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Abstract

Researchers haveecently revealed thathybrid lead halide perovskitegxhibit
ferroelectricity, whichs often associated with othghysical characteristicsuch aalarge
nonlinearoptical responseln this work, we study the nondinear optical propertis of
single crystalnorganicerganic hybrid perovskite GINH3PbB#. By exciting the material
with a 1044 nm laserwe were able to obsenstrongtwo-photon absorptioinduced
photoluminescence in the green spectral reditsing thetransmission opeiaperture Z
scan technique, we estimatib@ values of thewvo-photon absorptionoefficientto be8.5
cm GW, which is much higher than that sthndard twephoton absorbing materials that
are industrially used inonlinear optial applicationssuch ad.iNbOs3, LiTaOz, KTIOPOs,
andKH2PQu. Such a strontywo-photon absorptioeffect inCHsNHsPbBr can be used to
modulate thespectral and spatial profiles of laser pujssswell as reduce noisand can
be used tatronglycontrolthe intensity ofncident light In this study, we demonstrattee
superior optical limiting, pulse reshapingnd stabilizatiorproperties ofCH3:NH3PbB#,

opening new applications for perovskites in nonlinear optics.

Keywords: perovskite, CHNHsPbB#, two-photon absorptignnonlinear opticspptical

limiting, pulse reshaping, optical stabilization



Two-photon absorption (TPA) isthird-ordernoninear optical processnvolving two
coherent photons thatomote an electron to an excited state, theofjaich corresponds
to the combined energies of both photonsnidear optical materials play a major role in
the field of photonicand are expected to become key mateftalemerging technologies
such as optical information and communicatignocessg,}?> sensor protection
applications,and more** In recent decadesammonium dihydrogen phosphate and
potassium dihydrogen phosphate have been the premier nonlinear optical cry$tds for
related applications, in part because they can be grown at large sti@lanlniobate
(LiNbO3) has also emerged as a promising TPA material based on its high optical
nonlinearitycoefficient, which is testimes larger than that of ammonium and potassium
dihydrogen phosphafeHowever, the relatively low optical damage threshold of these
materials limits their practicality in operations thatuieg highintensity laser irradiatiah
In the search for more robust TRAmMpoundspone strategy idook to materialsthat
demonstrate ferroelectric properties, which due to large spontaneous paaraatihigh
dielectric constasttend to also display a large nonlinear optical respofse.

Researchers recently confirmediet ferroelectricdomain of hybrid lead halide
perovskites2ta property which appesrelated to the presence of polar molecular cations
in the crystalline framework? Theseferroelectric domains magidthe separation of
photoexcited electrehole pairsand reduceharge carrierecombinatiort3 Hence, it can
be expected that hybrid lead halide perovskites exhibit bjgiical nonlinearity* a
hypothesisvhich was recently confirnag">16

Perovskitehave alreadghownexcitingpromisein applicationsof photovoltaics,,°

light emitting diodeg®22 and other optoelectronic devi¢g&sandas a result have attracted



increased researdbcus overrecentyears.Using an inexpensive and roottemperature
process?® researchers have been able to easily synthesize these materddsnamdtrate
theirunique electronic and linear optical properties, establigiengvskitess a new class
of semiconductors. Following the discovery of these unique properties has been the
development ohew optoelectroni@pplications,including lases?* data storagé& and
optomechanical sensc?&?’However, neither the physical mechanisms nor the theoretical
models of the nonlinear phenomena in perovskites have been studied in detail for optical
applications.

In this study, we measurelPA-induced photoluminescend®L) in single crystal
methylammonium lead bromide (GNHsPbBr or MAPbB#) as well as the corresponding
TPA coefficient usinghe transmissioropenapertureZ-scan techniquat an excitation
wavelength of 1044 nnWith this method we were able to stuithg physical mechanism
of optical nonlinearity in MAPbBrand demonstrateverallT PA-basd nonlinear optical
applications, includingptical limiting, stabilization, and reshapinglaser pulse signals
Thesepropertiesareessential for practical applications in any optical sysaech can be
used to controlasernoise, modulate variousdectromagnetic fiels] and protect delicate
optical sensorsThesetheoretical and experimentaldvancesin MAPDbBrz nonlinear

optical applicatios suggeshewpotential for perovskite photonics.

Results and discussion
The antisolvent vaposassisted crystallization method wasedto grow large single

crystalMAPDBr3 perovskitefor nonlinear opticatharacterizationThe MAPbBr3 crystal



(2.8 mm in length, 2.7 mm in widtland 3.8 mm in thicknesgppearewrangecolored
and featuredectangular facefss shown in Figure 1a.

We determineaur synthesized material featured a perovskite phase using powder X
ray diffraction (XRD). Asshown inFigure 1b, thediffraction peaks at 15.2621.37°, and
30.3°corresponding to the0Q1), 011), and (002 lattice planes of the cubic structure
respectively are consistent with previously reportesingle crystal MAPbBr grown at
room temperatur€3° The XRD pdternalsoshowsthat the MAPbBs samplehasa highly
crystalline cubic phas&@he XRD analysisrevealsthe material is alssingle crystalsee
Table S1 for more detail$j Figure 1c shows the unit cell of MAPRLBThe materiahdopts
the bonding structuréypical of perovskits, which can be described by the chemical
formula ABXz, where A and B represeaations of different sizes and X is an anion that
bonds to both A and Bn MAPbBI3, the organic cation A is methylammonium (§MH3"),
the metal cation B is P and the anion X is the halogen'BiThe methylammonium
cation is surrounded by PhBrctahedra.

To understand the thermpfopertiesof the single crystaMAPbBr3, we performed
thermogravimetric analysis (TGArigure 1d. The thermaldecomposition oMAPDBI3
began and finishedt temperature of 320 °C and592.1 °C respectively The material
exhibitsa two-step decomposition process with weifigesof 23.4%and 14.2%at each
step. Note that material usedfor optical device mustexhibit high thermal stabilityin
order toavoidsignificant distortiorcaused byllumination-inducedthermal gradientand
damage!3? As compared with many polymers and organic TPA materials, the
thermodynanu stabilityof MAPDBTr3 is relatively high In contrast, the related perovskite

CHsNH3sPbk begins to decomposg a temperature of 29€ 3334 Additionally, MAPbBr
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is known to be more stable in &irThe enhancedimbient andthermal stability of
MAPDBr3 can be attributgtoits cubic structure and stron@ E i % U BRReGdvantages
of this material thusnotivated us to studys TPA and related applications.

Two-photon excited fluorescence andimplified energylevel diagramof the TPA
process arehown inFigure 2a.The mechanisis initiatedby thesimultaneous absorption
of two photonsfeaturing energies ofless than theabsorbing material’shandgap
Subsequerftuorescenceccurs througttheemission of a single phot@ta higher energy
We can observe this process with the naked eye, as sirave righthandside of Figure
2a,in whichtheMAPDBTI3 crystaldisplays greefluorescenceas it ispumped witha pulsed
laser atalower energywavelength ofl044 nm and power density of 0.1 Mak2. Figure
2b showghelinearly and nonlinearlyi.e., TPA) photoexcited PL spectd the MAPDBE,
excited with 522 nm and 1044 nm wavelengths, respectiVel/TPA-inducedemission
occurs ab50 nm with a full width at half maximurof 17 nm.The same green emission
can be seewhile exciting theMAPbBr3 samplewith the 522 nm lasewvia linear single
photon absorptiad” The linear and nonlinear PL spectime shaps are slightly
asymmetri¢c which can be decomposedto the contribution of states from residual

PbBr.38 Thisis alsosupported by evidence asmallXRD signal at 2 = 16q 17 next to

the (001)oriented MAPbBs-related XRD pealat 15.16.%° These PbBrcomposites are
known to assist the radiative process in MAPDbBr

In principle, the nonlinear optical properties of a medaan be expressed usitite
high-order terms in a Taylor series expansion of the dielectric polarizatimsitgl@s a
function of the applied electric fielE).*° The dielectric polarization densit?)(is given

as:



27 M@PY v+ 0L bt OL% by b et ® A (1)
in which $is the f-order susceptibility of the medium. The first term on tighthand
side of the equation represents the linear response of the medium when thecdielectr
polarization is the same frequency as the applied electric field. The sswbtitird terms
represent the secondnd thirdorder optical nonlinearities, whidnvolve at least two
applied electric fields that can induce a new polarization field at a diffesznutency.

To confirm the applicability of Equation (lwe characterizedhe polarization
dependence dheperovskite’'sTPA, asit strongly depends othe crystal symmetr§Figure
2¢)*! The polarization dependénemission spectravere measuredusing a normal-
incidence backsti®ring geometryas the laser polarizatiorwas rotated around the
perpendicular axisf the MAPbBE crystal orientatior{see inset oFigure2d). According
to the selection rulef seconeharmonic generatiQriPL intensity measured at the normal
backscattering geometspould follow4?

5= Rxsin 42 3 , (2)

in whichSis thePL intensity is aproportionalityconstant, and is the rotation anglef

the linear polarizerAs shown in Figur@d, when weplotted the emissionintensity ofthe
MAPDBI; as a function of the rotation angle the resultdemonstrate®0° periodicity
with maxima at | = 45°, and 1%°, in agreement with théitted sir’(2 1) dependence
described in Equation (2puch a fowfold symmetryof the polarizationangledependent
PL certifiesthatthe perovskite lattice exhibitsfaur-fold rotational symmetrglongthec-
axis*4344This isalsostrong evidenceonfirming the single crystallinity of the MAPbBr
sample as thdour-fold symmetry ofthe polarization angle dependent PL cannot be

observed irpolycrystallinematerials®



In Figure2e we demonstrate the power dependence of theimédced PL of the
single crystal MAPbBy at room temperature by increasing the pumping power (
intensity) of the 1044 nm exciting laser from 0.58 mw (0.001 MVW)am2.57mW (0.004
MW cm?). The resulting PL emission intensity at05%m as a function of the excitation
power can be fit with a quadratic relation (Fig@fg revealing that the PL of the single
crystal MAPbBg is mainly due to the TPA proce&s’

To quantfy the optical nonlinearity othe MAPbBr3, we employedhe transmission
openaperture Zscan technique, whicls a highly sensitive singibeam experimental
methodfor determiningTPA coefficiens *® The Zscan techniggi is described in detail in
Ref. 48.A standard Zscananalysigs done by moving theample baclandforth fromthe
focal point of the pulsed laser beam along its optical axis (defined agz-#ods) via a
continuously tunable optical attenuator pldteder the assumptiotinat the laser beam
intensity follows an ideal Gaussian profile, the normalized egperture Zscan

transmittancean begiven by4°

Gigo= d+(J FL) U. g1+ ( VV4)G))é?59"’5(é?5

5728 %

.QUT 3)

in which ., denoteghe effective multiphoton absorption coefficiebts is the effective
length of the sample . is the linearabsorption coefficientL is the actual length of the
samplejoisthe laseitensity andz is the diffraction lengtlof thelaser beanfalso known
as theRayleigh length Using Equation 3 to fit the -Acan experimental data shown in
Figure 3, ve numericallycalculatedhe effectivelT PA coefficient( .2) as8.5 cm GW for

thesingle crystaMAPDBIs at 1044 nrexcitation whichis significantlyhigher tharother

well-known semiconductorthat feature TPAt similar wavelengthsuch asCdTe (0.02

9



cm GW! at 1300 nnf andGaSe(q 6.3cm GW! at 1060 nm).>! The TPAcoefficient of

MAPDBr3 is much higher than other commonly used TPA crystals, such as ki(St&zm
GW!at 388 nm,*?LiTaOs (2 cm GW! at 800nm) 2 KTiOPO;4 (1.8 cm GW! at 800nm),>*
and KH2PQy (0.3 cm GW! at 532nm).>° It is also174imes greater than that of single

crystdline Si(g 0.5 cm GW! at neafinfrared wavelengt) 558

Such a strong TPA effect observedsingle crystalMAPbBrs; opens itto potential
applicatiors in optical switching and limiting deviceswvhich require large optical
nonlineaity.®®*°For example, Wwenan optical signapasses througsuch amedium large
TPA can help tanonlinearlyscale down the transmission of the optical wavéhis manner,
anyintensity fluctuatiorof theincident lightcan be significantly suppressedpimvide a
more stabilized output. To study the optical stabilization properties MAPbBr3;, we
compared thsignal intensity fluctuationof boththe opticalinput and outpukaser pulsse

in Figure 4a,bTherelative intensity noise can be given by the following equation

(Iz'—m x 100% (4)
in which Snax and Snin are the strongestind lowest signal intensityrespectively As
expected, the laser beanith a relative intensitynoise ofapproximately+ 2.4%at the
input signalcan beeffectivelyreduced tabout + 0.34%or the output pulse, indicating
that nearly oneorder-ofimagnitude reductioof the fluctuation innoise can be achieved
by utilizing theTPA properties of single crystsd APbBr3 for superioroptical stabilization
For comparisongpoxy rodand neat liquid crystal can onstabilize the optical power

fluctuations of the laser by a factor 02.8 and 2.2 respectively!®? These results

demonstrate thatlAPbBrs is capable of performing theptical stabilizatiomneededio

10



reduce the relativentensity fluctuation of laser§.e., noise)andcan be applied ta laser
systemas an optical power stabiliz&r®?

Controlling the amplitude, phase, and frequency modulation of electromafigleltsc
has prova useful for a wide range of applications in spectrog®8Materialsthat feature
large TPAcan alsoplay important rols in reshaping thepectraland spatial profile of
laser pulse&>®® Figure 4c showsthe relative intensity of the spatial profile of tlaser
pulse. Ater passing througthe MAPDbBTI; crystal theprofile of theoutputsignal becomes
much flatter and smootheffFigure 4d) The modulation deptHi.e., thespatial intensity
fluctuation,defined aghedeviation of thgpeakamplitudeoverthe mearof theamplitude)

for the incidentand transmitted laser pulses were estimated tq B6% andq 35%,

respectivelyThis reductionof the modulation deptbf the optical waveafter transmitting
throughsingle crystaMAPbBr3 is 1.6timesgreateithan wheranorganic chromophors
used, such as AB50, whichresearchers observednreduce thenodulation depttirom

q 67% tojustq 39%%° Theresponsdéime of this optical stabilizatioreffect caralmostbe

ignored,asthetime delaybetweerthe input and output laser pulse# the range o few
nanoseconds of the AHnduced florescenc&hat isto say thathe strong reshaping effect
of MAPDbBI; can be used to contriblenoise inthelaser beanwhichprovidesan attractive
route for future opticabasedmodulators anaptical communications based on spectral
manipulation

Due to itslarge TPA coefficient it is expected thaMAPDbBr; can also servas a
effective optical limiter for laser pulsesAn optical limiter is a device that strongly
decrease the intensity of intense optical signals while maintaining relativelyhigh

transmittance foweak opticalinputs®’ Figure 4 shovs the nonlinear outpuintensity

11



versus the inpuntensityof a 300fs laser pulse awavelength 0044 nmandarepetition
rate of 20.8 MHz.We observedthat when this beam was placed through NM#&PbBr3
crystal, theransmittancéncreasd from 0.38 W m?to LO3W m? asthe inputintensity
increasedrom 0.61W m?to 497W m?2, demonstratinghe excellenbptical limiting
behavior of thgperovskite At low intensity, the lasguassinghrough theMAPbBTr3 suffers
from small lossof incident energylincreasing thanput laser intensityattenuateghe
transmittedsignal demonstrating graduallysaturating behavior dhe transmittedaser
pulseintensity Suchoptical limiting behavior o& TPAmediumat a fixed wavelengtban

be calculatingisingthe following equatior??

€T)= ¢70 6= LE2(A4edd )

in which1(x,0) is thetransverséntensity functionof theopticalincidenceatwavelength ,
and andL aretheTPAcoefficient andptical path length of thEPAmedium respectively
The calculated antheasuredesultsin Figure 4ecorrespondvell whenwe appliedthe
effective TPA coefficientthat had beewalculatedirom the numerical fittingin Figure 3
2 = 8.5 cm GWH). This resultstrongly supports thealidity of the TPA coefficient that

we determinedvia the operapertureZ-scan experiment

Note that the optical limiting behavior is very sensitive to the sizthefaperturen
front of the detection unitwhich cansignificanty block theoutput puls&s energyas it is
being measure®f A larger aperture can be used to reduce the influehather nonlinear
processes, such as skltusing, seHldefocusing,and thermal effest occurring in
nonlinearly absorbing medfd.Figure 4 shows the nonlinear output energy versus the

input energy ofhe lasepulsemeasured with an F/32 aperture located behind the medium

12



but before the sensdks a result, th@onlineartransmittance greatlgecreasgto 462W
m? as theinput intensityis increasedrom 606 W m2to 4970W m. This design
improvesthe optical limitingperformancef theperovskitesimply by usingan aperturén
front of the detectionunit. For future applicati®) single crystalMAPbBrs; could be
considered for thprotecton of delicateoptical sensorsuch asthehuman eye ancharge
coupled device@CD) detectors from high intensity laser radiatitvat could otherwise

causdrreversible damage.

Conclusion

In summary,we investigatedhe TPA properties and demonstrated corresponding
applicationsof inorganicorganic hybrid perovskite MAPbBcrystals. The intense TPA
induced PL can be observeavith a 1044 nm laser to pump the crystélsing the
transmission opeapertue Z-scan techniqueand theoretical fittingwe obtained an
effective TPA coefficientor the material 08.5 cm GWA. Moreoverwe have demonstrated
several nonlinear opticalapplicationsof the perovskite including optical reshaping,
stabilization and limitingbehavior on intense pulsed laser signaésed on these results,
we believe e organometallic trihalide perovskiteolds great promiseas a high

performancelow-cost nonlinear absorber for applications in ultrafast photonics.

Methods
Chemicals and reagentd.ead(ll) bromide (PbBs PHWK\ODRHQH &+
40% wt/wt aqueous solution), N;sl s LPHW K\OIRUPDPLGH '0) GLFKOR
'&0 e hydrobromic DFLG +%U ZW ZW DTXHRXV VROXWLR
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HWKDQRO were purchased from Sigafddrich and used without further
purification

MAPDBr3 single crystal synthesisMVe first synthesizednethylammonium bromide
(CHsNH3Br) by stirring an equimolar solution of HBr and methylamine for 2 h at 10 °C,
followed by recrystallization from ethanol. MAPRRrystals wer¢hen grown using the
anti-solvent vaposssisted crystallization methdtin which an equimolar amount of lead
bromide (PbB#) and the CENH3Br crystals were dissolved in DMF, followed by the
addition of DCM. The slow diffusion of DCM vapor through the solution helped initiate
single crystal MAPbBygrowth.

X-ray diffraction. A small flake (~0.1 mm x 0.1 mm x 0.08 mm) was cleaved figan
asgrown MAPDbB&g crystal.We measured the XRD spectrun a Bruker KAPPA APEX
DUO Diffractometer using IS Cu radiation at 296 K € 0.71073 A), and an APEX Il 4K
CCD detector.The ghase purity was measurath powder XRD using a Bruker D8
Advance diffratometer (BraggBrentano geometry) equipped with a Cu Ka X-ray tube.

Thermogravimetric analysisThermoanalysi®f the single crystal MAPbBr3 sample
was performed at a heating rate of 1r?t, from 25 °C up to 600 °C under nitrogen
atmospherg99.999%, 20 ml/minusing aTGA combined with a mass spectrometer
(NETZSCH TGA/STAQMS 403 C).

Measurements of nonlinear optical propertiedo study the nonlinear optical
properties of MAPbBg; a frequencydoubled solidstate laser (femtoTRAIN KYb-2000)
was used to pumfhe perovskitecrystal pump= 1044 nm, repetition rate 20.8 MHz,
pulse length= 300 fs) with a spesize of ~8.5 m in diameterThe MAPDbBr; samplewas

excited through an aberration corrected 60x/0.70 numerical apartdralong working

14



distance objective lens (Nikon CFI Plan Fluofhe resulting emission was collected
through the same objective, in which the incident and reflected light propagaitelpgar

the zaxisof theMAPDBr3 crystal. The collected light was spectrally filtered to remove the
pump laser wavelength. Spectral measurements were made using a grating spectrometer
(Acton, SpectraPro 275@aturing aesolution of 0.18 nm and a CQGiatector (Princeton
Instruments, PIXIS). For polarization analysis, a linear polarizer waidedan the parallel

beam path and the polarization axis was rotated to match the orientation of thle cryst
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Figure 1. (a) An MAPDBrs single crystal grown by the argolvent vaposassisted
crystallization method. The size of this particular crystal was 3.8 x 3.8 mam.(b) The
XRD spectrum of the MAPbBr: powder. (c) The crystal structure of the
MAPDBTrs perovskite as visualized through single crystal XRi) Thethermogram of

single crystal MAPbBrs in Nitrogen atmospheredisplaying a twestep thermal

decomposition process.
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Figure 2. (a)A schematic of the TPA mechanigor the absorption of light at 1044 nria
two-photons and the resultireingle photonPL emission ab50 nm.The real eigenstates
and intermediate statare represented by solid and dashed dineespectively. The
MAPDBTr3 fluorescenceppears as tremission ofgreen light(indicated by the arrowthat

is visible tothe naked eye. (b) THmear(green)and twephoton-inducedred) PL spectra
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of MAPDBr3 excited by 522 nm and 1044 nm lasevelengthsrespectively. €) The
polarization dependence tfe two-photon-inducedPL spectra of theM/APbBr3 single
crystal recorded ata rotation angle( 1) from 0° to 90° measured in a backscattering
geometry. d) The rotation angld vs the intensity of the twphoton-inducedPL emission

at 53 nm. The solid line represents the bestdithe calculated polarization dependence

of thePL usingEquation (2). The inset shows the normal backscattering geometry used in
the PL system.(e) The excitation power dependent two phetotuced PL spectra of
MAPDBTr3. The black vertical arrowndicates the increasing excitation intensity, from 0.58
mW to 2.57 mW.f) The evolution of the twphotoninduced PL intensity at 85nmvs.

the excitation power intensity.
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Figure 3. Open apertur@-scan measuremex(black) of the single crystalAPbBr3. An
effective TPA coefficient of 8.5 cm GWwvas obtainedfrom the theoretical fitting (red)

based on Equation (3).
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Figure 4. Intensity profiles of the(a) input and (b) outpudserpulse fluctuation The 1044
nm, 300 fs laser pulsed a20.8 MHz repetition rate passed through siregle crystal
MAPDbBr; sample The rlative pulse intensity distributions tife (c) input pulse and the
(d) output pulseas it passedthroughthe perovskite (e) Optical imiting response of
MAPDBIs. The red best fittingurve incorporates an effective TPA coefficient of 8.5 cm
GW (f) Measurement of theptical limiting effects of the MAPbBysample, using an

experimental setup that featuredrdB2 aperture before the detector.
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