A kinetic study of methane partial oxidation over FeZSM-5 using N₂O as an oxidant

Ying Kit Chow, Nicholas F. Dummer, James H. Carter, Randall J. Meyer, Robert D. Armstrong, Christopher Williams, Greg Shaw, Sara Yacob, Madan M. Bhasin, David J. Willock, Stuart H. Taylor, and Graham J. Hutchings

a Cardiff Catalysis Institute, School of chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.
b ExxonMobil Research and Engineering, Corporate Strategic Research, Annandale, NJ 08801, USA
c Innovative Catalytic Solutions, LLC, Charleston, WV, 25314, USA.

* Corresponding author emails: dummernf@cardiff.ac.uk and hutch@cardiff.ac.uk
Fig. S1. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2% Fe-ZSM-5 at 300 °C; (▲) CH$_3$OH, (∗) C$_2$H$_6$ and (×) C$_2$H$_4$.
Fig S2. First rank (a), second rank (b) and third rank (c) delplots of minor products taken from data collected over a series of experiments using different masses of 2% Fe-ZSM-5 at 300 °C with water in the feed; (×) C₆H₆.
Fig. S3 N\textsubscript{2} adsorption isotherms (A) and BET surface area plots (B) for: (i) H-ZSM-5, (ii) Fe-ZSM-5, (iii) Fe-ZSM-5-20\% and (iv) Fe-ZSM-5-0\% following testing at 300 °C for 3 h.