A kinetic study of methane partial oxidation over FeZSM-5 using N₂O as an oxidant

Ying Kit Chow⁠, Nicholas F. Dummer⁠,*⁠, James H. Carter⁠, Randall J. Meyer⁠, Robert D. Armstrong⁠, Christopher Williams⁠, Greg Shaw⁠, Sara Yacob⁠, Madan M. Bhasin⁠, David J. Willock⁠, Stuart H. Taylor⁠, and Graham J. Hutchings⁠*⁠

⁠*⁠Corresponding author emails: dummernf@cardiff.ac.uk and hutch@cardiff.ac.uk

⁠Cardiff Catalysis Institute, School of chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

⁠ExxonMobil Research and Engineering, Corporate Strategic Research, Annandale, NJ 08801, USA

⁠Innovative Catalytic Solutions, LLC, Charleston, WV, 25314, USA.

Fig. S1. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2 % Fe-ZSM-5 at 300 °C; (▲) CH₃OH, (⋆) C₂H₆ and (×) C₂H₄.
Fig S2. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2 % Fe-ZSM-5 at 300 °C with water in the feed; (×) C2H4.
Fig. S3 N₂ adsorption isotherms (A) and BET surface area plots (B) for: (i) H-ZSM-5, (ii) Fe-ZSM-5, (iii) Fe-ZSM-5-20% and (iv) Fe-ZSM-5-0% following testing at 300 °C for 3 h.