Defects and Oxide Ion Migration in the Solid Oxide Fuel Cell Cathode Material LaFeO₃

Felicity H. Taylor,* John Buckeridge, and C. Richard A. Catlow

Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom

Supporting Information

ABSTRACT: LaFeO₃, a mixed ionic electronic conductor, is a promising cathode material for intermediate temperature solid oxide fuel cells (IT-SOFC). Key to understanding the electronic and ion conducting properties is the role of defects. In this study ab initio and static lattice methods have been employed to calculate formation energies of the full range of intrinsic defects—vacancies, interstitials, and antisite defects—under oxygen rich and oxygen poor conditions, to establish which, if any, are likely to occur and the effect these will have on the properties of the material. Under oxygen rich conditions, we find that the defect chemistry favors p-type conductivity, in excellent agreement with experiment, but contrary to previous studies, we find that cation vacancies play a crucial role. In oxygen poor conditions O₂⁻ vacancies dominate, leading to n-type conductivity. Finally, static lattice methods and density functional theory were used to calculate activation energies of oxide ion migration through this material. Three pathways were investigated between the two inequivalent oxygen sites, O₁ and O₂; O₂⁻O₂, O₁O₂, and O₁O₁, with O₂⁻O₂ giving the lowest activation energy of 0.58 eV, agreeing well with experimental results and previous computational studies.

1. INTRODUCTION

With the issues of environmental impact and security surrounding energy generation, the need for a clean and renewable alternative is becoming increasingly essential. Fuel cells are able to convert fuel directly to electricity, without a combustion step, making them more efficient than combustion engines, as well as producing less emissions and noise pollution. Different types of fuel cells have been investigated, including polymer electrolyte membrane¹ and proton exchange membrane fuel cells.² However, solid oxide fuel cells (SOFCs) offer many advantages over these as they are the cleanest and most efficient;³ they alleviate the need for corrosive liquids and have been shown to be reliable when operated continuously.¹ The efficiency of these fuel cells depends on their component materials, thus finding optimal materials is an active field of research.

Fuel cells have three main components: the cathode, electrolyte, and anode. An oxidant, typically air, is reduced at the cathode producing O₂⁻ ions which migrate across the electrolyte to the anode where they react with a fuel, usually hydrogen. The flow of ionic charge from cathode to anode is balanced by the flow of electrons, from anode to cathode, through an external circuit.¹,⁴ This conduction of ions is a thermally activated process, leading to high operating temperatures which in turn cause short lifetimes and the need for expensive materials for each of the component parts. Therefore, research into SOFCs has focused on reducing the temperature of operation to between 500 and 800 °C.

In order to achieve such a change in fuel cell technology, novel materials, active at reduced temperatures, are required, particularly for the cathode, the site of the oxygen reduction reaction (ORR). The ORR becomes the limiting step of the fuel cell at low temperatures due to its high activation energy and the limited area within which this reaction can take place in conventional cathodes: at the triple phase boundary (TPB), where the electrode, electrolyte, and electrochemical gas meet.⁴ Mixed ionic and electronic conductors, such as perovskite LaFeO₃, show strong potential as cathode materials as, in...
addition to the electronic conductivity required to transport electrons to the reaction site, the ionic conductivity serves to increase the area within which the oxygen reduction reaction can take place. Both these properties can be improved with doping on the A- and B-sites, leading to double doped systems, e.g., La1−xSrxCoxFeO3−δ (LSF), which have shown high electronic and ionic conductivities along with high catalytic activity and low thermal expansion coefficients, making them more compatible with common electrolytes.5−9

However, in order to optimize fully LaFeO3 as a SOFC cathode, it is first necessary to gain an in depth knowledge of the defects present in this system, their likely concentrations under operating conditions, and their effects on the properties of the material. Determining the precise role of point defects using experimental techniques is highly challenging, making computational techniques invaluable in this respect. In this study, we have therefore investigated point defects in LaFeO3 and determined their formation energies using density functional theory (DFT).

Defects in LaFeO3 have been investigated previously using a range of computational approaches, including interatomic potential based methods10−12 and DFT.13 Jones and Islam10 using interatomic potential methods, found Schottky and Frenkel disorder high energy, suggesting electronic conductivity is only possible in acceptor-doped LaFeO3, while Ritzmann et al.13,14 have used DFT+U to studied oxygen vacancy formation in LaFeO3 and found a high enthalpy of oxygen vacancy formation leading to a low concentration of oxygen vacancies in the stoichiometric material. Defect models, based on experimental data, have been proposed by Mizusaki et al.15 and Warnhus et al.,16,17 while Mizusaki et al.15 propose the electronic properties of LaFeO3 at high oxygen partial pressures were governed by lanthanum vacancies, Warnhus et al.16,17 suggest that both lanthanum and iron vacancies are involved. Although the effect of lanthanum vacancies on oxygen vacancy concentration has been investigated by Ritzmann et al.,13 their mode of incorporation into the system is yet to be studied, and the role of iron vacancies has not been addressed.

In this paper, intrinsic point defects in LaFeO3 have been investigated using DFT and interatomic potential based methods. Formation energies of vacancies, interstitials, and antisite defects have been calculated under different growth environments, with La5+ and Fe3+ vacancies, formed through Schottky disorder, dominating under oxygen rich conditions, whereas O2− vacancies dominate under oxygen poor conditions. These results explain the conductivity regimes observed in this material under varying oxygen partial pressure. Finally, the activation energies of oxide ion migration have been calculated for the different pathways present in LaFeO3, which allow the lowest energy pathway to be identified.

2. SIMULATION METHOD

At low and ambient temperatures, the structure of LaFeO3 is the orthorhombic perovskite form, Pbnm No. 62,18 shown in Figure 1, which has been used throughout our investigation. In our study, we have determined formation energies of intrinsic defects using two different methods: static lattice and ab initio. The approaches used for both methods are outlined below.

Static Lattice. Static lattice calculations are based on the Born model of a solid, comprising a long-range Coulombic interaction between each pair of ions and a short-range Buckingham term which models the overlap repulsion and van der Waals forces in the form:

\[
V_{ij}(r) = A_{ij} e^{-r_{ij}/\rho} - \frac{c_{ij}}{r_{ij}^6}
\]

Figure 1. Orthorhombic form of LaFeO3, lanthanum is shown in green, iron in gold, and oxygen in red. Labels O1 and O2, to the right of the structure, show the two oxygen environments.

where \(V_{ij} \) is the short-range potential energy between the ions \(i \) and \(j \) and \(A_{ij}, \rho_{ij} \) and \(c_{ij} \) are the potential parameters particular to each pair. The electronic polarizability of the ions in LaFeO3 is described using the shell model, in which the ion is represented as a core connected to a charge-bearing shell by a harmonic spring.19 The short-range potential parameters used in the calculations of defect energies were derived by Cherry et al.20 by empirical fitting to observed structural properties of cubic perovskites, using a cutoff of 12 Å for all potentials. These potential parameters reproduced the orthorhombic structure of LaFeO3 to within 0.55% of the experimental lattice parameters, as shown in Table 1.

Table 1. Calculated and Experimental23 Lattice Parameters for Orthorhombic LaFeO3, Calculated Using Interatomic Potentials

<table>
<thead>
<tr>
<th>parameter</th>
<th>calculated</th>
<th>experimental</th>
<th>% difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>a, Å</td>
<td>5.558</td>
<td>5.553</td>
<td>0.090</td>
</tr>
<tr>
<td>b, Å</td>
<td>5.564</td>
<td>5.563</td>
<td>0.018</td>
</tr>
<tr>
<td>c, Å</td>
<td>7.905</td>
<td>7.862</td>
<td>0.547</td>
</tr>
</tbody>
</table>

The Mott–Littleton methodology20 was implemented for the calculations of defect formation energy and ion migration. For each system studied the radius of region one was increased until the calculated defect energy reached convergence, below 0.003 eV. The radius of region one therefore varies, depending on the calculation, between the values of 7.0 and 12.0 Å, which corresponds to between 266 and 1222 ions.

For the ion migration calculations, five points, at equal intervals, were chosen along a straight line connecting two oxygen sites within the material. Previous ion migration studies on perovskite-type oxides have shown that the ion can travel via a curved path.2,5 Therefore, at each chosen position along the straight line, the energy of the migrating oxygen species was calculated on a two-dimensional grid around the original position, in a perpendicular direction to the oxide ion path, in order to find the lowest energy point for the oxide ion. Each energy point was calculated using the Mott-Littleton methodology to relax the crystal structure, in region one, around the fixed migrating oxide ion. It was assumed that the saddle point of the migration path would be situated between the two highest energy points along the path. Therefore, the halfway point between these two points was calculated, and the saddle
point was found using the rational function optimization (RFO) method of minimization allowing the migrating ion to relax as well as the crystal structure. The center of the defect calculation was kept constant throughout each ion migration calculation, as the middle point between the two oxygen vacancy sites, thus keeping systematic errors to a minimum. The energy at the saddle point, along with the lowest oxygen vacancy sites, thus keeping systematic errors to a minimum. All static lattice calculations were carried out using the GULP22 code.

Ab initio. All first principle, electronic structure calculations were performed using spin-polarized Kohn–Sham DFT24,25 and DFT+U26 using the plane-wave pseudopotential technique with the projector augmented-wave27 (PAW) approach to model the core–valence electron interaction, as implemented in the Vienna ab initio simulation package (VASP).28–30 The valence configurations used were La (5s2 5p6 6s2 5d1), Fe (4s2 3d6), and O (2s2 2p4). The electron exchange and correlation were evaluated within the generalized gradient approximation (GGA) using the functional of Perdew, Burke, and Ernzerhof (PBE),31 which was found to reproduce the experimental magnetic moment for Fe3+ whereas lower values were not; therefore, it is the most appropriate Ueff value to employ. The use of hybrid functionals for exchange and correlation in LaFeO3, which are significantly more computationally demanding than standard DFT, does not offer clear advantages in terms of crystal, electronic, and magnetic structure40 over GGA+U and hence was not considered in this study.

Calculation of Defect Formation Energies Using DFT+U. Formation energies for defects, in change state \(\Delta H(q) \), were calculated using the following equation:

\[
\Delta H(q) = E^{\text{defect}} - E^{\text{perfect}} + \sum n_i (E_a + \mu_i) + q(E_{\text{VBM}} + E_F + \Delta E_{\text{pot}}) + q^2E_{\text{ic}}
\]

with \(E^{\text{defect}} \) being the cohesive energy of the relaxed supercell containing the defect, \(E^{\text{perfect}} \) the energy of the relaxed perfect supercell, \(n_i \) the number of defect atoms or ions added or removed when forming the defect, \(E_a \) the elemental reference energy, i.e., the energy of an element in its standard state, and \(\mu_i \) the chemical potential of the defect, where \(x \) is La, Fe, or O. The elemental reference energies of lanthanum and iron were calculated using the respective metals and oxygen by using a triplet oxygen molecule in a large supercell. For charged defects, where \(q \neq 0 \), the chemical potential of the electrons in the system needs to be taken into account, which is done with \(E_{\text{VBM}} \) the energy of the valence band maximum (VBM), and \(E_F \), the Fermi energy, defined with respect to the VBM. In addition,
a correction term is required, comprising ΔE_{pot}, the correction that accounts for the difference between the potential of the perfect supercell and the supercell containing the charged defect, and E_{U}, the correction to the interaction of charged defects with their periodic image.41

Two methods of calculating E_{U} were investigated: one designed for cubic systems, in which the dielectric tensor is constant along a, b, and c,11 and the other which takes into account the anisotropy between dielectric tensors along different lattice parameters.42 Orthorhombic LaFeO$_3$ is only slightly distorted from the cubic perovskite structure and therefore only small differences, reaching a maximum of 0.026 eV for $q = \pm 3$, were found between the correction values calculated by each method, demonstrating that the choice of method has minimal impact on our results. However, in order to model defects in orthorhombic LaFeO$_3$ as accurately as possible, the method outlined by Murphy and Hine,42 which takes into account the differences in dielectric tensors along the a, b, and c lattice parameters, was selected.

The formation energy of defects under different conditions can be investigated by varying the chemical potential, μ, in eq 2, which requires the range of chemical potentials under which LaFeO$_3$ forms preferentially, over competing phases, to be calculated. We use the chemical potential limits analysis program (CPLAP),43 which employs calculated enthalpies of formation, at thermodynamic equilibrium, of LaFeO$_3$ and its competing phases, to determine the ranges of chemical potentials in which LaFeO$_3$ is stable with respect to these phases. The result is shown as the gray shaded region in Figure 2.

![Figure 2](image-url)
Figure 2. Accessible chemical potential ranges for LaFeO$_3$ with respect to competing phases. The shaded region indicates the chemical potential values where LaFeO$_3$ is stable.

Defect formation energies were calculated at the chemical potential values of two points within this shaded region, marked A and B. These points were chosen as they represent the extremes of possible conditions in which LaFeO$_3$ forms preferentially: A, bound by La$_2$O$_3$ and LaFeO$_3$, represents lanthanum and iron poor and oxygen rich conditions, with chemical potential values $\mu_{\text{La}} = -8.89$ eV, $\mu_{\text{Fe}} = -5.80$ eV, and $\mu_{O} = 0.00$ eV, and B, bound by La$_2$O$_3$ and Fe metal, represents lanthanum and iron rich and oxygen poor conditions, with chemical potential values $\mu_{\text{La}} = -3.09$ eV, $\mu_{\text{Fe}} = 0.00$ eV, and $\mu_{O} = -3.87$ eV. Oxygen rich conditions represent both operating and growth conditions of SOFC cathode materials whereas oxygen poor conditions represent reducing conditions; the use of these two regimes allows us to investigate how varying oxygen partial pressure affects this material and its defect chemistry.

Calculating Oxygen Ion Migration Barriers Using DFT +U. Following on from the static lattice ion migration calculation, the activation energies were also calculated using DFT+U. As with the defect formation energies, the GGA functional was utilized with a U_{eff} value of 7.0 eV used for the Fe$^{3+}$ ions. The position of the oxide ion at the saddle point of each pathway was taken from the static lattice calculations and used to position the oxide ion in our 80 atom supercell. All other ions in the supercell were then relaxed, keeping the migrating ion fixed. The formation energies of oxygen vacancies at the beginning and end of the migration pathway were calculated, and the activation energy was evaluated as the difference between the supercell with the saddle point oxide ion and the supercell containing the oxygen vacancy. As with our employment of the Mott–Littleton approach (see above), where the energies of the oxygen vacancies at the beginning and end of the migrating pathway differed, the lowest energy oxygen vacancy was used.

3. RESULTS AND DISCUSSION

Intrinsic Defects. The formation energies of intrinsic defects, both neutral and charged, within the two chemical potential environments, have been calculated using the DFT technique. Table 3, in which standard Kröger-Vink notation is used, shows the defect energies of neutral vacancies of La, Fe, and O. Due to the antiferromagnetic ordering of iron ions in LaFeO$_3$, iron in spin up and spin down orientations, with respect to the c lattice parameter, is present (as can be seen in Figure 3), and therefore defects involving iron in each orientation have been investigated.

Two values are also reported for oxygen defects as there are two inequivalent oxygen sites in LaFeO$_3$, O1 and O2, corresponding to axial and equatorial positions in the Fe-centered octahedra; defects involving both sites have been calculated throughout the study.

The values in Table 3 are high in most cases and indicate that neutral vacancies will not be present in significant concentrations in stoichiometric LaFeO$_3$, with the exception of neutral oxygen vacancies, particularly O2 oxygen vacancies under oxygen poor conditions; a key result as oxygen vacancies are necessary for oxygen transport through this material. As expected, vacancy formation energies for all species are lower when in “poor conditions” for that species.

The formation energies of oxygen vacancies have been calculated previously by Mastrikov et al.45 and then by Ritzmann et al.46 who reported values of 4.41 and 4.01 eV, respectively, comparing well with the values calculated here, and 3.960 and 3.829 eV for oxygen rich conditions. The

Table 3. Defect Formation Energies of Neutral Vacancies in LaFeO$_3$

<table>
<thead>
<tr>
<th>neutral defect</th>
<th>O Rich/La and Fe Poor</th>
<th>O Poor/La and Fe Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{La}</td>
<td>3.333</td>
<td>9.136</td>
</tr>
<tr>
<td>V_{Fe} (spin up)</td>
<td>2.639</td>
<td>8.442</td>
</tr>
<tr>
<td>V_{Fe} (spin down)</td>
<td>2.940</td>
<td>8.743</td>
</tr>
<tr>
<td>V_{O} (O1)</td>
<td>3.960</td>
<td>0.929</td>
</tr>
<tr>
<td>V_{O} (O2)</td>
<td>3.829</td>
<td>-0.040</td>
</tr>
</tbody>
</table>
negative formation energy for oxygen vacancies under oxygen poor conditions suggests that this material will be significantly oxygen deficient under reducing atmospheres.

Comparing the formation energies of neutral vacancies to those of neutral interstitials, shown in Table 4, in general interstitials have higher formation energies, as is to be expected for a close packed material such as LaFeO$_3$.

Table 4. Defect Formation Energies of Neutral Interstitials in LaFeO$_3$

<table>
<thead>
<tr>
<th>neutral defect</th>
<th>O Rich/La and Fe Poor</th>
<th>O Poor/La and Fe Rich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lai</td>
<td>12.550</td>
<td>6.747</td>
</tr>
<tr>
<td>Fei (spin up)</td>
<td>8.708</td>
<td>2.904</td>
</tr>
<tr>
<td>Fei (spin down)</td>
<td>8.006</td>
<td>2.203</td>
</tr>
<tr>
<td>Oi</td>
<td>1.628</td>
<td>5.496</td>
</tr>
</tbody>
</table>

Initially, interstitials were placed at the center of the 2 × 2 × 1 supercell, occupying square planar positions between four oxygens: position 0.5, 0.5, 0.5 in fractional coordinates. However, examination of the optimized position of lanthanum and oxygen interstitials reveals that they form split interstitials with a nearby ion on its lattice site, as can be seen in Figure 4a,b. Split interstitials have been proposed in tightly packed structures such as perovskites, and given that single interstitials of La and O could not be stabilized, these results suggest that split interstitials are more favorable than single interstitials for both lanthanum and oxygen. The preferential formation of split interstitials for the A-site and oxygen ions has been found in similar materials including the (Ba,Sr) (Co,Fe)$_{1−δ}$ (BSCF) family of perovskites.

There are a number of different orientations for split interstitials within this structure, which were investigated to find the most favorable structure. For both lanthanum and oxygen, splitting the interstitial along the three lattice parameters, a, b, and c, was investigated, with configurations along and perpendicular to the Fe–O–Fe bond also investigated for oxygen.

It was found that the orientations shown in Figure 4a,b are the most stable for lanthanum and oxygen split interstitials; $−a$, 0.84b for lanthanum and $−a$, −0.26b, 0.11c for oxygen. Iron split interstitials were also investigated. However, all orientations studied converged into single interstitials, suggesting that this is the most favorable form for iron. These conclusions match with those drawn from our interatomic potential calculations, which found lanthanum and oxygen split interstitials more stable than single interstitials, whereas single interstitials were more stable for iron, as shown in Table 5.

Table 5. Defect Energies (eV) of Single and Split Interstitials in LaFeO$_3$ Calculated Using Interatomic Potentials

<table>
<thead>
<tr>
<th>defect</th>
<th>single</th>
<th>split</th>
</tr>
</thead>
<tbody>
<tr>
<td>La***</td>
<td>−23.73</td>
<td>−25.73</td>
</tr>
<tr>
<td>Fe***</td>
<td>−39.38</td>
<td>−38.74</td>
</tr>
<tr>
<td>O$^{"}$</td>
<td>−10.99</td>
<td>−11.78</td>
</tr>
</tbody>
</table>

The optimized position of iron interstitials, in both orientations, is shown in Figure 5b. Figure 5a shows the initial position of the interstitial, which has a square planar configuration. In Figure 5b we see that the interstitial has shifted to a tetrahedral position. The magnetic moment of the interstitial in the tetrahedral position is 3.7 μ_B, a decrease from the bulk magnetic moment of 4.4 μ_B suggesting that iron interstitials are incorporated as Fe$^{3+}$ ions, with the excess charge delocalized onto the oxygens surrounding the interstitial.

Frenkel and Schottky Type Disorder. The formation energies calculated for vacancies and interstitials of lanthanum, iron, and oxygen can be used to calculate the energies of Frenkel and Schottky type disorder, which are represented as follows.
Frenkel disorder:
\[A^x_A \rightarrow V^+_A + A^{x'}_A \]
(3)

La\textsubscript{2}O\textsubscript{3} partial Schottky disorder:
\[2\text{La}^{3+} + 3\text{O}^- \text{O} \leftrightarrow 2V_{\text{La}}^+ + 3V^-_O + \text{La}_2\text{O}_3 \]
(4)

Fe\textsubscript{2}O\textsubscript{3} partial Schottky disorder:
\[2\text{Fe}^{3+} + 3\text{O}^- \text{O} \leftrightarrow 2V_{\text{Fe}}^+ + 3V^-_O + \text{Fe}_2\text{O}_3 \]
(5)

Full Schottky disorder:
\[\text{La}^{2+}_A + \text{Fe}^{3+} + 3\text{O}^- \text{O} \leftrightarrow V^+_{\text{La}} + V^+_{\text{Fe}} + 3V^-_O + \text{LaFeO}_3 \]
(6)

The energies of these processes have been calculated using DFT for both neutral and charged vacancies and interstitials, with the values calculated for Frenkel and Schottky disorder shown in Tables 6 and 7, respectively. The energies reported for Frenkel and Schottky disorder using charged defects have used defect energies for the 3+ charge states for lanthanum and iron and 2− for oxygen. (The formation energies of Frenkel and Schottky disorder are independent of iron rich and poor conditions). The energies of Frenkel disorder using other charge states have been calculated and are reported in Table 8.

The heat of formation was calculated with ab initio methods by taking the difference between the cohesive energy of LaFeO\textsubscript{3} and the sum of the atoms in their standard state, whereas for interatomic potentials a Born–Haber cycle was used, which led to heats of formation of −14.70 eV and −27.02 eV from the formation energies of La and Fe Frenkel disorder differ most, with the values calculated using interatomic potentials being significantly higher in both cases. The majority of the energies calculated for Frenkel and Schottky disorder differ by roughly 1 eV. The source of this difference was investigated using each technique to calculate the heat of formation of LaFeO\textsubscript{3} in order to compare to the experimental values of −18.21 eV. DFT is known to underestimate the heat of formation, whereas interatomic potentials may overestimate the heat of formation.

For lanthanum and iron, charged Frenkel pairs have lower formation energies than their neutral counterparts; for oxygen, however, neutral Frenkel disorder will form preferentially. For Schottky disorder, La\textsubscript{2}O\textsubscript{3} partial Schottky and full Schottky will form preferentially over Fe\textsubscript{2}O\textsubscript{3} partial Schottky disorder.

The favorable formation of Schottky disorder supports work done by Mizusaki et al.15 and the more recent work by Wærnhus et al.16,17 on electronic conductivity in LaFeO\textsubscript{3} under varying O\textsubscript{2} partial pressure. Both observed p-type conductivity at high partial pressures, with fully ionized cation vacancies required in order to keep the material charge neutral under this conductivity scheme. Mizusaki et al. assumed that lanthanum vacancies would be the most favorable due to the fixed stoichiometry of the iron with its surrounding oxygens,15 with Wærnhus suggesting that cation vacancies were incorporated into LaFeO\textsubscript{3} through Schottky disorder, although this work was unable to identify the type of cation vacancy involved in this disorder and therefore assumed both would be present.16,17

The results in Table 7 suggest that La\textsubscript{2}O\textsubscript{3} partial Schottky and full Schottky defects are likely to form, meaning that vacancies of both cations will be present in the material, although La3+ vacancies may dominate. This finding builds on the conclusions drawn in both earlier studies: p-type conductivity is compensated by both La3+ and Fe3+ vacancies formed through partial La\textsubscript{2}O\textsubscript{3} and full Schottky disorder. We discuss this point in more detail below.

The formation energies of Frenkel and Schottky disorder have also been calculated using interatomic potentials, a more approximate, but computationally cheaper, method. These values are reported in Table 9 along with the DFT+U values for comparison.

Table 6. Energies of Frenkel Type Disorder in LaFeO\textsubscript{3}

<table>
<thead>
<tr>
<th>Frenkel</th>
<th>neutral</th>
<th>charged</th>
</tr>
</thead>
<tbody>
<tr>
<td>La</td>
<td>7.941</td>
<td>5.807</td>
</tr>
<tr>
<td>Fe (sd)</td>
<td>4.527</td>
<td>4.537</td>
</tr>
<tr>
<td>Fe (su)</td>
<td>4.537</td>
<td>4.537</td>
</tr>
<tr>
<td>O1</td>
<td>2.794</td>
<td>3.291</td>
</tr>
<tr>
<td>O2</td>
<td>2.728</td>
<td>3.287</td>
</tr>
</tbody>
</table>

Table 7. Energies of Schottky Disorder in LaFeO\textsubscript{3}

<table>
<thead>
<tr>
<th>Schottky</th>
<th>neutral</th>
<th>charged</th>
</tr>
</thead>
<tbody>
<tr>
<td>La\textsubscript{2}O\textsubscript{3} partial O1</td>
<td>3.710</td>
<td>2.198</td>
</tr>
<tr>
<td>La\textsubscript{2}O\textsubscript{3} partial O2</td>
<td>3.631</td>
<td>2.193</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial O1 (sd)</td>
<td>3.749</td>
<td>2.419</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial O2 (sd)</td>
<td>3.670</td>
<td>2.414</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial O1 (su)</td>
<td>3.629</td>
<td>2.414</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial O2 (su)</td>
<td>3.550</td>
<td>2.409</td>
</tr>
<tr>
<td>full O1 (sd)</td>
<td>3.631</td>
<td>2.210</td>
</tr>
<tr>
<td>full O2 (sd)</td>
<td>3.552</td>
<td>2.205</td>
</tr>
<tr>
<td>full O1 (su)</td>
<td>3.571</td>
<td>2.207</td>
</tr>
<tr>
<td>full O2 (su)</td>
<td>3.492</td>
<td>2.203</td>
</tr>
</tbody>
</table>

Table 8. Energies of Frenkel Type Disorder for Defects of Non-Zero Charge States

<table>
<thead>
<tr>
<th>Frenkel</th>
<th>energy defect (^{-1}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>La3+</td>
<td>6.956</td>
</tr>
<tr>
<td>La3+</td>
<td>6.621</td>
</tr>
<tr>
<td>La3+</td>
<td>5.807</td>
</tr>
<tr>
<td>Fe2+ (sd)</td>
<td>4.778</td>
</tr>
<tr>
<td>Fe2+ (sd)</td>
<td>4.287</td>
</tr>
<tr>
<td>Fe2+ (sd)</td>
<td>4.444</td>
</tr>
<tr>
<td>Fe2+ (su)</td>
<td>4.527</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frenkel</th>
<th>energy defect (^{-1}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe2+ (su)</td>
<td>4.197</td>
</tr>
<tr>
<td>Fe2+ (su)</td>
<td>4.435</td>
</tr>
<tr>
<td>O12−</td>
<td>3.601</td>
</tr>
<tr>
<td>O22−</td>
<td>3.287</td>
</tr>
</tbody>
</table>

Table 9. Energies of Frenkel and Schottky Type Disorder Calculated Using Interatomic Potentials and DFT+U

<table>
<thead>
<tr>
<th>disorder</th>
<th>energy defect (^{-1}) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>interatomic potentials</td>
</tr>
<tr>
<td>La Frenkel</td>
<td>9.57</td>
</tr>
<tr>
<td>Fe Frenkel</td>
<td>8.02</td>
</tr>
<tr>
<td>O1 Frenkel</td>
<td>4.18</td>
</tr>
<tr>
<td>O2 Frenkel</td>
<td>4.16</td>
</tr>
<tr>
<td>full Schottky O1</td>
<td>3.52</td>
</tr>
<tr>
<td>full Schottky O2</td>
<td>3.50</td>
</tr>
<tr>
<td>La\textsubscript{2}O\textsubscript{3} partial Schottky O1</td>
<td>3.20</td>
</tr>
<tr>
<td>La\textsubscript{2}O\textsubscript{3} partial Schottky O2</td>
<td>3.18</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial Schottky O1</td>
<td>3.85</td>
</tr>
<tr>
<td>Fe\textsubscript{2}O\textsubscript{3} partial Schottky O2</td>
<td>3.84</td>
</tr>
</tbody>
</table>
higher formation energies than their neutral counterparts when
energies comparable with La2O3 and full Schottky disorder and
represented by the following equations:

\[
\text{La}_2\text{O}_3 + \text{Fe}^{2+}_{\text{Fe}} \leftrightarrow \text{La}^{2+}_{\text{Fe}} + \text{LaFeO}_3 \\
\text{Fe}_2\text{O}_3 + \text{La}^{3+}_{\text{La}} \leftrightarrow \text{Fe}^{3+}_{\text{La}} + \text{LaFeO}_3 \\
\text{La}^{3+}_{\text{La}} + \text{Fe}^{2+}_{\text{Fe}} \leftrightarrow \text{Fe}^{2+}_{\text{La}} + \text{La}^{2+}_{\text{Fe}}
\]

Comparing Frenkel disorder formed from ions with nonzero
charge states, interestingly we find lower Frenkel energies for
higher charge states of lanthanum, suggesting that formation of
interstitials from lattice ions does not result in a change of
charge state. However, this is not the case for iron or oxygen.

For iron the Fe2+ Frenkel is more stable, which is due to the
formation of the displaced interstitial in a 2+ charge state being
stabilized compared to the Fe3+ interstitial. For oxygen, the
nearst interstitial is more stable than any of the charged
interstitials, suggesting that when an oxygen Frenkel Pair is
formed the electrons are left in the vacancy, where they are likely
to be stabilized by surrounding iron ions.

Antisite Defects. Another common feature in perovskite-
type materials is antisite defects, in which the cation on the A-
or B-site replaces the cation in the other site taking the form
AAO3 for an A-site ion on the B-site, BBO3 for a B-site ion on
the A-site, or BAO3 for an A-site ion on a B-site and a B-site ion
on an A-site. The formation of these antisite defects is
represented by the following equations:

\[
\text{La}_2\text{O}_3 + \text{Fe}^{2+}_{\text{Fe}} \leftrightarrow \text{La}^{2+}_{\text{Fe}} + \text{LaFeO}_3 \\
\text{Fe}_2\text{O}_3 + \text{La}^{3+}_{\text{La}} \leftrightarrow \text{Fe}^{3+}_{\text{La}} + \text{LaFeO}_3 \\
\text{La}^{3+}_{\text{La}} + \text{Fe}^{2+}_{\text{Fe}} \leftrightarrow \text{Fe}^{2+}_{\text{La}} + \text{La}^{2+}_{\text{Fe}}
\]

All three antisite defects were investigated, and the resulting
defect formation energies are shown in Table 10. As with the
case of Frenkel and Schottky disorder, for comparison the
defect formation energies of antisite defects have also been
calculated using interatomic potentials. For DFT+U calcula-
tions, only one energy is reported for each defect, reflecting
the fact that the formation energies are independent of the
 elemental chemical potentials.

The energies calculated for each antisite defect compare well
between the two techniques. Although AAO3 has a high
formation energy and is therefore not likely to contribute to the
defect chemistry of LaFeO3, BBO3 and BAO3 have formation
energies comparable with La2O3 and full Schottky disorder and
therefore may play a role in the chemistry of LaFeO3,
particularly at high temperatures.

Investigating the effect of changing the charge state of the ion
in the antisite revealed that all charge states, for both ions, have
higher formation energies than their neutral counterparts when

\[E_F = 0,\] but as the Fermi energy is increased, lower charge states
become more favorable, as can be seen in the following section.

This preferential formation of Schottky-type disorder over
antisite disorder is found in other perovskite-based materials,
including BSCF in which Schottky disorder causes the material
to decompose.48,49 Schottky disorder in LaFeO3 has a higher
formation energy than in BSCF and, therefore, is not as
susceptible to decomposition through this route.

Formation Energies as a Function of Fermi Energy.
The formation energies of charged defects depend on the
Fermi energy, \(E_F\), as seen in eq 2. Therefore, the defect
formation energies of charged intrinsic defects, vacancies,
interstitials, and antisite defects have been calculated at
increasing values of \(E_F\), from 0 eV, the valence band maximum,
to 2.1 eV, the conduction band minimum. Figure 6 shows how

![Figure 6](image.png)

Figure 6. Change in defect energies of intrinsic defects in LaFeO3 with
increasing Fermi energy (\(E_F\)) from the VBM (0) to the CBM (2.1),
under oxygen rich, lanthanum, and iron poor and oxygen poor,
lanthanum, and iron rich conditions.

<table>
<thead>
<tr>
<th>antisite defect</th>
<th>DFT+U</th>
<th>interatomic potentials</th>
</tr>
</thead>
<tbody>
<tr>
<td>La3\text{Fe}</td>
<td>3.010</td>
<td>2.85</td>
</tr>
<tr>
<td>Fe2\text{La}</td>
<td>2.390</td>
<td>1.99</td>
</tr>
<tr>
<td>La3\text{La} + Fe2\text{Fe}</td>
<td>2.303</td>
<td>2.31</td>
</tr>
</tbody>
</table>

 DOI: 10.1021/acs.chemmater.6b03048
Chem. Mater. 2016, 28, 8210–8220
We see from Figure 6 that, for oxygen rich conditions, O2- vacancies and neutral oxygen interstitials dominate the defect chemistry at low \(E_{F} \) values. However, cation vacancies, both La3+ and Fe3+, become the most favorable defect just before \(E_{F} = 1 \) eV. This result further supports the work done by Mizusaki et al.15 and Wærnhus et al.16,17 by showing that cation vacancies form favorably in oxygen rich conditions.

In oxygen poor conditions oxygen vacancies dominate across all values of Fermi energy, with the \(E_{F} \) charge state having the lowest formation energy until \(E_{F} = 1.5 \) eV, where the neutral vacancy becomes more favorable. Experimental studies on the conductivity of LaFeO\textsubscript{3} under varying oxygen partial pressures show that \(n \)-type conductivity is observed under low oxygen partial pressures which originates from the formation of oxygen vacancies and a reduction of Fe3+ to Fe2+.15,16 The negative partial pressures which originates from the formation of oxygen vacancies becomes more favorable. Experimental studies on the La3+ and Fe3+, become the most favorable defect just before defect formation energy of O2- \(= 1 \) eV. This result further supports the work done by Mizusaki et al.15 and Wærnhus et al.,16,17 by showing that cation vacancies and neutral oxygen interstitials dominate the defect system. For oxygen poor conditions, the Fermi level is at 1.55 eV, where therefore the Fermi level (see Supporting Information). Under all values of Fermi energy, with the \(2 \) conductivity scheme, under low partial pressures.

Using these values, the chemical potential of oxygen at varying oxygen partial pressures at a given temperature can be calculated via:

\[
\mu_{O}(T, p) = \mu_{O}(T, p^{0}) + \frac{1}{2} kT \ln \left(\frac{P_{O_{2}}^{0}}{P} \right) \quad (11)
\]

From eq 11, we can calculate oxygen chemical potential values at varying temperatures and pressures, as demonstrated in Tables 12 and 13, respectively. When varying temperature, a partial pressure of 0.21 atm was chosen, as this is a common operating partial pressure for solid oxide fuel cells, and when varying pressure, a temperature of 1000 K was chosen, as it falls into the current target operating temperature region for SOFCs: 600–800 °C.

The oxygen chemical potential values used so far in the present study encompass the oxygen chemical potentials in Tables 12 and 13; therefore, defect formation energies under operational conditions will lie between the formation energies calculated in this work under oxygen poor and oxygen rich conditions.

Interestingly, Ritzmann et al.14 calculated the free energy of formation of oxygen vacancies, \(\Delta G_{f,vac} \) at 700 °C, and found that the contribution from entropy is \(-0.95 \) eV (\(\Delta H_{f,vac} \) at 700 °C = 3.99 eV whereas \(\Delta G_{f,vac} = 3.04 \) eV). Our \(\mu_{O} \) at 1000 K, at 1 atm oxygen partial pressure, is \(-1.00 \) eV, suggesting that just taking into account the change in oxygen chemical potential with temperature and pressure provides a good estimation of the entropy contribution to the free energy of vacancy formation.

4. RELATING OXYGEN CHEMICAL POTENTIAL TO OXYGEN PARTIAL PRESSURE

In order to compare results of our defect studies to experimental data, it is necessary to relate our theoretical limits of oxygen chemical potential to values of oxygen chemical potential under varying temperature and pressure conditions, as these factors can be controlled experimentally. This was done following the method outlined by Reuter and Scheffler.54

First, the dependence of oxygen chemical potential on temperature is defined at a constant partial pressure, standard pressure \(p^{0} = 1 \) atm with reference to a zero state; \(\mu_{O}(0 \text{ K}, p^{0}) = (1/2)E_{O_{2}}^{0} = 0 \), as follows:

\[
\mu_{O}(T, p^{0}) = \frac{1}{2} [H(T, p^{0}, O_2) - H(0 \text{ K}, p^{0}, O_2)] - \frac{1}{2} T[S(T, p^{0}, O_2) - S(0 \text{ K}, p^{0}, O_2)] \quad (10)
\]

where \(H \) is enthalpy, \(T \) is temperature and \(S \) is entropy. \(\mu_{O}(T, p^{0}) \) was calculated from 600 to 1500 K, using data from thermochemical tables.55,55 and the results are shown in Table 11.

Table 11. Variation of Oxygen Chemical Potential with Temperature at Standard Oxygen Partial Pressure

<table>
<thead>
<tr>
<th>temp (K)</th>
<th>(\mu_{O}(T, p^{0})) (eV)</th>
<th>temp (K)</th>
<th>(\mu_{O}(T, p^{0})) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>-0.6109</td>
<td>1100</td>
<td>-1.2712</td>
</tr>
<tr>
<td>700</td>
<td>-0.7295</td>
<td>1200</td>
<td>-1.3998</td>
</tr>
<tr>
<td>800</td>
<td>-0.8505</td>
<td>1300</td>
<td>-1.5300</td>
</tr>
<tr>
<td>900</td>
<td>-0.9738</td>
<td>1400</td>
<td>-1.6617</td>
</tr>
<tr>
<td>1000</td>
<td>-1.0990</td>
<td>1500</td>
<td>-1.7948</td>
</tr>
</tbody>
</table>

Using these values, the chemical potential of oxygen at varying oxygen partial pressures at a given temperature can be calculated via:

\[
\mu_{O}(T, p) = \mu_{O}(T, p^{0}) + \frac{1}{2} kT \ln \left(\frac{P_{O_{2}}^{0}}{P} \right) \quad (11)
\]

From eq 11, we can calculate oxygen chemical potential values at varying temperatures and pressures, as demonstrated in Tables 12 and 13, respectively. When varying temperature, a partial pressure of 0.21 atm was chosen, as this is a common operating partial pressure for solid oxide fuel cells, and when varying pressure, a temperature of 1000 K was chosen, as it falls into the current target operating temperature region for SOFCs: 600–800 °C.

The oxygen chemical potential values used so far in the present study encompass the oxygen chemical potentials in Tables 12 and 13; therefore, defect formation energies under operational conditions will lie between the formation energies calculated in this work under oxygen poor and oxygen rich conditions.

Interestingly, Ritzmann et al.14 calculated the free energy of formation of oxygen vacancies, \(\Delta G_{f,vac} \) at 700 °C, and found that the contribution from entropy is \(-0.95 \) eV (\(\Delta H_{f,vac} \) at 700 °C = 3.99 eV whereas \(\Delta G_{f,vac} = 3.04 \) eV). Our \(\mu_{O} \) at 1000 K, at 1 atm oxygen partial pressure, is \(-1.00 \) eV, suggesting that just taking into account the change in oxygen chemical potential with temperature and pressure provides a good estimation of the entropy contribution to the free energy of vacancy formation.

Stoichiometry of LaFeO\textsubscript{3} Under Varying Oxygen Partial Pressures

As can be seen in Figure 6, oxygen vacancies will form spontaneously in LaFeO\textsubscript{3} under oxygen poor conditions, changing the stoichiometry of the material to LaFeO\textsubscript{3-\(\delta \)}. Jacob and Ranjani56 measured the change in stoichiometry of LaFeO\textsubscript{3-\(\delta \)} with oxygen partial pressure at 1473 K. They represented their results using the following equation,

\[
\ln \delta = -0.1632 \ln \left(\frac{P_{O_{2}}}{P} \right) - 9.0532 \quad (12)
\]
The nonstoichiometry factor, δ_i, can be evaluated using the following expression,

$$\delta = N e^{-\Delta H_i(q)/kT}$$ \hspace{1cm} (13)$$

where N is the number of species in a formula unit, e.g., 3 for oxygen, k is Boltzmann’s constant, and $\Delta H_i(q)$ is the defect formation energy in charge state q. A value for $\mu_i(T, p)$ at 1473 K was interpolated from the values in Table 11 and used to calculated $\mu_i(T, p)$ at a range of partial pressures; Jacob and Ranjani used the range $\ln(p_{O2}/p^0) = -30$ to 0.56. These oxygen chemical potential values are then used in calculating $\Delta H_i(q)$, thus affecting the value of δ.

Results from the previous section demonstrate that, as well as the oxygen chemical potential changing with oxygen partial pressure, the Fermi level, and therefore Fermi energy, in the material also changes. In Figure 7 we compare results from Jacob and Ranjani56 to values of nonstoichiometry calculated here using the defect formation energy of neutral oxygen vacancies—which form favorably in oxygen poor conditions—and values of nonstoichiometry calculated using the defect formation energy of oxygen vacancies taking into account the change in Fermi energy—from 0.87 eV, in oxygen rich conditions, to 1.55 eV in oxygen poor.

Comparing the fitted trend lines for each set of data, the one fitted to the experimental data of Jacob and Ranjani56 reveals that δ values calculated that take into account the changing Fermi level show a significantly better agreement with the experimental results, validating our estimated Fermi levels and the defect model presented. It is likely that the oxygen rich and oxygen poor conditions, used to calculate the Fermi levels used in the above calculations, correspond to oxygen partial pressures beyond the range used in the experimental nonstoichiometry study, which could be the cause of the difference between our calculated values and the experimental results, and a narrower range may be necessary to improve the agreement between them.

5. OXYGEN ION MIGRATION

Oxygen mobility is one of the crucial factors in the use of these materials as electrode materials and is, therefore, investigated in this final section of the study. Due to the inequivalent oxygen sites present in orthorhombic LaFeO$_3$, there are three possible paths for an oxygen ion migrating between two oxygen vacancies: O1 to O1, O1 to O2, and O2 to O2. All three of these paths were investigated, and their oxygen migration energies were calculated using the procedure stated in Section 2.

The activation energies were calculated with reference to the lowest oxygen vacancy formation energy. Both interatomic potential based methods and DFT+U methods were used, and the results from both methods are shown in Table 14.

<table>
<thead>
<tr>
<th>Pathway</th>
<th>Interatomic Potentials</th>
<th>DFT+U</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2→O2</td>
<td>0.50</td>
<td>0.58</td>
</tr>
<tr>
<td>O1→O2</td>
<td>0.63</td>
<td>0.66</td>
</tr>
<tr>
<td>O1→O1</td>
<td>2.06</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Starting with the O2→O2 pathway, the activation energy calculated in this work is 0.50 eV, which is identical to the activation energy calculated previously by Jones and Islam, who also used interatomic potentials. However, the method employed here allows for a more complete calculation of the favored position at each site along the path, as multiple points were considered perpendicular to the migration pathway.

The activation energy of the O1→O2 pathway calculated here is 0.63 eV, roughly 0.2 eV higher than the value reported by Jones and Islam of 0.44 eV;10 the possible origin of this discrepancy is discussed later.

Finally, the activation energy of the O1→O1 path is considerably higher than the other two pathways at 2.06 eV. This value is supported well by the calculations performed by Jones and Islam who calculated an activation energy of 2.13 eV for this pathway in LaFeO$_3$.10 The large magnitude of this activation energy, compared with the activation energies of the other two potential pathways, suggests that migration between two O1 oxygen sites is unlikely to occur in orthorhombic LaFeO$_3$. The similarity in activation energies calculated for the O1→O1 and O2→O2 pathways between the values calculated in this work and those calculated by Jones and Islam10 suggests that the mismatch in values for the O1→O2 pathway is due to differences in the initial oxygen vacancy formation energies. For pathways between the same oxygen sites, these differences cancel out, leading to only the O1→O2 pathway having a significantly different value.

Comparing the values calculated using the different techniques, in general the values agree well with DFT+U, giving a slightly higher value for O2→O2 and O1→O2 but a lower value for O1→O1. The higher activation energies of O2→O2 and O1→O2 brings them closer to the experimental value reported for this material, 0.77 eV, and the similarity in the activation energies of these two pathways suggest that oxide ion migration via both of these routes is likely to take place in this material.

The migration barrier for oxygen ion diffusion in LaFeO$_3$ has been studied previously using DFT+U. Ritzmann et al.14 calculated an activation energy of 0.79 eV, while Mastrikov et al.15 calculated a value of 0.75 eV. Both studies used cubic supercells, compared to the orthorhombic cells used in this work, so only one pathway was investigated, which makes comparison with the current study difficult, although suggests...
that migration through orthorhombic LaFeO$_3$ is more favorable than through the cubic structure.

6. SUMMARY AND CONCLUSIONS

DFT+U and static lattice calculations have been used to investigate intrinsic defects in orthorhombic LaFeO$_3$ in order to establish the intrinsic defect structure of the material which will control its response to dopants and influence the material’s performance as a SOFC cathode.

We found that lanthanum interstitials form split-interstitials preferentially, whereas iron interstitials are more stable as Fe$^{2+}$ single interstitials in a tetrahedral site. Frenkel and Schottky type disorder was investigated along with antisite defects. Under oxygen rich conditions, cation vacancies compensate for the holes present in the material. This finding agrees with the p-type conductivity that is observed in LaFeO$_3$ under high O$_2$ partial pressures. Under oxygen poor conditions, O$^{2-}$ vacancies dominate and provide the electrons needed for the n-type conductivity that is observed experimentally under low O$_2$ partial pressures.

The nonstoichiometry under varying oxygen partial pressures was investigated and compared to experimental results. An improved agreement with experimental results was found when the change in Fermi level, from 0.87 eV in oxygen rich conditions to 1.55 eV in oxygen poor conditions, was included in the calculation.

The activation energies of all three potential oxide ion pathways in LaFeO$_3$ were calculated with the activation energy of the O1 to O1 pathway being significantly higher than the other two. The lowest activation energy calculated was for the pathway between two O2 sites with the pathway between O1 and O2 sites having an activation energy only 0.08 eV higher. Both are within the reasonable range of the experimental activation energy reported in the literature. These low activation energies are expected for a material with good ionic conductivity.

The detailed models for defect structure presented in this paper will provide a valuable guide for optimizing the performance of doped and related materials in solid state electrochemical applications.

ACKNOWLEDGMENTS

The authors acknowledge funding from the UCL Chemistry Department. We are grateful to Professor Saiful Islam for useful discussions. J.B. acknowledges funding from the EPSRC project “Energy Materials: Computational Solutions” (EP/K016288/1). The authors also acknowledge the use of the UCL Legion and Grace High Performance Computing Facility (Legion@UCL and Grace@UCL) and the associated support services and the ARCHER supercomputer through the membership of the United Kingdom’s HPC Materials Chemistry Consortium, which is funded by EPSRC Grant No. EP/L000202, in the completion of this work.

REFERENCES

(6) Shen, F.; Lu, K. Comparative Study of La$_{0.58}$Sr$_{0.4}$CoO$_3$.Fe$_{0.8}$O$_3$, Ba$_{0.8}$Sr$_{0.2}$CoO$_3$.Fe$_{0.8}$O$_3$ and Sm$_{0.8}$Sr$_{0.2}$CoO$_3$.Fe$_{0.8}$O$_3$ Cathodes and the Effect of Sm$_0.2$Ce$_{0.8}$O$_2$ Block Layer in Solid Oxide Fuel Cells. Int. J. Hydrogen Energy 2015, 40, 16457–16465.
(8) Develos-Bagarinoa, K.; Kishimoto, H.; De Vero, J.; Yamaji, K.; Horita, T. Effect of La$_{1-8}$Sr$_{8}$Co$_{1-x}$Fe$_{0.8}$O$_{3.4}$ Microstructure on Oxygen Surface Exchange Kinetics. Solid State Ionics 2016, 288, 6–9.
(14) Ritzmann, A. M.; Muñoz-García, A. B.; Pavone, M.; Keith, J. A.; Carter, E. A. Ab Initio DFT+U Analysis of Oxygen Vacancy Formation and Migration in La$_{x}$Sr$_{1-x}$Fe$_{0.8}$O$_3$ (x = 0, 0.25, 0.50). Chem. Mater. 2013, 25, 3011–3019.