Reactivity of CO\textsubscript{2} on the surfaces of magnetite (Fe\textsubscript{3}O\textsubscript{4}), greigite (Fe\textsubscript{3}S\textsubscript{4}) and mackinawite (FeS)

David Santos-Carballal,1,* Alberto Roldan,1 Nelson Y. Dzade,2 and Nora H. de Leeuw1,2,†

1School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
2Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands

Abstract

The growing environmental, industrial and commercial interests in understanding the processes of carbon dioxide (CO\textsubscript{2}) capture and conversion have led us to simulate by means of density functional theory calculations the application of different iron oxide and sulfide minerals to capture, activate and catalytically dissociate this molecule. We have chosen the \{001\} and \{111\} surfaces of the spinel-structured magnetite (Fe\textsubscript{3}O\textsubscript{4}) and its isostructural sulfide counterpart greigite (Fe\textsubscript{3}S\textsubscript{4}), which are both materials with the Fe cations in the 2+/3+ mixed valence state, as well as mackinawite (tetragonal FeS) where all iron ions are in the ferrous oxidation state. This selection of iron-bearing compounds provides us with understanding of the effect of the composition, stoichiometry, structure and oxidation state on the catalytic activation of CO\textsubscript{2}. The largest adsorption energies are released for the interaction with the Fe\textsubscript{3}O\textsubscript{4} surfaces, which also corresponds to the biggest conformational changes of the CO\textsubscript{2} molecule. Our results suggest that the Fe\textsubscript{3}S\textsubscript{4} surfaces are unable to activate the CO\textsubscript{2} molecule, while a major charge transfer takes place on FeS\{111\}, effectively activating the CO\textsubscript{2} molecule. The thermodynamic and kinetic profiles for the catalytic dissociation of CO\textsubscript{2} into CO and O, show that this process is only feasible on the FeS\{111\} surface. The findings reported here show that these minerals show promise for future CO\textsubscript{2} capture and conversion technologies, ensuring a sustainable future for society.

Keywords: density functional theory, reaction mechanisms, iron oxide, iron sulfides, spinel, surface science, catalysis, computational chemistry, materials science
I. INTRODUCTION

Mitigating the increasing concentration of CO₂ to sustainable levels and preventing excessive anthropogenic emissions of this molecule to reach the atmosphere are currently two of the major scientific and political challenges in most of the countries who signed the Paris Agreement¹,². CO₂ has been linked directly to global warming due to its powerful heat-trapping properties³,⁴. However, CO₂ is also a potential chemical feedstock that can be harnessed from industrial sources for a myriad of uses, thereby improving the global carbon cycle⁵–⁹. One of the most important examples of CO₂ utilisation is as raw material for the manufacturing of a wide variety of added-value products such as carbamic acids¹⁰–¹³, carbonates¹⁴, polycarbonates¹⁵–²² and liquid fuels²³–²⁸.

The chemical conversion of CO₂ can be classified according to the energy associated with the reaction as (1) low-energy processes and (2) high-energy processes²⁹. The low energy processes are clearly the most energetically favourable cases, where the entire CO₂ moiety is integrated into an electron-rich compound, in which the formal 4+ oxidation state of the C atom may change to 3+. However, reducing by more than one unit the C oxidation state to transform the very stable CO₂ molecule into chemicals is always strongly endothermic as this molecule is the end product of the aerobic chemical and biological combustion processes. For the high-energy processes, the key to success of CO₂ conversion at industrial scale is the use of stable, non-toxic, reusable and efficient catalysts that provide the electrons via active sites to activate and convert chemically the molecule⁵,⁷,⁸.

The spinel-structured magnetite (Fe₃O₄) is an iron oxide used as the main component of industrial heterogeneous catalysts because of its stability, availability and low cost. The Fe ions of Fe₃O₄ have a mixed valence state (2+/3+), which allows this material to catalyse both oxidation/reduction and acid/base reactions³⁰. For instance, Fe₃O₄ is part of the catalysts used in the Haber-Bosch process for the production of ammonia NH₃³¹. During this process, Fe₃O₄ is reduced in situ by H₂ into the catalytically active α-Fe³², where the adsorption and dissociation of the highly stable N₂ molecule takes place³³,³⁴. Similarly as in the CO₂ conversion process, the adsorption and activation of N₂ is the rate limiting step in the mechanism of NH₃ formation³⁵–³⁹. Fe₃O₄ is also used in the Fischer-Tropsch process for the conversion of syngas (a mixture of CO and H₂) into hydrocarbons⁴⁰. However, experiments suggest that the working catalyst is only achievable once Fe₃O₄ is exposed to
the syngas and is partially reduced to a mixture of α-Fe and iron carbide (χ-Fe₅C₂) with a high quantity of remnant Fe₃O₄. Another mineral with Fe in the most oxidised form is Fe₂O₃, which is the initial catalyst of the water gas shift (WGS) reaction supplying H₂ to the Haber-Bosch and Fischer-Tropsch processes. However, the catalyst only becomes active after it is carefully reduced to Fe₃O₄ by the initial syngas mixture, avoiding over-reduction to α-Fe and χ-Fe₅C₂.

Greigite (Fe₃S₄) is the isostructural sulfide counterpart of Fe₃O₄ with the Fe ions also in the mixed valence state, while mackinawite (tетragonal FeS) has these cations in the lowest possible coordination and oxidation state. The structural analogy between Fe₃S₄ and FeS with certain contemporary enzyme co-factors in the form of FeS cubane clusters has led to the suggestion that these minerals could have played an important catalytic role in the primordial metabolism by converting the CO₂ molecule into small chemicals, according to the iron-sulfur origin of life theory. The first organic molecules were then formed after the reduction of CO₂ catalysed by the oxidation of Fe²⁺ ions probably through a mechanism similar to the modern-day acetyl-coenzyme A pathway. A recent study combining experiments and computational simulations has shown the electro-reduction of CO₂ on Fe₃S₄ into small organic molecules, supporting the iron-sulfur origin of life theory. Simulations of FeS have also predicted that the surfaces of this mineral activate and dissociate the CO₂ molecule.

The purpose of this report is to present density functional theory (DFT) simulations that we have carried out to elucidate the trends of CO₂ adsorption, activation and dissociation on the surfaces of Fe₃O₄, Fe₃S₄, and FeS and compare them with recent experiments. We have taken into account the impact of the anions, stoichiometric and structural differences of the materials and related them to explain the performance towards CO₂ conversion. We have rationalised the dependence of the adsorption energies and the charge donated by the surface to the molecule in the adsorbed geometries. We have also discussed the differences between the simulated wave-numbers for the fundamental vibrational modes of the isolated and adsorbed CO₂ to explain the weakening of the C―O bond and the activation of this molecule. We propose the kinetic and thermodynamic mechanisms that account for the unimolecular dissociation of the chemisorbed and activated states of the CO₂ molecule. These mechanisms are described in terms of the activation energy required to reach the transition states and the overall energy associated with the fragmentation of the CO₂ molecule into CO and O.
The catalytic properties of the Fe$_3$O$_4$, Fe$_3$S$_4$ and FeS towards carbon-activation could lead to economically viable applications to convert industrially produced CO$_2$ into fine chemicals and fuels.

II. DENSITY FUNCTIONAL THEORY CALCULATIONS

1. Calculation details

We have carried out spin-polarised calculations with the Vienna \textit{ab-initio} simulation package (\textsc{vasp})53–56. At the level of the generalised gradient approximation (GGA), the exchange-correlation in the form of the Perdew-Burke-Ernzerhof (PBE)57,58 functional was used to model Fe$_3$O$_4$, while the Perdew-Wang 91 (PW91)59,60 functional was used together with the spin interpolation formula of Vosko \textit{et al.}61 for the simulation of the sulfide phases, to remain consistent with previous reports. The long-range van der Waals (vdW) interactions were included via the semiempirical method of Grimme (D2)62, using the global scaling factor parameter optimised for the PBE functional, $s = 0.75$, which is known to describe appropriately the adsorption properties in oxides63,64 and sulfides51,65–69. The projector augmented wave (PAW) method was used to describe the core electrons and their interaction with the valence ones70,71. The frozen cores of the Fe, O, S and C atoms were defined up to and including the 3p, 1s, 2p and 1s electrons, respectively. Kohn-Sham (KS) valence states were expanded in a plane-wave basis set with a cutoff for the kinetic energy of 400 eV for Fe$_3$O$_4$63 and FeS51,66,69,72,73, and fixed at 600 eV for Fe$_3$S$_4$50,52,74–79, in agreement with previous publications. The Brillouin zone integrations of the surface slabs were performed using a Γ-centred Monkhorst-Pack grid of $5 \times 5 \times 1$ k-points for the simulation of all the materials considered. A Hubbard Hamiltonian80 in the version of Dudarev \textit{et al.}81 was used for the description of the localised and strongly correlated d Fe electrons of the spinel materials, while we found that it is not needed to describe correctly the properties of FeS51,66,69,72,73,82. Following previous works, we have chosen $U_{\text{eff}} = 3.7$ eV for Fe$_3$O$_4$63 and 1.0 eV for Fe$_3$S$_4$50,75,76,83. Dipole corrections were applied perpendicularly to the surfaces to improve the electronic convergence due to dipole moments formed by the CO$_2$ when added to the surface84,85. The atomic positions were relaxed to their ground state using the conjugate-gradient method until the Hellmann-Feynman forces on all atoms dropped be-
low 0.02 eV·Å⁻¹. The electronic partial occupancies were determined using the tetrahedron method with Blöchl corrections to increase the integration efficiency for all the calculations. A Bader charge analysis was used to integrate the electronic density into atomic charges as implemented by Henkelman and co-workers. The charge density difference schemes were constructed by subtracting the sum of the electron charge densities of the clean surface and isolated adsorbate, with identical structure as in the adsorbed form, from the electron density of the total adsorbate-surface system obtained from single point calculations. The climbing image nudged elastic band method (ci-NEB) was used to search the transition states (TS) and the reaction barriers for the dissociation of the CO₂ molecule, which were characterised by a single imaginary frequency along the reaction coordinate. For the ci-NEB calculations, six structures were linearly interpolated between the geometrically optimised initial (reactants) and final states (products), which were minimised as a string of images. The exact transition state corresponds to the image with the highest energy that is driven up to the saddle point, maximising its energy along the minimum energy path.

The spinel phases, i.e. Fe₃O₄ and Fe₃S₄, belong to the space group Fd3m (No. 227), which comprises 56 atoms (see figure 1a). The face-centred cubic unit cell contains 32 anions in a cubic close-packed arrangement with 8 of the tetrahedral holes (A) and 16 of the octahedral (B) ones filled by the Fe atoms. Both spinels have an inverse electronic distribution of the Fe ions that can be expressed as Fe₃⁺[Fe²⁺Fe³⁺]ₓX₄⁻, where X represents the O or S anion, meaning that 50% of the Fe³⁺ cations are occupying the A holes and the rest along with all the Fe²⁺ atoms are filling the B sites. For the spinel-structured materials, all the calculations were spin-polarised and the initial magnetic moments were set following a high-spin ferrimagnetic structure, with the spin moments of the atoms filling the A and B holes oriented antiparallelly, in agreement with previous studies.

FeS has a tetragonal crystal structure characterised by the space group P4/nmm (No. 129). The tetragonal unit cell is composed of 2 Fe and 2 S atoms. The cations are located at the centre of the square sides and at the corners of the unit cell, while the anions are occupying the rectangular faces on opposite sides of the unit cell (see figure 1b). Bulk FeS is a layered material with sheets lying in the ab-plane of perfectly square-planar coordinated Fe atoms which are tetrahedrally coordinated by four equidistant S atoms. The anions appear above and below the cation sheets, holding the layers together by vdW forces. We did not consider the spin-polarisation effects for the simulation of FeS as we have found
FIG. 1. (a) Conventional unit cell of Fe$_3$S$_4$ showing the cubic spinel crystal structure. Note that Fe$_3$O$_4$, the isostructural oxide counterpart of Fe$_3$S$_4$, is not displayed. (b) Schematic representation of the tetragonal unit cell of FeS. Tetrahedral Fe$_A$ atoms are in light blue, octahedral Fe$_B$ atoms are in dark blue and S atoms are in yellow. Atoms belonging to the neighbour unit cells are represented as sticks.

it not to have any meaningful effect in the electronic structure of this material51,66,69,72,73,82.

2. Surface models

The slab models were built following the dipole method, which is based on the condition that the net dipole perpendicular to the surface must be zero, as determined by Tasker107. All the surfaces studied were generated by cutting the optimised bulk of the iron minerals using the METADISE code108. We considered the \{001\} and the \{111\} surfaces for each of the iron-based materials. A separation of 12 Å and 15 Å was added to the direction perpendicular to the surface plane between the simulation slab of the spinel materials and FeS, respectively, and its periodically repeated image, ensuring they did not interact. Convergence tests with respect to the surface slab and vacuum thickness as well as the number of relaxed atomic layers were performed until the energy was constant within 1 meV of accuracy. Table I shows the surface area, the total number of atomic layers and the total number of atoms of the most stable surface slab models used in the simulations of the three iron-based materials. The \{001\} surface of the isostructural spinel minerals terminates in a
layer comprising both anions and five-fold coordinated Fe\textsubscript{B} atoms. However, while the Fe\textsubscript{3}O\textsubscript{4}\{001\} surface has three-fold coordinated Fe\textsubscript{A} ions with the \((\sqrt{2} \times \sqrt{2})R45^\circ\) symmetry above the top-most sulfur layer, these ions move into the subsurface layer in Fe\textsubscript{3}S\textsubscript{4}, retaining the tetrahedral coordination. The \{111\} surfaces are identically finished in a bulk-like layer of anions forming a hexagonal honeycomb pattern in Fe\textsubscript{3}O\textsubscript{4} with two Fe\textsubscript{A} per every Fe\textsubscript{B} ion sitting above it63,109, whereas in Fe\textsubscript{3}S\textsubscript{4} these cations relax into the subsurface layer. The FeS\{001\} and \{111\} surfaces terminate in a S layer with four-fold and three-fold coordinated Fe\textsubscript{A} atoms, respectively, in the subsurface layer. The half bottom of the slabs were kept fixed at the optimised bulk geometry, while the exposed upper-half was allowed to relax without restrictions for each simulation slab. Note that we did not consider the effect of defects or environmental species during our simulations, which are known to increase the reactivity of the surfaces, as this is outside the scope of this work, which is concerned with the comparison between two iso-structural materials, Fe\textsubscript{3}O\textsubscript{4} and Fe\textsubscript{3}S\textsubscript{4}, to compare the relative effects of oxygen and sulfur, and between two different sulfides Fe\textsubscript{3}S\textsubscript{4} and FeS, which contain iron in different valence states.

TABLE I. Surface area \((A_{surf})\) in Å2, total number of atomic layers \((N_{lay})\) and total number of atoms \((N_{atom})\) for the slabs of Fe\textsubscript{3}O\textsubscript{4}, Fe\textsubscript{3}S\textsubscript{4} and FeS.

<table>
<thead>
<tr>
<th>Mineral Surface</th>
<th>(A_{surf})</th>
<th>(N_{lay})</th>
<th>(N_{atom})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe\textsubscript{3}O\textsubscript{4} {001}</td>
<td>70.5</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>{111}</td>
<td>61.1</td>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>Fe\textsubscript{3}S\textsubscript{4} {001}</td>
<td>93.5</td>
<td>9</td>
<td>56</td>
</tr>
<tr>
<td>{111}</td>
<td>81.0</td>
<td>13</td>
<td>56</td>
</tr>
<tr>
<td>FeS {001}</td>
<td>51.4</td>
<td>6</td>
<td>32</td>
</tr>
<tr>
<td>{111}</td>
<td>111.9</td>
<td>9</td>
<td>48</td>
</tr>
</tbody>
</table>

3. **Simulation of the vibrational modes**

The vibrational frequencies were calculated for the isolated and adsorbed CO\textsubscript{2} molecule and for its dissociation fragments, \textit{i.e.} CO and the O atom, by means of the central finite differences approach. This method comprises the calculation of the vibrational frequencies from the second derivative of the potential energy with respect to the atomic positions,
which are moved by a small negative and positive displacement for each Cartesian coordinate, ensuring they are contained within the harmonic part of the potential well. We have defined the vibrationally active atoms as those belonging to the adsorbate for the iron sulfide materials and also included the top-most layers of the surface slab for Fe$_3$O$_4$. The coupling between the surface phonons and the adsorbates’ vibrational frequencies, all of which appear above 500 cm$^{-1}$, was neglected.

4. Thermodynamic and kinetic profiles

We have calculated the adsorption energy (E_{ads}) of the CO$_2$ molecule on the {001} and {111} surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$ and FeS as

$$E_{\text{ads}} = E_{\text{CO}_2+\text{surf}} - (E_{\text{CO}_2} + E_{\text{surf}}),$$

where $E_{\text{CO}_2+\text{surf}}$ is the total energy of the CO$_2$ molecule interacting with the surfaces, E_{CO_2} is the energy of the isolated CO$_2$ molecule and E_{surf} is the energy of the naked surface slab.

We have proposed the CO$_2$ dissociation mechanism as a single elementary step taking place on the {001} and {111} surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$ and FeS. The activation energy (E_{act}) was obtained from the difference between the energy of the transition state (E_{TS}) and the initial state, i.e. the molecularly adsorbed CO$_2$ on the mineral surface, ($E_{\text{CO}_2+\text{surf}}$) as

$$E_{\text{act}} = E_{\text{TS}} - E_{\text{CO}_2+\text{surf}}.$$

The dissociation energy (E_{diss}) was defined as the energy difference between the final CO$_2$ dissociated state, i.e. the CO + O product fragments, ($E_{\text{CO}+\text{O}+\text{surf}}$) and the molecularly adsorbed CO$_2$ as

$$E_{\text{diss}} = E_{\text{CO}+\text{O}+\text{surf}} - E_{\text{CO}_2+\text{surf}}.$$

Note that all the energies for Fe$_3$O$_4$ were corrected by the vibrational zero-point energy (E_{ZP}). E_{ZP} was approximated to $\sum_i h \nu_i / 2$, where h is Planck’s constant and ν_i are the fundamental vibrational frequencies of the normal modes.
III. RESULTS AND DISCUSSION

A. Adsorption structures of CO$_2$

As a first step, the adsorption of the CO$_2$ molecule was studied on the \{001\} and \{111\} surfaces of each material. We have carried out a comprehensive investigation of the initial guess adsorption sites on the surfaces, as well as the possible geometries and orientations of the pre-activated (bent) CO$_2$ molecule, before performing the full optimisation of the adsorption structures and energies. The potential adsorption sites included the atop, bridge and hollow positions between the non-equivalent surface atoms, with the CO$_2$ molecule being placed both flat and perpendicular to the surface and coordinating as many surface atoms as possible. In what follows, we only discuss and compare the results of the most favourable CO$_2$ adsorption modes for each surface, \textit{i.e.} those releasing the largest adsorption energy. The most important parameters characterising the adsorption modes are shown in table II. Our simulations indicate that the C atom coordinates one of the O surface atoms (O$_{\text{surf}}$) of Fe$_3$O$_4$, but prefers to bind one of the Fe ions of FeS. In the case of Fe$_3$S$_4$, the carbon atom binds surface S or Fe atoms depending on the surface, as displayed in table II. The interactions are also given by the elongation of the intramolecular CO bond and the proximity between the molecular O atoms and the surface Fe ions.

TABLE II. Interatomic distances (d) in Å and bond angles (\angle) in $^\circ$ for the energetically preferred CO$_2$ adsorption configurations on the \{001\} and \{111\} surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$50,52 and FeS51. O$_1$ and O$_2$ stand for the O atoms of the CO$_2$ molecule, while X_{surf} represents one of the surface anions.

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Surface</th>
<th>(d(\text{C–O}_1))</th>
<th>(d(\text{C–O}_2))</th>
<th>(d(\text{C–[Fe, } X_{\text{surf}}]))</th>
<th>(d(\text{O}1–[\text{Fe, } X{\text{surf}}]))</th>
<th>(d(\text{O}_2–\text{Fe}))</th>
<th>(\angle(\text{OCO}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ (isolated molecule)</td>
<td></td>
<td>1.18</td>
<td>1.18</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>180.0</td>
</tr>
<tr>
<td>Fe$_3$O$_4$</td>
<td>{001}</td>
<td>1.27</td>
<td>1.27</td>
<td>1.39 ([O_{\text{surf}}])</td>
<td>2.03 ([\text{Fe}_A])</td>
<td>2.15 ([\text{Fe}_B])</td>
<td>128.9</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>1.27</td>
<td>1.27</td>
<td>1.40 ([O_{\text{surf}}])</td>
<td>2.12 ([\text{Fe}_B])</td>
<td>2.12 ([\text{Fe}_B])</td>
<td>124.9</td>
</tr>
<tr>
<td>Fe$_3$S$_4$</td>
<td>{001}</td>
<td>1.18</td>
<td>1.17</td>
<td>3.31 ([S_{\text{surf}}])</td>
<td>2.96 ([S_{\text{surf}}])</td>
<td>–</td>
<td>179.2</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>1.18</td>
<td>1.17</td>
<td>3.14 ([\text{Fe}_B])</td>
<td>2.27 ([\text{Fe}_B])</td>
<td>–</td>
<td>179.4</td>
</tr>
<tr>
<td>FeS</td>
<td>{001}</td>
<td>1.18</td>
<td>1.18</td>
<td>4.01 ([\text{Fe}])</td>
<td>4.22</td>
<td>4.15</td>
<td>179.6</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>1.24</td>
<td>1.24</td>
<td>2.11 ([\text{Fe}])</td>
<td>2.11</td>
<td>2.11</td>
<td>138.7</td>
</tr>
</tbody>
</table>
1. Magnetite

We found that CO$_2$ interacts strongly with both the Fe$_3$O$_4\{001\}$ and \{111\} surfaces, where the molecule bends and forms a highly stable carbonate-shaped group upon interaction with the surface (see table II and figure 2). Our calculations indicate that the C atom sits atop the surface oxygen, while the oxygens from the molecule point towards the undercoordinated Fe$_A$ and Fe$_B$ ions, in agreement with recent computational and experimental studies on CO$_2$ adsorption on the Fe$_3$O$_4\{001\}$ and \{111\} surfaces$^{110-112}$. This interaction induces a practically equal elongation of both intramolecular C–O distances by 0.09 Å with respect to the isolated molecule. The strongest adsorption of the CO$_2$ molecule with any of the three minerals discussed here takes place on the Fe$_3$O$_4\{111\}$ surface, as summarised in table III. For the interaction with the \{111\} surface, both O atoms from the CO$_2$ coordinate to the Fe$_B$ cations as shown in figure 2. Moreover, the C atom coordinates to one surface oxygen atom at 1.40 Å, which induces a tilt of the CO$_2$ molecule with respect to the surface normal as the three coordinating atoms in the surface are not in a straight line.

FIG. 2. CO$_2$ adsorbed to the Fe$_3$O$_4\{111\}$ surface, showing (a) top view and (b) side view. Tetrahedral Fe$_A$ atoms are in light blue, octahedral Fe$_B$ atoms are in dark blue, C atoms are in cyan and O atoms are in red. Surface atoms are represented as sticks and the CO$_2$ molecule is represented as balls and sticks. Interatomic distances are shown in Å and angles are shown in °.
2. Greigite

Our calculated results showed that the CO$_2$ molecule preferably adsorbs on the Fe$_3$S$_4\{111\}$ surface (see table II). Unlike the trends discussed for Fe$_3$O$_4$, we found that the CO$_2$ molecule remained linear upon adsorption to either the Fe$_3$S$_4\{001\}$ or \{111\} surface, indicating a weak interaction, as shown in figure 3. Our simulations suggest that the large electrostatic repulsions between the electronic clouds of the surface sulfur atoms and the electronic lone pairs located on the O atoms from the CO$_2$ prevent this molecule of binding to the \{001\} surface. On the other hand, one of the O atoms coordinates to an undercoordinated Fe$_B$ cation from the Fe$_3$S$_4\{111\}$ surface, anchoring the CO$_2$ molecule, which remains without geometrical or electronic changes.50,52

![FIG. 3. CO$_2$ adsorbed to the Fe$_3$S$_4\{111\}$ surface, showing (a) top view and (b) side view. Tetrahedral Fe$_A$ atoms are in light blue, octahedral Fe$_B$ atoms are in dark blue, S atoms are in yellow, C atoms are in cyan and O atoms are in red. Surface atoms are represented as sticks and the CO$_2$ molecule is represented as balls and sticks. Interatomic distances are shown in Å and angles are shown in °.](image)

3. Mackinawite

The strongest interaction between the CO$_2$ molecule and FeS is with the \{111\} surface (see tables II and III). In terms of the adsorption modes, the three atoms of the CO$_2$ molecule bind to the FeS\{111\} surface as shown in figure 4. The CO$_2$ molecule displays a bent conformation and the intramolecular C–O distances are equally stretched by 0.06
Å compared to the isolated molecule. The CO$_2$ molecule was found to be physisorbed on the FeS\{001\} surface, although no evidence was found for any structural change of either the adsorbate or the \{001\} mineral surface as the CO$_2$ was only weakly adsorbed. The large difference between adsorption energies inferred for the FeS\{001\} and \{111\} surfaces suggests that its value strongly depends on the possibility of the CO$_2$ molecule bending and coordinating several surface atoms51.

FIG. 4. CO$_2$ adsorbed to the FeS\{111\} surface, showing (a) top view and (b) side view. Tetrahedral Fe$_4$ atoms are in light blue, S atoms are in yellow, C atoms are in cyan and O atoms are in red. Surface atoms are represented as sticks and the CO$_2$ molecule is represented as balls and sticks. Interatomic distances are shown in Å and angles are shown in °.

B. Adsorption energies of CO$_2$

Table III summarises the calculated adsorption energies of the CO$_2$ molecule along with electronic parameters of the \{001\} and \{111\} surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$ and FeS, showing any correlations. It is evident that the sulfides’ surfaces are the least favourable for the adsorption of the CO$_2$ molecule50. The value of our adsorption energy of 1.37 eV, calculated for the most favourable interaction of the CO$_2$ molecule with the Fe$_3$O$_4$\{111\} surface, is in excellent agreement with a recent computational study110. On both iron sulfides, the CO$_2$ molecule is most likely to interact linearly, with the exception of the FeS\{111\} surface, leading to smaller adsorption energies than on the Fe$_3$O$_4$ surfaces. This different behaviour can be rationalised in terms of the anion strength, which allows coordination with the C atom, forming a species that resembles a carbonate group on the oxide. The electronic
delocalisation of the \(\pi \) molecular orbital belonging to the pseudo-carbonate group formed on the \(\text{Fe}_3\text{O}_4 \{001\} \) and \{111\} surfaces also plays a significant role in the stabilisation of this adsorption mode. The non-hybridised atomic \(p_z \) orbitals lying perpendicular to the carbonate plane can only overlap effectively with surface oxygens, as the sulfur atoms have more extended orbitals. The adsorption energy is also related to the surface energy \((\gamma) \), as the \(\text{CO}_2 \) molecule releases the largest adsorption energy upon interaction with the least stable surface of each material. Our simulations also suggest that the adsorption energies strongly depend on the variation of the bond angle upon \(\text{CO}_2 \) interaction with the surfaces, see tables II and III.

TABLE III. \(\text{CO}_2 \) adsorption energies \((E_{\text{ads}}) \) in eV and surface energies \((\gamma) \) in J·m\(^{-2}\) of the \{001\} and \{111\} surfaces of \(\text{Fe}_3\text{O}_4 \)\(^{63}\), \(\text{Fe}_3\text{S}_4 \)\(^{45,52,78}\) and \(\text{FeS} \)\(^{51,66,69}\).

<table>
<thead>
<tr>
<th>Mineral Surface</th>
<th>(E_{\text{ads}})</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Fe}_3\text{O}_4)</td>
<td>{001}</td>
<td>−1.03</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>−1.37</td>
</tr>
<tr>
<td>(\text{Fe}_3\text{S}_4)</td>
<td>{001}</td>
<td>+0.18</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>−0.19</td>
</tr>
<tr>
<td>(\text{FeS})</td>
<td>{001}</td>
<td>−0.20</td>
</tr>
<tr>
<td></td>
<td>{111}</td>
<td>−0.87</td>
</tr>
</tbody>
</table>

C. Charge transfer characterisation

We have estimated the charge transfer \((\Delta q) \) between the mineral surfaces and the \(\text{CO}_2 \) molecule from the variation of the atomic Bader charges. The adsorbate gains electronic charge only from the \(\text{FeS} \{111\} \) and \(\text{Fe}_3\text{O}_4 \{001\} \) and \{111\} surfaces, where the \(\text{CO}_2 \) molecule is chemisorbed as shown in table IV. We found that \(\Delta q \) is between −0.17 and −0.80 e\(^-\) for the chemisorbed modes of the \(\text{CO}_2 \) molecule. The largest charge transfer to the chemisorbed \(\text{CO}_2 \) molecule occurred at the \(\text{FeS} \{111\} \) surface, as the interacting \(\text{Fe}^{2+} \) ions are oxidized toward \(\text{Fe}^{3+} \) ions in the presence of adsorbing species including oxygen and water\(^{72,82}\). Similar amounts of charge transfer have been reported to occur between chemisorbed \(\text{CO}_2 \) and the \(\text{FeS}(011) \) surface\(^{51}\). However, the \{111\} surfaces of \(\text{FeS} \) and \(\text{Fe}_3\text{O}_4 \) are always more prone to larger donations of electronic charge than the \{001\} plane of these minerals, in agreement
with the lower value of the work function (Φ) of the $\{111\}$ surfaces, which measures the energy required to bring a surface electron to the vacuum. The larger bending of the CO$_2$ apex angle correlates with the larger charge transfer to this molecule from the $\{111\}$ than from the $\{001\}$ surface for both FeS and Fe$_3$O$_4$, but this trend fails when they are compared globally. This can be visualised in a charge density flow scheme, representing the electron density changes on the adsorption of a CO$_2$ molecule. Figure 5 illustrates the rearrangement of the electronic cloud upon adsorption of the CO$_2$ molecule on the Fe$_3$O$_4\{111\}$ and FeS(111) surfaces. For the two cases, the negative charge accumulates on the O atoms of the adsorbate, activating this molecule and triggering structural changes, such as the reduction of the CO$_2$ apex angle and elongation of the C–O bond distances (see table II). Our simulations also suggest a negligible electron transfer for the physisorbed interactions of the CO$_2$ molecule with the FeS{001} and Fe$_3$S$_4${001} and {111} surfaces, which are therefore not discussed here.

TABLE IV. Charge difference (Δq) in e$^-$ for CO$_2$ between the neutral state of the isolated molecule and after adsorption to the $\{001\}$ and $\{111\}$ surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$,50,52,78 and FeS51,66,69 and the simulated wavenumbers in cm$^{-1}$ of the fundamental vibrational modes of the isolated and adsorbed CO$_2$ molecule on the iron mineral surfaces. The experimental vibrational modes of the gas-phase CO$_2$ molecule are also shown113. The work function (Φ) values in eV of the naked surfaces are also provided. Negative values of Δq indicate charge transfer from the surface to the adsorbate. The presented vibrational modes are the asymmetric stretching (ν_{asym}), symmetric stretching (ν_{sym}) and bending (δ) modes.

<table>
<thead>
<tr>
<th>Mineral Surface</th>
<th>Δq</th>
<th>Φ</th>
<th>ν_{asym}</th>
<th>ν_{sym}</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO$_2$ (isolated molecule)</td>
<td>2373</td>
<td>1323</td>
<td>631</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CO$_2$ (gas-phase)</td>
<td>2349</td>
<td>1333</td>
<td>667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe$_3$O$_4$ ${001}$</td>
<td>-0.17</td>
<td>4.22</td>
<td>1601</td>
<td>1259</td>
<td>703</td>
</tr>
<tr>
<td></td>
<td>-0.27</td>
<td>3.90</td>
<td>1547</td>
<td>1248</td>
<td>669</td>
</tr>
<tr>
<td>Fe$_3$S$_4$ ${001}$</td>
<td>0.0</td>
<td>5.13</td>
<td>2355</td>
<td>1313</td>
<td>615</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>5.04</td>
<td>2363</td>
<td>1311</td>
<td>608</td>
</tr>
<tr>
<td>FeS ${001}$</td>
<td>0.0</td>
<td>4.72</td>
<td>2349</td>
<td>1319</td>
<td>628</td>
</tr>
<tr>
<td></td>
<td>-0.80</td>
<td>3.68</td>
<td>1764</td>
<td>1173</td>
<td>654</td>
</tr>
</tbody>
</table>
FIG. 5. Charge density flow (ρ) for the CO$_2$ molecule adsorbed on (a) the Fe$_3$O$_4$\{111\} and (b) the FeS\{111\} surfaces. Electron density gain and depletion surfaces are in orange and purple, respectively. Isosurfaces display a value of ± 0.009 e\cdot Å$^{-3}$. Tetrahedral Fe$_A$ atoms are in light blue, octahedral Fe$_B$ atoms are in dark blue, S atoms are in yellow, C atoms are in cyan and O atoms are in red. Surface atoms are represented as sticks and the CO$_2$ molecule is represented as balls and sticks.

D. Simulated vibrational modes

Table IV shows the wavenumbers of the fundamental vibrational modes of the isolated and adsorbed CO$_2$ molecule on the \{001\} and \{111\} surfaces of the three materials. There is an excellent agreement between the experimental and calculated stretching modes (ν) for the CO$_2$ molecule, with the largest difference being 24 cm$^{-1}$ for ν_{asym}, which is sufficiently accurate for the prediction of vibrational frequencies77. The asymmetric and symmetric CO stretching modes of the chemisorbed CO$_2$ indicate a noticeable red-shift with respect to the isolated molecule, in agreement with the weakening and stretching of the intramolecular CO bond. Interestingly, the difference vanishes for the wavenumbers of the isolated and physisorbed CO$_2$ molecule, which is in line with the lack of negative electronic transfer from the surface to the adsorbate.

At this point, it is possible to generalise that altogether (i) the smaller frequencies of the stretching modes for the chemisorbed CO$_2$, with respect to the isolated molecule, along with (ii) the elongation of the intramolecular C–O bond and (iii) the localisation of negative electronic charge at the molecular O atom lend support to the activation of the adsorbate, which could lead to further chemical transformations. In the following section, we focus on
discussing the simplest unimolecular chemical reaction in which the activated CO$_2$ molecule dissociates into CO and O fragments.

E. Catalytic CO$_2$ dissociation

From our DFT simulations, we have inferred that the CO$_2$ molecule releases the largest adsorption energies when it interacts with both planes of Fe$_3$O$_4$ as well as the $\{111\}$ surfaces of FeS and Fe$_3$S$_4$. We are now interested in quantifying the reactivity towards dissociation of the activated and chemisorbed CO$_2$ molecule by analysing energetic and geometrical structural changes. The molecularly adsorbed configurations of the CO$_2$ on the Fe$_3$O$_4$ and FeS surfaces where the apex angle is bent are defined as the initial state or reactant. Figure 6 shows the reaction energy for the CO$_2$ dissociation on the different mineral surfaces and the activation energy required for this process to take place. It can be seen that on the FeS$\{111\}$ surface, where the CO$_2$ molecule is chemisorbed, the dissociation energy (E_{diss}) is negative, while this process is strongly endothermic for Fe$_3$O$_4\{001\}$ and $\{111\}$ surfaces. The highly exothermic dissociation of CO$_2$ at the FeS$\{111\}$ surface along with the relatively low activation barrier of 1.30 eV can be attributed to the stronger binding of the CO and O fragments to bridging Fe sites or to the instability of the CO$_2$ molecule on this surface. This suggests that under low CO$_2$ pressures, the FeS$\{111\}$ favours dissociative adsorption over molecular adsorption, although this process is not as effective as on α-Mo$_2$C, one of the most widely studied transition metal carbides for CO$_2$ conversion114, where the activation energies can be 1.04 eV lower115. On the other hand, dissociation of the CO$_2$ molecule on any of the Fe$_3$O$_4$ surfaces is unlikely to take place, because not only are the activation energies relatively large, but the dissociation energies are very endothermic.

IV. CONCLUSIONS

We have carried out a series of DFT simulations to study CO$_2$ adsorption and dissociation on the $\{001\}$ and $\{111\}$ surfaces of three iron-bearing minerals with different stoichiometry and structure. Our results indicate that the strongest adsorption takes place when the CO$_2$ molecule coordinates several surface atoms.

In general, we have found that the energetically most favourable interfacial system occurs
when the CO$_2$ molecule interacts with the Fe$_3$O$_4\{111\}$ surface. Our calculations suggest that in the relaxed structures of the CO$_2$/mineral systems, the initially linear adsorbate molecule bends its geometry, forming an \angleOCO of around 130°, only when it receives electronic charge from the mineral surface. Although the FeS$\{111\}$ surface is the largest donor of electronic charge due to its low work function and low electronegativity of the S atoms, there is a trend between the charge gained by the CO$_2$ molecule and the adsorption energy for the Fe$_3$O$_4$ surfaces. Changes in the simulated vibrational frequencies of the C–O bond from the isolated to the chemisorbed CO$_2$ molecule indicate the weakening of this bond. CO$_2$ dissociation can only happen spontaneously on the FeS$\{111\}$ surface due to the availability of electrons to activate the molecule. Although the Fe$_3$O$_4\{001\}$ and $\{111\}$ surfaces also transfer electronic charge to the CO$_2$ molecule upon adsorption, this is not large enough to induce the activation required for dissociation.

Our simulations show that the adsorption of CO$_2$ to Fe$_3$S$_4\{111\}$ as well as the main surfaces of FeS and Fe$_3$O$_4$ is exothermic, indicating that this molecule can be effectively captured by these materials.

Future work will focus on simulating the effect of temperature and CO$_2$ partial pressure via molecular dynamics simulations, as well as calculating the adsorption of H$_2$O on these minerals, to consider the effect of this ubiquitous molecule on the formation of a passivating carbonate layer on the surfaces of Fe$_3$O$_4$, Fe$_3$S$_4$ and FeS.
ACKNOWLEDGMENTS

We acknowledge the Engineering and Physical Sciences Research Council (EPSRC grants No. EP/K035355/2, EP/H046313/1, EP/K001329/1 and EP/K016288/1) for funding. Via our membership of the UK’s HEC Materials Chemistry Consortium, which is funded by EPSRC (grant No. EP/L000202), this work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk). This work was performed using the computational facilities of the Advanced Research Computing @ Cardiff (ARCCA) Division, Cardiff University. The authors also acknowledge the use of HPC Wales, and associated support services, in the completion of this work. All data created during this research is openly available from the Cardiff University’s Research Portal at http://dx.doi.org/10.17035/d.2017.0038094480.

* SantosCarballalD@cardiff.ac.uk
† DeLeeuwN@cardiff.ac.uk
1 Adoption of the Paris Agreement. Paris: United Nations Framework Convention on Climate Change (UNFCCC) - Conference of the Parties (COP); 2015. Available from: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

Ballivet-Tkatchenko D, Dibenedetto A. Chapter 7. Synthesis of Linear and Cyclic Carbonates.

Dzade NY, Roldan A, de Leeuw NH. Activation and dissociation of CO₂ on the (001), (011), and (111) surfaces of mackinawite (FeS): A dispersion-corrected DFT study. The Journal of Chemical Physics. 2015 Sep;143(9):094703. Available from: http://dx.doi.org/10.1063/1.4929470.

Kresse G, Hafner J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-

Dzade NY, Roldan A, de Leeuw NH. Structures and Properties of As(OH)3 Adsorption Com-

82 Dzade NY, Roldan A, de Leeuw NH. DFT-D2 simulations of water adsorption and disso-

