(D)), diam(ϕ(D))), we can assume that ϕ(0) = 0,
without loss of generality. In that case, diam(K ′

j) → 1 and subsequently
Γ(K ′

j) → 1. So that Γ(ϕ(D)) = 1, and finally β(T ) = 1.

Remark. In the preceding, we limited ourselves to the case of the Hardy
space, but several results, for example Theorems 2.5 and 2.7, hold true for
other Hilbert spaces of analytic functions on the disk. Indeed, they hold true
[28] if the ambient norm in H is defined by

‖f‖2 = |f(0)|2 +
∫

D

|f ′(z)|2ω(z)dA(z)
π

13



where A is the area measure on C and ω a radial weight on D, integrable on
(0, 1). This framework includes for example the Hardy space (ω(r) = 1− r),
the Bergman space (ω(r) = (1 − r)2), or the Dirichlet space D (ω(r) = 1),
even though the multiplier space M(D) is not H∞. To prove these results,
we can adapt the methods of [28]. We skip the details.

3 Modular theory and Hardy spaces on strips

3.1 From von Neumann algebras to Hardy spaces

We now begin our discussion about how Hardy spaces and composition
operators arise in the context of (specific) inclusions of von Neumann alge-
bras and their real standard subspaces.

The following definition is motivated by algebraic quantum field theory
[20] (in two dimensions), where one builds models by assigning von Neumann
algebras to regions (subsets) in R

2 such that a number of geometric properties
(inclusions of subsets, causal separation w.r.t. the Minkowski inner product,
symmetries) are carried into corresponding algebraic properties (inclusions
of algebras, commutants, group actions).

A region of particular interest is the wedge W := {x ∈ R
2 : ±x± > 0}

(here x = (x+, x−) is the parameterization of x ∈ R
2 in light cone coordi-

nates) [6, 5, 10]. The following definition, taken from [10], lists the essential
properties of a von Neumann algebra N (together with the space-time trans-
lations U and a vacuum vector Ω) that are required for N to resemble the
localization region W in a physically reasonable manner.

Definition 3.1. A Borchers triple consists of a von Neumann algebra N ,
acting on some Hilbert space H, a cyclic and separating unit vector Ω ∈ H,
and a unitary strongly continuous representation U of R2 such that

i) U has positive energy. That is, writing U(x) = eix+P+eix−P− , the two
generators are positive, P± > 0.

ii) U(x)Ω = Ω for all x ∈ R
2.

iii) U(x)NU(x)−1 ⊂ N for x+ > 0, x− < 0.

We will here be mostly interested with certain modular data derived from
a Borchers triple, and now recall the relevant notions (see [30] for details and
proofs of the claims made here).
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Given a Borchers triple, we consider the closed real subspace

K := {NΩ : N = N∗ ∈ N}‖·‖ ⊂ H(3.1)

which is standard in the sense that K+ iK is dense in H, and K∩ iK = {0}.
To any such standard subspace one can associate a Tomita operator, that is
the antilinear involution defined as

S : K + iK → K + iK , k1 + ik2 7→ k1 − ik2 .(3.2)

This operator is densely defined, closed, and typically unbounded. Its polar
decomposition S = J∆1/2 gives rise to a positive non-singular linear operator
∆1/2 with domain dom∆1/2 = K + iK (the modular operator) and an anti
unitary involution J (the modular conjugation), satisfying J∆it = ∆itJ ,
t ∈ R, and JΩ = Ω, ∆1/2Ω = Ω.

The Hardy space (on a strip) that will arise later will be associated with
the domain of the modular operator ∆1/2. As a first step towards this link,
let us equip the dense subspace dom∆1/2 ⊂ H with the graph norm, defined
by the scalar product

〈ψ,ϕ〉∆ := 〈ψ, ϕ〉+ 〈∆1/2ψ,∆1/2ϕ〉 = 〈ψ, (1 + ∆)ϕ〉 .(3.3)

Since ∆1/2 is a closed operator, dom∆1/2 is closed in the graph norm [33]

‖ · ‖∆ = 〈·, ·〉1/2∆ . That is, (dom∆1/2, 〈·, ·〉∆) is a complex Hilbert space.
When considering dom∆1/2 with this scalar product, we refer to it as D.

The following proposition gathers basic information on the modular data
from this point of view.

Proposition 3.2. Let K be a closed real standard subspace and D the com-
plex Hilbert space defined as dom∆1/2 with its graph scalar product (3.3).

i) On D, the Tomita operator S is an anti unitary involution.

ii) On D, the modular unitaries ∆it, t ∈ R, are still unitary.

iii) For 0 ≤ µ ≤ 1
2 , the modular operator ∆µ is a linear bounded operator of

norm at most one when viewed as a map from D to H.

iv) The modular conjugation J is an antiunitary operator D∆ → D∆−1 .

Proof. i) Let ψ, ϕ ∈ D. Then, since S∗S = ∆ and ∆1/2S = ∆1/2J∆1/2 = J ,

〈Sψ, Sϕ〉∆ = 〈Sψ, Sϕ〉+ 〈∆1/2Sψ,∆1/2Sϕ〉 = 〈ψ,∆ϕ〉+ 〈Jψ, Jϕ〉
= 〈∆1/2ψ,∆1/2ϕ〉+ 〈ψ,ϕ〉 = 〈ψ, ϕ〉∆ .
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This shows that S is anti unitary on D.
ii) This is clear because ∆it commutes with ∆1/2.
iii) For ψ ∈ D, the H-valued function z 7→ ∆−izψ is holomorphic on the
strip 0 < Im(z) < 1

2 , continuous on its closure, and norm-constant in the

real direction, ‖∆−i(x+iy)ψ‖ = ‖∆yψ‖. Thus the three lines theorem [15]
implies, 0 ≤ y ≤ 1

2 ,

‖∆yψ‖1/2 ≤ ‖ψ‖1/2−y · ‖∆1/2ψ‖y ,

from which we read off

‖∆yψ‖ ≤ ‖ψ‖1−2y · ‖∆1/2ψ‖2y ≤
√

‖ψ‖2 + ‖∆1/2ψ‖2 = ‖ψ‖∆ .

iv) This follows from, ψ, ϕ ∈ dom (∆1/2),

〈Jψ, Jϕ〉∆ = 〈Jψ, Jϕ〉+ 〈∆1/2Jψ,∆1/2Jϕ〉
= 〈ψ, ϕ〉+ 〈∆−1/2ψ,∆−1/2ϕ〉 = 〈Jψ, Jϕ〉∆−1 .

To draw the connection to Hardy spaces, we recall a theorem of Borchers [6]
on the commutation relation of the modular unitaries ∆it, t ∈ R, and the
translation unitaries U(x), x ∈ R

2: If (N , U,Ω) is a Borchers triple, then
there holds

∆itU(x)∆−it = U(Λ(t)x) , JU(x)J = U(−x) , x ∈ R
2 ,(3.4)

where (Λ(t)x)± = e∓2πtx±.
The commutation relations (3.4) imply that in the presence of a Borchers

triple, the operators U(x), ∆it, and J generate a (anti-)unitary strongly
continuous representation of the proper Poincaré group P+ = SO(1, 1)⋊R

2.
We will denote this extended representation by the same letter U .

As the basic building blocks, we are interested in the irreducible sub-
representations of U . We call a representation degenerate if there exists
a non-zero vector Ψ which is invariant under U(x) for all x ∈ R

2, i.e.
Ψ ∈ kerP+ ∩ kerP−. In physical models, this vector can usually only be
a multiple of Ω, so that we may restrict to non-degenerate representations
of P+.

The non-degenerate, irreducible, unitary, strongly continuous positive
energy representations of P+ can be classified up to unitary equivalence
according to the joint spectrum of the generators P±, denoted Sp (U |R2).
There are equivalence classes of three types:

16



m) Sp (U |R2) = {p ∈ R
2 : p± > 0, p+ · p− = m2} for some m > 0,

0+) Sp (U |R2) = {p ∈ R
2 : p+ ≥ 0, p− = 0},

0−) Sp (U |R2) = {p ∈ R
2 : p− ≥ 0, p+ = 0}.

The parameter m has the physical interpretation of a mass. We therefore
refer to representations of type m > 0 as “massive”, and to representations of
type 0± as “massless”. For a concise notation, we will adopt the convention
to label objects by a single label m, which can either take positive values,
referring to type m), or the two special values m = 0±, referring to type 0±).

The irreducible representation Um of type m can be conveniently realized
on the Hilbert space H = L2(R, dθ). In fact, we have for all types the same
modular unitaries and conjugation [23]

H = L2(R, dθ) , (∆itψ)(θ) = ψ(θ − 2πt), (Jψ)(θ) = ψ(θ) .(3.5)

The translation operators are multiplication operators depending on the
type, namely

(Um(x)ψ)(θ) = wm,x(θ) · ψ(θ) ,(3.6)

w0±,x(θ) = eix± e±θ

, wm,x(θ) = eim(x+eθ+x−e−θ) .(3.7)

The functions wm,x will later serve as the weights of our weighted composition
operators.

Considering the representation (3.5), it becomes clear that the domain
D ⊂ L2(R) of ∆1/2 consists of functions that have an analytic continuation
to the strip region S0,π, a special case of the more general strip

Sa,b := {ζ ∈ C : a < Im ζ < b} , a < b ,(3.8)

and satisfy certain bounds on this strip. Before we make this precise, let
us recall some properties of functions analytic in a strip, and corresponding
function spaces.

Given f ∈ Hol(Sa,b) (the holomorphic functions Sa,b → C), we write fλ,
a < λ < b, for its restriction to the line R+ iλ. Denoting the usual norm of
L2(R) by ‖ · ‖2, we consider the norm

|||f |||Sa,b := sup
a<λ<b

‖fλ‖2 ∈ [0,+∞](3.9)

and set

H2
B(Sa,b) := {f ∈ Hol(Sa,b) : |||f |||Sa,b <∞} .(3.10)

We recall the following facts [37]:
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i) (H2
B(Sa,b), ||| · |||Sa,b) is a Banach space.

ii) Any f ∈ H2
B(Sa,b) has L2-boundary values on the two boundaries R+ ia

and R + ib, i.e. fa+ε and fb−ε converge in L2(R) as ε ց 0. By a
slight abuse of notation, we will denote these boundary values as fa,
fb ∈ L2(R).

iii) As an expression of the maximum principle, the function (a, b) ∋ λ 7→
‖fλ‖2 is logarithmically convex for f ∈ H2

B(S). In particular, |||f ||| =
max{‖fa‖2, ‖fb‖2}.

We will refer to H2
B(Sa,b) as Hardy Banach space to distinguish it from

a Hardy Hilbert space on Sa,b to be introduced next.
Indeed, as the strip is an unbounded region, there exist two different types

of Hardy Hilbert spaces for this domain: The conformally invariant Hardy
space, defined in terms of harmonic majorants, and the not conformally
invariant Hardy space, defined in terms of L2-integrals over a sequence of
Jordan curves tending to the boundary of the strip [17, Ch. 10].

For our purposes, only the latter space will be relevant. It will be conve-
nient to characterize it in terms of a Riemann map τ : D → S. (To lighten
our notation, we write S instead of Sa,b when the boundaries of the strip are
arbitrary.) Namely, we define

H2(S) := {f ∈ Hol(S) :
√
τ ′ · (f ◦ τ) ∈ H2(D)} .(3.11)

This is a Hilbert space with scalar product

〈f, g〉S := 〈
√
τ ′ · (f ◦ τ),

√
τ ′ · (g ◦ τ)〉D ,(3.12)

and (H2(S), 〈·, ·〉D) depends on the choice of τ only up to changing the norm

‖f‖S := 〈f, f〉1/2
S

to an equivalent Hilbert norm. We may therefore fix τ ,
and make the choice

τ : D → Sa,b , τ(z) :=
2(b− a)

π
arctanh(z) +

i

2
(a+ b) .(3.13)

This is a biholomorphic mapping τ : D → Sa,b, and elementary calculations
show that it has inverse and derivative, ζ ∈ Sa,b, z ∈ D,

τ−1(ζ) = tanh

(

π

2(b− a)
ζ − iπ

4

b+ a

b− a

)

, τ ′(z) =
2(b− a)

π

1

1− z2
,(3.14)

(τ−1)′(ζ) =
π

2(b− a)

1

cosh2
(

π
2(b−a) ζ − iπ

4
b+a
b−a

) .(3.15)
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Proposition 3.3. i) H2
B(S) and H2(S) coincide as linear spaces.

ii) The two norms ||| · ||| and ‖ · ‖Sa,b are equivalent: For any f ∈ Hol(S),
there holds

1√
2π

|||f ||| ≤ ‖f‖S ≤ 1√
π
|||f ||| .(3.16)

iii) The scalar product of H2(Sa,b) can be written as

〈f, g〉Sa,b =
1

2π

(

〈fa, ga〉2 + 〈fb, gb〉2
)

, f, g ∈ H2(Sa,b).(3.17)

Proof. We first work on the special strip S given by a = −1, b = 1, and
introduce for f ∈ Hol(S) the notation s(f) := 1

2 sup0≤y<1(‖fy‖22+ ‖f−y‖22) ∈
[0,+∞].

It was shown in [3, Thm. 2.1 & 2.2] that for f ∈ Hol(S), one has f ◦ τ ∈
H2(D) if and only if s(w · f) <∞, and in this case, ‖f ◦ τ‖2

D
= s(w · f), with

the weight w(ζ) = (2 cosh πζ
4 )−1.

The condition that some f ∈ Hol(S) lies in H2(S), i.e. that
√
τ ′(f ◦ τ) =

(f/
√

(τ−1)′) ◦ τ ∈ H2(D), is therefore equivalent to s(w/
√

(τ−1)′ · f) <∞.
But in view of (3.15), w(ζ)/

√

(τ−1)′(ζ) = π−1/2. We thus have that f ∈
Hol(S) lies in H2(S) if and only if s(f) <∞, and in this case,

‖f‖2S = ‖
√
τ ′(f ◦ τ)‖2D =

1

π
s(f) =

1

2π
sup

0≤y<1

(

‖fy‖22 + ‖f−y‖22
)

.(3.18)

As the supremum on the right hand side clearly lies between |||f |||2 and 2|||f |||2,
the claimed equivalence of norms in ii) follows. This also implies i).

To establish iii), we use that (−1, 1) ∋ y 7→ ‖fy‖2 is logarithmically
convex for f ∈ H2

B(S). Thus y 7→ ‖fy‖22 + ‖f−y‖22 is convex, which implies
that the supremum in (3.18) is taken for the boundary values at y = 1, i.e.

‖f‖2S =
1

2π

(

‖f1‖22 + ‖f−1‖22
)

=
1

2π

(

〈f1, f1〉2 + 〈f−1, f−1〉2
)

.

This implies iii).
It remains to proceed from S−1,1 to a general strip Sa,b by means of

the variable transformation ϕ : S−1,1 → Sa,b, ϕ(ζ) := b−a
2 ζ + i

2(a + b).
But by elementary substitutions, one finds that f 7→ f ◦ ϕ is a bijection
H2

B(Sa,b) → H2
B(S−1,1), with ‖(f ◦ ϕ)y‖22 = 2

b−a‖f(b−a)y/2‖22. Since also

‖f ◦ ϕ‖2
S−1,1

= 2
b−a‖f‖2Sa,b , the properties i)–iii) follow from the special case

a = −1, b = 1.
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Given the action of the unitaries ∆it (3.5) in the irreducible represen-
tations Um arising from the modular data of our Borchers triple, the scalar
product (3.17) of H2(0, π) is strongly reminiscent of the graph scalar product
(3.3). To make this match exact, we will use a rescaled version of the graph
scalar product, namely

〈ψ,ϕ〉∆ :=
1

2π

(

〈ψ, ϕ〉+ 〈∆1/2ψ,∆1/2ϕ〉
)

.(3.19)

Clearly, Proposition 3.2 still holds with this equivalent scalar product. More-
over, we have the following concrete realization of D.

Proposition 3.4. Consider the modular data (3.5), and denote by D the
complex Hilbert space dom∆1/2 with scalar product (3.19).

i) D = H2(S0,π) as complex Hilbert spaces.

ii) The Tomita operator S acts on H2(S0,π) by “crossing symmetry”, i.e.

(Sψ)(ζ) = ψ(iπ + ζ̄) , ζ ∈ S0,π .(3.20)

Proof. It was shown in [23, Lemma A.1] that the real standard subspace
K = ker(1− J∆1/2) is given by

K = {ψ ∈ H2
B(S0,π) : ψπ(θ) = ψ0(θ) a.e.} .

In view of the analyticity properties of ψ, this implies that K consists exactly
of those functions ψ ∈ H2

B(S0,π) that satisfy

ψ(iπ + ζ) = ψ(ζ) , ζ ∈ S0,π .(3.21)

Clearly any f ∈ H2
B(S0,π) can be written as f = ψ+iϕ with ψ, ϕ ∈ K, so that

we see H2
B(S0,π) = K+iK. But as S is an antilinear involution, with domain

D = K + iK, and H2
B(S0,π) = H2(S0,π), it follows that D = H2(S0,π) as

linear spaces. Also the graph scalar product (3.19) coincides with the scalar
product of H2(S0,π) by Prop. 3.3 iii). This shows i).

The Tomita operator S is uniquely fixed by being an antilinear involution
and Sk = k for all k ∈ K. But in view of the characterization (3.21) of K,
it is clear that the antilinear involution defined in (3.20) leaves K pointwise
invariant. This shows ii).

Having established the connection between modular data and Hardy
spaces, we now explain how composition operators appear in this setting.
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Any Borchers triple defines a quantum field theory on R
2 [10], which

makes this concept interesting in the context of constructing models. How-
ever, the quantum field theories arising from Borchers triples might be patho-
logical in the sense of containing no strictly local observables, a situation that
arises when the inclusions U(x)NU(x)−1 ⊂ N , x ∈ W , have trivial relative
commutants. These pathological situations can however be ruled out [9, 22]
when the so-called modular nuclearity condition [8, 7] holds. This condition
requires that the maps

Ξx,µ : N → H , Ξx,µN := ∆µU(x)NΩ , x ∈W, 0 < µ <
1

2
,(3.22)

are nuclear2 as linear maps between the two Banach spaces (N , ‖ · ‖B(H))
and H. Whereas Ξx,µ is always bounded by modular theory, it is in general
not compact, so that nuclearity of (3.22) is a non-trivial requirement.

To investigate the approximation numbers of Ξx,µ, we split this map as

Ξx,µ : N Y−→ D U(x)−→ D ∆µ

−→ H ,(3.23)

where the first operator, defined as Y (N) := NΩ, is bounded: For any
N ∈ N , we have

‖Y (N)‖2∆ = ‖NΩ‖2 + 〈∆1/2NΩ,∆1/2NΩ〉 = ‖NΩ‖2 + 〈JN∗Ω, JN∗Ω〉
≤ 2‖N‖2,

because ‖J‖ = 1 and ‖N∗‖ = ‖N‖.
The last operator in (3.23), ∆µ, is bounded as an operator D → H (see

Prop. 3.2 iii)).

Lemma 3.5. Let (N , U,Ω) be a Borchers triple. Then the translations U(x),
x ∈W , are isometries as maps on the Hilbert space D.

Proof. It is known that the commutation relations (3.4) imply that the op-
erator ∆1/2U(x)∆−1/2, x ∈W , is defined on dom∆−1/2, and coincides there
with JU(x)J = U(−x) [30, Thm. 2.3.1 f)]. We therefore find for ψ ∈ D and
x ∈ W the equation ∆1/2U(x)ψ = ∆1/2U(x)∆−1/2∆1/2ψ = U(−x)∆1/2ψ,
and consequently

‖U(x)ψ‖2∆ = ‖U(x)ψ‖2 + ‖∆1/2U(x)ψ‖2

= ‖U(x)ψ‖2 + ‖U(−x)∆1/2ψ‖2 = ‖ψ‖2∆ ,
2The condition that a linear map X between two Banach spaces is nuclear is slightly

weaker than X having summable approximation numbers [32].
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where we have used that U(x) is unitary on H. This shows that U(x) is
an isometry on D. Note that U(x) is (except for trivial cases) not unitary
because it does not have full range.

The product of the last two operators in the split (3.23),

Dx,µ : D → H , Dx,µ = ∆µU(x) ,(3.24)

can however be compact (and even have approximation number that go to
zero quite fast), analogously to the situation encountered in Thm 2.3.

To obtain estimates on the approximation numbers an(Dx,µ), one splits
H and D into irreducible subspaces of U . Then each subspace takes the form
H = L2(R, dθ), D = H2(S0,π), and Um(x) : D → D acts by multiplication
with the (analytic continuation of the) weight wm,x (3.6), depending on
the representation type m. (Note that the analytically continued weight
functions wm,x ∈ H∞(S0,π) (3.6) are bounded and inner, for any m and x.)

Explicitly, the operator D
(m)
x,µ = Dx,µ then takes the concrete form of a

“weighted restriction operator”, 0 < µ < π, x ∈W ,

D(m)
x,µ : H2(S0,π) → L2(R) ,(3.25)

(D(m)
x,µ ψ)(θ) := wm,x(θ + iµ) · ψ(θ + iµ) .(3.26)

This observation warrants a more systematic analysis of weighted restriction
operators on Hardy spaces on strips. Before we enter into this analysis in

the next section, let us comment on the relation between the operators D
(m)
x,µ

and Ξx,µ (3.22).

Estimates on the approximation numbers of D
(m)
x,µ do not imply corre-

sponding estimates on the maps Ξx,µ (3.22). To establish bounds on the
an(Ξx,µ), one also has to take into account the multiplicities occurring in the
decomposition of U into irreducibles. But for typical examples of Borchers
triples, this analysis involves basically only (symmetrized) tensor powers of

operators of the form D
(m)
x,µ [1]. For this reason, it is of interest to determine

strong decay properties of the approximation numbers of D
(m)
x,µ .

3.2 Weighted restriction operators on H
2(S)

As a slight generalization of what appeared before, we consider here the
following setting: Let S ⊂ C be a strip domain, which will be fixed in the
following. To define the operators we want to study, we take a narrower
strip S̃ ⊂ S, such that the closure of the smaller strip is contained in the
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larger one, and a weight function w ∈ H∞(S). We are then interested in the
mappings f 7→ (w · f)|

S̃
, considered as operators H2(S) → H2(S̃).

For simplicity, we will always assume that both S and S̃ are symmetric
around the real axis, i.e. S = S−b,b for some b > 0 and S̃ = λS for some
0 < λ < 1. We then define

Rw,λ : H2(S) → H2(λS) , Rw,λf := (w · f)|λS .(3.27)

As a limiting case as λ→ 0, we also define

Rw,0 : H
2(S) → L2(R) , Rw,0 := (w · f)0(3.28)

as the restriction of wf to the real line. It is clear from Prop. 3.3 i) and
the form of the norm (3.9) that the restriction maps R1,λ, 0 ≤ λ < 1, with
trivial weight w = 1 are bounded. Since restriction of f ∈ H2(S) to λ′S is
the same as first restricting f to λS, λ > λ′, and then to λ′S, we find that
there is a constant c such that

an(Rw,λ′) ≤ c an(Rw,λ) , 0 ≤ λ′ ≤ λ ≤ 1, n ∈ N .(3.29)

In particular, the operators Rw,0 mapping to L2(R) (3.28) can be estimated
in terms of the Rw,λ, λ > 0. The latter operators map between Hardy spaces
and can be reformulated as composition operators as follows.

Let 0 < λ < 1 and

Lλ : H2(λS) → H2(S) , (Lλf)(z) :=
√
λf(λz) .(3.30)

Taking into account that the Riemann maps τλ for λS and τ for S are re-
lated by τλ = λτ , it follows that Lλ is unitary. Furthermore, the product
λ−1/2 LλR1,λ is easily seen to be the composition operator Cλ on H2(S) with
linear symbol z 7→ λz. This shows that the restriction operators R1,λ are
unitarily similar to composition operators. Furthermore, we note that Cλ

(and thus R1,λ) are not compact. This is so because on H2(S) there exist no
compact composition operators at all [36]. The weighted operators Rw,λ can
however be compact, depending on the weight w, similar to the example in
Thm. 2.3.

For the following analysis of the approximation numbers of Rw,λ, we
recall that H2(S) is a reproducing kernel Hilbert space. Its kernel function
KS is related to the well-known Szegö kernel [35] KD(z, z

′) = (1− zz′)−1 of
H2(D) by

KS(ζ, ζ
′) =

√

(τ−1)′(ζ) ·KD(τ
−1(ζ), τ−1(ζ ′)) ·

√

(τ−1)′(ζ ′) .(3.31)
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To compute this explicitly for the strip S = S−b,b, we insert (3.14) and get

KS(ζ, ζ
′) =

π

4b

1

cosh π(ζ̄−ζ′)
4b

.(3.32)

We also recall that given any orthonormal basis {ψn}n of H2(S), we have
∑

n ψn(ζ)ψn(ζ
′) = KS(ζ, ζ

′). So, in particular,

∑

n

|ψn(ζ)|2 =
π

4b

1

cos π Im(ζ)
2b

.(3.33)

Proposition 3.6. Let w ∈ H∞(S) and 0 ≤ λ < 1.

i) If w|λS ∈ H2(λS) (for λ > 0) or w0 ∈ L2(R) (for λ = 0), then Rw,λ is
Hilbert-Schmidt, with Hilbert-Schmidt norm

‖Rw,λ‖2 =
√

π

4b cos πλ
2

· ‖w‖λS, λ > 0, ‖Rw,0‖2 =
√

π

4b
· ‖w‖2 .

(3.34)

ii) If w is non-vanishing and rapidly decreasing in the sense that for any
k ∈ N,

sup
θ∈R

−λb≤µ≤λb

(

|w(θ + iµ)| (1 + θ2)k
)

<∞ ,(3.35)

then the approximation numbers of Rw,λ′ satisfy for any N ∈ N

sup
n∈N

(

nNan(Rw,λ)
)

<∞ .(3.36)

iii) If w(θ) → c, c 6= 0, as θ → ∞ or θ → −∞, then Rw,λ is not compact.

Proof. i) Let {ψn}n be some orthonormal basis of H2(S), and 0 < λ < 1.
Then, using (3.33),

∑

n

‖Rw,λψn‖2λS =
1

2π

∑

n

∫

R

dθ
(

|w−λb(θ)|2|ψn,−λb(θ)|2 + |wλb(θ)|2|ψn,λb(θ)|2
)

=
1

8b

∫

R

dθ

(

|w(θ − iλb)|2
cos πλ

2

+
|w(θ + iλb)|2

cos πλ
2

)

=
π

4b cos πλ
2

· ‖w‖2λS .
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Since ‖Rw,λ‖22 = Tr(R∗
w,λRw,λ), this finishes the proof for λ > 0. The argu-

ment for λ = 0 is analogous.
ii) By (3.29), it is sufficient to show the claim for λ > 0. Let k ∈ N. We

find intermediate strip regions S ⊃ λ1S ⊃ λ2S2 ⊃ ... ⊃ λk−1S ⊃ λS such
that in each inclusion, the closure of the smaller strip is contained in the
larger strip. In view of the assumption on w, we may furthermore write our
weight as a product w = w1 ·w2 · · ·wk, with w1, ..., wk ∈ H2(S) (We can take
wj := w1/k for j = 1, ..., k.) Thus our operator can be written as

Rw,λ = Rλ/λk−1,wk
·Rλk−1/λk−2,wk−1

· · ·Rλ1,w1 .

By part i), each of the k factors is Hilbert-Schmidt. That is, Rw,λ can be
written as a product of an arbitrary number of Hilbert-Schmidt operators.
This implies the claim by standard estimates on approximation numbers [32].

iii) We consider the case that w(θ) → c 6= 0 as θ → +∞, the opposite
limit is analogous. By (3.29), it is sufficient to consider the case λ = 0.

For non-zero f ∈ H2(S), we consider the sequence fn(ζ) := f(ζ − n). To
show that Rw,0 is not compact, we show that {Rw,0fn}n has no convergent
subsequence. In fact, by dominated convergence we have

‖Rw,0fn‖22 =
∫

R

dθ |w(θ)|2|f(θ − n)|2 → c2‖f0‖22 .

Since c 6= 0 and f 6= 0, this limit is non-zero, i.e. ‖Rw,0fn‖2 ≥ c0 > 0 for
sufficiently large n. On the other hand, we have

|〈Rw,0fn1 , Rw,0fn2〉2| ≤ ‖w‖2∞
∫

R

dθ |f(θ)| · |f(θ + n1 − n2)| ,

and this converges to 0 for n1 − n2 → ∞ by the falloff properties of Hardy
space functions. Thus for large n1, n2, |n1−n2|, the vectors Rw,0fn1 , Rw,0fn1

have approximately identical non-zero length and are approximately orthog-
onal to each other. Thus {Rw,0fn}n can have no convergent subsequence.

The situations described in item ii) and iii) of this proposition fit to the
weights appearing in the massive and massless irreducible Poincaré represen-
tations, introduced in the previous section. To see this, we need to translate
the weights wm,x ∈ H∞(S0,π) (3.6) to the symmetric strip S−π/2,π/2 by shift-

ing their argument ζ → ζ + iπ
2 . In the massive case m > 0, this results in

the weight (denoted by the same symbol)

wm,x(ζ) = em(−x+eζ+x−e−ζ) , ζ ∈ S−π/2,π/2 .(3.37)
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Taking into account that ±x± > 0, it is apparent that w is rapidly decreasing
on any strip of the form λS, 0 < λ < 1. Thus, by part ii) of the preceding
proposition, the approximation numbers of Rw,λ are rapidly decreasing for
any 0 ≤ λ < 1.

In the massless case, however, the weight becomes

w0±,x(ζ) = e∓x± e±ζ

, ζ ∈ S−π/2,π/2 ,(3.38)

which converges to 1 as ζ → ∓∞. Thus, by item iii), the weighted restriction
operator Rw,0 is not compact, which fits with the known result that in the
massless case, Ξx,µ is not compact.

The estimates of Prop. 3.6 ii) are rather imprecise, and can be improved
for specific weights w. To derive sharper bounds, let us switch to the unit
disc D and make contact with the setting of Section 2.

By the very definition of the scalar product 〈·, ·〉S, the mapping

V : H2(S) → H2(D) , V ψ :=
√
τ ′ · (ψ ◦ τ) ,(3.39)

is unitary, with inverse V −1f =
√

(τ−1)′ · (f ◦ τ−1). For the scaled strip λS,
0 < λ < 1, we have the Riemann map τλ := λτ , with corresponding unitary
Vλ. With the help of these unitaries, we can transfer the operators Rw,λ to
the Hardy space H2(D) on the disc.

Let us introduce some notation first. We define ϕλ = g−1 ◦ γλ ◦ g, with
0 < λ < 1 and

g(z) =
1 + z

1− z
, γλ(u) = uλ for Reu > 0

as the lens map of parameter λ. Explicitly,

ϕλ(z) =
(1 + z)λ − (1− z)λ

(1 + z)λ + (1− z)λ
.(3.40)

Lemma 3.7. The operator Rw,λ, 0 < λ < 1, is unitarily similar to a
weighted lens map composition operator MŵCϕλ

on H2(D), with lens map
symbol ϕλ (3.40), and weight

ŵλ(z) :=
√
λmλ(z)w(λ τ(z)) , mλ(z) :=

(

1− ϕλ(z)
2

1− z2

)1/2

.(3.41)
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Proof. The disc operator unitarily similar to Rw,λ is VλRw,λV
−1 : H2(D) →

H2(D). Inserting the definitions yields

(VλRw,λV
−1f)(z) =

√

λ τ ′(z)
√

(τ−1)′(λ τ(z)) · w(λ τ(z)) · f(τ−1(λ τ(z)))

=
√
λ

√

τ ′(z)
τ ′(τ−1(λ τ(z)))

· w(λ τ(z)) · f(τ−1(λ τ(z))) .

We note that

τ−1(λ · τ(z)) = tanh(λ · arctanh(z)) = ϕλ(z)(3.42)

is the lens map. Inserting the explicit form of τ ′ (3.14) then yields the
claimed result.

The weight (3.41) consists of the unbounded universal factor mλ (which
diverges as z → ±1) and the bounded factor w ◦ λτ . For the factor mλ, it is
easy to show that

|mλ(z)| ≤ 2
∣

∣1− z2
∣

∣

1
2
(λ−1)

, z ∈ D .(3.43)

In the case of the “massive weight” (3.37), we obtain after a short calcu-
lation

w(λτ(z)) ≤ e−
(

s+ g(z)λ+s− g(−z)λ
)

,(3.44)

with the parameters s± := mπ
2 |x±| > 0. Whereas this function decreases to

zero quite fast as z approaches ±1, the two contact points of the lens map
with the boundary of D, the function mλ only diverges mildly at these points.
For the purposes of estimating approximation numbers, we may therefore
reduce the parameters s± a little to compensate the divergent factor mλ,
and consider weighted lens map composition operators with a weight of the
form (3.44) instead. Such operators will be studied in the following section.

To conclude this section, we also transfer the operators Rw,0 (3.28), cor-
responding to λ = 0, to the disc. Whereas for λ > 0, we obtained weighted
composition operators on the disc, the case λ = 0 corresponds to Carleson
embeddings.

To see this, let us define on D the measure

µw(x+ iy) := |ŵ1(x)|2δ(y)dx dy , w1(z) := w(4bπ arctanhz) ,(3.45)

supported on the real diameter of the disc.
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Lemma 3.8. Let w ∈ H∞(S−b,b).

i) The measure µw (3.45) is a Carleson measure, i.e. H2(D) ⊂ L2(D, dµw),
and the embedding Jw : H2(D) →֒ L2(D, dµw) is bounded.

ii) The operator Rw,0 is unitarily similar to the embedding Jw.

Proof. i) Since the weight ŵ1 is bounded on D, we can estimate the measure
of a Carleson box as, ξ ∈ T, 0 < h ≤ 1,

µ[S(ξ, h)] ≤ µ[S(1, h)] =

∫ h

1−h
|ŵ1(x)|2 dx ≤ ‖ŵ1‖2∞ · h

for Re ξ ≥ 0, and analogously for Re ξ < 0. Thus µ is a Carleson measure
(see Thm. 2.1), which implies the remaining statements in i).

ii) We define the unitaries

V0 : L
2(R) → L2((−1, 1), dx) , (V0ψ)(x) :=

ψ
(

4b
π arctanh(x)

)

√

π
4b(1− x2)

(3.46)

and

Ṽ : L2((−1, 1), dx) → L2(µ) , (Ṽ ψ)(x) :=
ψ(x)

ŵ1(x)
.(3.47)

Then inserting the definitions yields, f ∈ H2(D),

(Ṽ V0Rw,0V
−1f)(x) =

1

ŵ1(x)

w(4bπ arctanh(x)) (V −1f)(4bπ arctanh(x))
√

π
4b(1− x2)

= f(x) .

4 Weighted lens map composition operators

We now turn to weighted lens map composition operators on H2(D) as
particular examples of weighted composition operators. As in the previous
section, we define the analytic map ϕ = ϕλ = g−1 ◦ γλ ◦ g, with 0 < λ < 1
and

g(z) =
1 + z

1− z
, γλ(u) = uλ for Reu > 0
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as the lens map of parameter λ. Explicitly,

ϕ(z) =
(1 + z)λ − (1− z)λ

(1 + z)λ + (1− z)λ
·

Recall that the image ϕ(D) ⊂ D has exactly two non-tangential contact
points with the unit circle at 1 and −1, and in particular verifies ‖ϕ‖∞ = 1.
Also observe that ϕ(−z) = −ϕ(z) for all z ∈ D.

We choose a weight of the form motivated by the applications outlined
in the previous section, namely w = w0 ◦ ϕ where 3

(4.1) w0(z) = exp
[

−
(1 + z

1− z

)λ]

exp
[

−
(1− z

1 + z

)λ]

=: w1(z)w−1(z)

We have max(‖w1‖∞, ‖w−1‖∞) ≤ 1, and note that w0 tends to 0 quite
rapidly as z → ±1. Namely, if z ∈ D:

(4.2) Re z ≥ 0 ⇒ |w0(z)| ≤ |w1(z)| ≤ exp
(

− δ

|1− z|λ
)

(4.3) Re z ≤ 0 ⇒ |w0(z)| ≤ |w−1(z)| ≤ exp
(

− δ

|1 + z|λ
)

where δ = cos(λπ/2). Indeed, if for example Re z ≥ 0, we see that

Re
(1 + z

1− z

)λ
≥ δ
∣

∣

∣

1 + z

1− z

∣

∣

∣

λ
with |1 + z| ≥ Re(1 + z) ≥ 1.

We take for w0 this double product to take both contact points ±1 of ϕ(D)
with the unit circle into account. We note in passing (this is general) that

CϕMw0 =Mw0◦ϕCϕ =MwCϕ.

We can now state one of our main theorems. The positive constants
0 < c < C are allowed to change from one line to another in what follows.

Theorem 4.1. Let T = MwCϕ : H2 → H2 where w and ϕ are as above.
Then T is compact, and more precisely:

i) One nearly has exponential decay, namely an(T ) ≤ Ce
−c n

logn .

ii) The previous estimate is optimal: an(T ) ≥ c e
−C n

logn .

3In comparison to (3.44), we have set the inessential parameters s± to 1.
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Proof. We begin with the upper bound, following the strategy of [25]. If
γ(t) = ϕ(eit), one easily checks [25, Lemma 2.5] that

(4.4) |t| ≤ π

2
⇒ 1− |γ(t)| ≈ |1− γ(t)| ≈ |t|λ

(4.5)
π

2
≤ |t| ≤ π ⇒ 1− |γ(t)| ≈ |1 + γ(t)| ≈ (π − |t|)λ.

We fix an integer N ≥ 2. Let B be the Blaschke product

B(z) =
∏

1≤k≤logN

( z − pk
1− pkz

z − pk
1− pkz

)N ∏

1≤k≤logN

( z + pk
1 + pkz

z + pk
1 + pkz

)N

=: B1(z)B−1(z)

where pk = γ(tk) and tk = π
2 2

−(k−1)/λ. This is a Blaschke product of

length ≤ 4N logN . Observe that B±1(z) = B±1(z). Next, set E = BH2, a
subspace of codimension < [4N logN + 1] =: M (with [.] the integer part).
If f = Bg ∈ E, with ‖f‖ = ‖g‖ = 1, we have (remembering (2.4) and since
w = w0 ◦ ϕ)

‖T (f)‖2 =
∫

T

|w0(ϕ(u))|2|B(ϕ(u))|2|g(ϕ(u))|2dm(u) =

∫

D

|w0|2|B|2|g|2dmϕ.

Now, using again Carleson’s embedding theorem for the measure

µ = |w0|2|B|2dmϕ,

as in the proof of Theorem 2.2, and the non-tangential behavior of ϕ near the
points ±1 (allowing us to ignore the Carleson windows centered elsewhere
than in ±1 as in [25, p. 809]), we get with help of (2.3):

aM (T )2 . sup
0<h<1

(I1(h)

h
+
I−1(h)

h

)

where

I1(h) =

∫

|γ(t)−1|≤Ch
|B1(γ(t))|2|w1(γ(t))|2dt

I−1(h) =

∫

|γ(t)+1|≤Ch
|B−1(γ(t))|2|w−1(γ(t))|2dt.

Actually, the term I1(h) takes care of the Carleson boxes S(ξ, h) for which
Re ξ ≥ 0 and the term I1(h) of those for which Re ξ < 0. We will estimate
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only I1(h), the estimate being similar for I−1(h).
By interpolation, we can assume h = 2−q/λ with q a non-negative integer,
and we separate two cases:

Case 1: q > logN . Then, majorizing |B1(γ(t))| by 1 and using (4.2) as well
as (4.4), we get

h−1I1(h) . h−1

∫

|t|λ≤Ch
|w1(γ(t))|2dt . h−1

∫

|t|λ≤Ch
exp

(

− C

|t|λ2

)

dt

. h
1
λ
−1 exp

(

− C

hλ

)

. exp(−C2q) . exp(−CN).

Case 2: q ≤ logN . Then, we majorize |w1(γ(t))| by 1 and estimate
|B1(γ(t))| more accurately, with help of an obvious modification of Lemma 2.6
in [25], which we recall:

Lemma 4.2. Set tk = π
2 2

−(k−1)/λ. Then

t[logN ] ≤ t ≤ t1 ⇒ |B1(γ(t))| ≤ χN

where [.] denotes the integer part and where χ < 1 only depends on λ.

We can now finish the estimate (note that t1 = π/2):

h−1I1(h) . h−1

∫ t[logN ]

0
|w1(γ(t))|2dt+ h−1

∫ t1

t[logN ]

|B1(γ(t))|2dt.

The first term is estimated as in Case 1. And since q ≤ logN , the second
sum is dominated by 2q/λχ2N . N1/λ exp(−CN) . exp(−C ′N). Putting
both cases together, we get sup0<h<1 h

−1I1(h) . exp(−CN) and finally,
with M = [4N logN + 1] and using once more (2.3):

a2M . e−CN .

Inverting, interpolating, and using that (ap)p≥1 is non-increasing, we finally
get for all positive integers n:

an . e
−C n

logn

as claimed. This ends the proof of the upper bound.

To establish the lower bound, we first observe that

w0(z) = exp(−γλg(z)) exp(−γλg(−z)).
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Since γλγλ = γλ2 , we get γλgϕ = γλ2 g, and an explicit formula for w is

(4.6) w(z) = exp
[

−
(1 + z

1− z

)λ2]

exp
[

−
(1− z

1 + z

)λ2]

=: w′
1(z)w

′
−1(z).

We now apply Lemma 2.6. To that effect, we must make a good choice of
the uj ’s. As in [27] for lens maps, we choose uj = 1 − e−jε where ε > 0
has to be adjusted, and vj = ϕ(uj). We know from [26, Lemma 6.5] that

Iv ≤ exp(C/ε), and we have
√

1− u2j ≥ c e−nε. Moreover, since

(1 + uj
1− uj

)λ2

≤
( 2

1− uj

)λ2

,

we see that
inf

1≤j≤n
|w′

1(uj)| ≥ exp(−Cenε).

And clearly inf1≤j≤n |w′
−1(uj)| ≥ e−1. So that inf1≤j≤n |w(uj)| ≥ exp(−Cenε)

(recall that w = w′
1w

′
−1). Lemma 2.6 now gives us

an(T ) & exp
[

− C
(

enε + nε+
1

ε

)

]

& exp
[

− C
(

enε +
1

ε

)

]

.

We finally adjust ε = 1
2
logn
n to get

an(T ) & exp
[

− C
(√
n+

n

log n

)

]

& exp
[

− C
n

log n

]

.

This ends the proof of Theorem 4.1.
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