Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece

1.2 Ernest Chi Fru*, 3Stephanos Kilias, 4Magnus Ivarsson, 1Jayne E. Rattray, 3Katerina Gkika, 3Iain McDonald, 5Qian He, 1Curt Broman

1Department of Geological Sciences, 10691, Stockholm University, Sweden.
2School of Earth and Ocean Sciences, Cardiff University, Park Place, CF10 3AT, Cardiff, UK.
3Department of Economic Geology and Geochemistry, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimiopolis, Zographou, 15784, Athens, Greece.
4Department of Palaeobiology, Swedish Museum of Natural History, Box 50007, Stockholm, Sweden.
5School of Chemistry, Cardiff University, Park Place, CF10 3AT, Cardiff, UK.

*Corresponding author
Tel: +44(0)29 208 70058
Email: ChiFruE@cardiff.ac.uk

Short title: A modern banded iron formation
Abstract. An Early Quaternary shallow submarine hydrothermal iron formation (IF) in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, displays banded rhythmicity similar to Precambrian banded iron formation (BIF). Sedimentary, stratigraphic reconstruction, biogeochemical analysis and micro-nanoscale mineralogical characterization confirms the Milos rocks as modern Precambrian BIF analogues. Spatial coverage of the BIF-type rocks in relation to the economic grade Mn ore that brought prominence to the CVSB implicates tectonic activity and changing redox in the deposition of the BIF-type rocks. Field-wide stratigraphic and biogeochemical reconstruction demonstrates two temporal and spatially isolated iron deposits in the CVSB with distinct sedimentological character. Petrographic screening suggest the previously described photoferrotrophic-like microfossil-rich IF (MFIF), accumulated on basement andesite in a ~150 m wide basin, in the SW margin of the basin. A strongly banded non-fossiliferous IF (NFIF) caps the Mn-rich sandstones at the transition to the renowned Mn-rich formation. Geochemical evidence relates the origin of the NFIF to periodic submarine volcanism and water column oxidation of released Fe(II) in conditions apparently predominated by anoxia, similar to the MFIF. This is manifested in the lack of shale-normalized Ce anomalies. Raman spectroscopy pairs hematite-rich grains in the NFIF with relics of a carbonaceous material carrying an average δ¹³Corg signature of ~25‰. However, a similar δ¹³Corg signature in the MFIF is not directly coupled to hematite by mineralogy. The NFIF, which post dates large-scale Mn deposition in the CVSB, is composed primarily of amorphous Si (opal-SiO₂·nH₂O) while crystalline quartz (SiO₂) predominates the MFIF. An intricate interaction between tectonic processes, changing redox, biological activity and abiotic Si precipitation, formed the unmetamorphosed BIF-type deposits.

Keywords: Banded iron formation; BIF analogue; Hydrothermal activity; Iron cycling; Silica cycling.
Introduction

Recently, an Early Quaternary iron formation (IF), ~2.0 million years old, displaying banded rhythmicity typical of Precambrian banded iron formations (BIF) (James, 1954; Gross, 1980; Simonson, 1985, 2003; Bekker et al., 2010), was serendipitously discovered in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece (Chi Fru et al., 2013, 2015). Before this discovery, Cape Vani was long known to host Mn oxide ores of economic potential (Hein et al., 2000; Liakopoulos et al., 2001; Glasby et al., 2005; Kilias et al., 2007). Milos is an emergent volcano on the Hellenic Volcanic Arc (HVA) where arc-volcanism and seafloor hydrothermal activity occur in thinned pre-Alpine to Quaternary continental crust (Kilias et al., 2013) (Fig. 1). The first reported IF from Cape Vani is unmetamorphosed and contains diverse microfossils encrusted by hematite, with ferrihydrite proposed as a primary precursor mineral (Chi Fru et al., 2013, 2015). Field stratigraphy, Rare Earth Elements (REEs), stable isotopes, petrographic and microfossil studies point to microbial Fe deposition in a semi-enclosed, shallow submarine basin under conditions analogous to those that formed the Precambrian Algoma-type BIFs near volcanic centers (Chi Fru et al., 2015). These earlier reports assumed a one-time basin-wide depositional event and a common origin for all Fe-rich sedimentary rocks in the CVSB.

However, it remains unclear what sedimentary processes caused the distinct deposition of the BIF-type rocks in a basin where Mn precipitation was apparently widespread at various intervals. Moreover, it is not known how the Mn ores relate temporally and spatially to Fe deposition in the ~1 km long CVSB. This knowledge may provide clues to processes that triggered large-scale deposition of similar Proterozoic Fe-Mn-rich deposits (Roy, 2006; Tsikos et al., 2010). Here, new sedimentological, petrological and biogeochemical evidence describes cycles of
periodic precipitation of shallow submarine Si and Fe-rich sedimentary rocks and the plausible mechanisms that enabled their temporal and spatial separation from the Mn deposits in the CVSB. The data reveal a much more complex depositional system not only controlled by microbial Fe(II) oxidation as previously proposed (Chi Fru et al., 2013, 2015), but illuminates episodic volcanism coupled to changing redox conditions as a central mechanism in the formation of the banded iron rocks.

1.1 Geological setting

The geology and iron and manganese mineralization of the CVSB have been described in detail (Plimer, 2000; Hein et al., 2000; Liakopulos et al., 2001; Skarpelis and Koutles, 2004; Glasby et al., 2005; Stewart and McPhie, 2006; Kilias, 2011; Alfieris et al., 2013: Chi Fru et al., 2013, 2015; Papavassiliou et al., 2017). Briefly, the Milos IF is part of the CVSB, a recently emergent sedimentary rift basin located NW of Milos Island, along the HVA in the Aegean Sea, Greece (Fig. 1). It hosts a fossil analogue of active shallow-submarine hydrothermal activity on the coast of Milos Island (Dando et al., 1995). The CVSB developed within a 2.7 to 1.8 Ma shallow-submarine rhyolitic-dacitic volcanic center, filled up mainly by a ~35-50 m thick stratigraphic succession of volcaniclastic/epiclastic sandstones and sandy tuffs spanning Upper Pliocene to Lower Pleistocene, 35-40% of which is hydrothermally mineralized by Mn oxides and barite (Hein et al., 2000; Liakopulos et al., 2001; Skarpelis and Koutles, 2004; Papavassiliou et al., 2017). Sedimentologic and ichnologic data, including sedimentary structures, lamellibranch, echinoid and brachiopod fossils, the gastropod mollusk fossil, Haustator biplicatus (Bronn, 1831), and microbially induced sedimentary structures (e.g., Kilias, 2011), suggest that most of the CVSB sandstones/sandy tuffs hosting the Mn-rich deposit, are foreshore to
shoreface shallow submarine deposits, formed at a maximum depth of 200 mbsl. Over the last 0.8 Myr, fluctuating water depths due to sea-level changes of up to 120 m and volcanic edifice building, has resulted in tectonic uplift of ~250 m (Papanikolaou et al., 1990). The CVSB fill, currently 35 m above sea level, is tectonically northbound by intrusive rhyolite, framed by elevated andesitic-dacitic centres, with the Cape Vani and the Katsimoutis dacitic lava domes being the most prominent (Fig. 1).

2 Methodology

2.1 Sample preparation

Sedimentary structures, grain-size trends, lateral facies variations, vertical stacking trends, and key stratigraphic surfaces form the basis for facies analysis. Prior to mineralogical and geochemical analysis, exposed rock surface layers were sawn and removed. GeoTech Labs (Vancouver, Canada) produced doubly polished thin sections for mineralogical and textural analysis, while geochemical analysis was performed on pulverized powders and acid-digests (Chi Fru et al., 2013, 2015).

2.2 Mineralogical analysis

2.2.1 X-Ray Diffraction analysis

A PANalytical Xpert-pro diffractometer at room temperature, 45 kV, 40 mA and 1.5406 Å wavelength and Cu-Kα radiation and Ni-filter, was used for Powder X-Ray Diffraction (PXRD) analysis. Samples were analyzed between 5-80° in step sizes of 0.017° with continuous mode scanning step time of 50.1650 s while rotating. Raman spectroscopy was performed with a confocal laser Raman spectrometer (Horiba instrument LabRAM HR 800), equipped with a multichannel air-cooled (-70°C) 1024 x 256 pixel charge-coupled device (CCD) array detector as previously described (Chi
Spectral resolution was ~0.3 cm\(^{-1}\)/pixel. Accuracy was determined by a repeated silicon wafer calibration standard at a characteristic Raman line of 520.7 cm\(^{-1}\).

2.2.2 Transmission electron microscopy

Specimens for Transmission electron microscopy (TEM) were prepared from the crushed rock specimen powder. This was followed by dry-dispersal onto a 300 mesh holey carbon TEM Cu grid. Microscopy was conducted using a JEOL 2100 TEM with a LaB\(_6\) source in the School of Chemistry, Cardiff University, operated at 200kV. The X-EDS analysis was performed with an Oxford Instrument SDD detector X-Max N 80 T.

2.2.3 Scanning electron microscopy

Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS) analysis was done on a FEI QUANTA FEG 650 ESEM. Images were captured at 5 kV and EDS data collected at 20 kV, using an Oxford T-Max 80 detector (Oxford Instruments, UK). The analyses were performed in low vacuum to minimize surface charging of uncoated samples. EDS elemental maps were collected for 30 min or until the signal had stabilized, indicated by a clear distribution trend. The data were further processed with the Oxford Aztec software.

2.3 Geochemical analysis

2.3.1 Laser ablation ICP-MS and trace element analysis

Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) was performed at Cardiff University on polished thin sections. The LA-ICP-MS system
comprised a New Wave Research UP213 laser system coupled to a Thermo X Series 2 ICP-MS. The laser was operated using a frequency of 10 Hz at pulse energy of ~5mJ for an 80µm diameter beam using lines drawn perpendicular to the layering and at a movement speed of 26 microns sec$^{-1}$. Samples were analyzed in time resolved analysis (TRA) mode using acquisition times of between 110 and 250 seconds; comprising a 20 second gas blank, 80-220 second ablation and 10 second washout. Dwell times varied from 2 msec for major elements to 35 msec for low abundance trace elements. Blank subtraction was carried out using the Thermo Plasmalab software before time resolved data were exported to Excel.

Separated and independently pulverized banded layers were digested by lithium borate fusion followed by major, trace and rare earth element (REE) analyses using ICP-ES/MS and XRF at AcmeLabs® (http://acmelab.com). Geochemical data were compared with previously published results for the more widely investigated Mn deposits (Hein et al., 2000; Liakopoulos et al., 2001; Glasby et al., 2005).

2.3.2 Isotope analysis

C, N and S isotopic composition for the pulverized samples was determined as previously described (Chi Fru et al., 2013, 2015), following combustion in a Carlo Erba NC2500 analyzer and analyzed in a Finnigan MAT Delta V mass spectrometer, via a split interface to reduce gas volume. Reproducibility was calculated to be better than 0.15‰ for δ13C and δ15N and 0.2‰ for δ34S. Total C and N concentrations were determined simultaneously when measuring the isotope ratios. The relative error was <1% for both measurements. For carbon isotopic composition of organic carbon, samples were pre-treated with concentrated HNO$_3$ prior to analysis.
2.4 Organic geochemistry analysis

Lipid biomarker and compound specific δ\(^{13}\)C analyses were executed on powdered samples of sectioned bands from which exposed surface layers had been removed. Modern sediments from Spathi Bay, 36°40'N, 24°31'E, southeast of Milos Island, collected by push coring at 12.5 m below the seafloor were freeze-dried prior to extraction to aid the identification of potential syngenetic biomarkers in the Quaternary rocks. Between 4-6 g of ground samples were ultrasonically extracted using 3×Methanol, 3×(1:1) Methanol:Dichloromethane (DCM), and 3×DCM and extracts were combined and dried under N\(_2\). Samples were subsequently re-dissolved in DCM then methylated following the method of Ichihara and Fukubayashi (2010). The resulting residue was silylated using, 20 \(\mu\)l pyridine and 20 \(\mu\)l BSTFA and heated at 60°C for 15 min. Total lipid extracts were analyzed using a Shimadzu QP 2010 Ultra gas chromatography mass spectrometer (GC/MS). Separation was performed on a Zebron ZB-5HT column (30 m x 0.25 mm x 0.10 \(\mu\)m) with a helium carrier gas flow at 1.5 ml min\(^{-1}\). Samples were injected splitless, onto the column at 40°C with the subsequent oven temperature program ramped to 180°C at a rate of 15°C min\(^{-1}\), followed by ramping to 325°C at a rate of 4°C min\(^{-1}\) and a final hold for 15 min. The MS was set to scan from 50 to 800 m/z with an event time of 0.70 sec and a scan speed of 1111 u/sec. All peaks were background subtracted and identification confirmed using the NIST GC/MS library and literature spectra. Contamination was not introduced into the samples, as blank samples worked up concurrently with the rock fractions had results comparable to the ethyl acetate instrument blank.

2.5 Chemical weathering analysis

Chemical index of alternation (CIA) was used to determine whether variations in chemical weathering intensities would in addition to hydrothermal activity deliver materials into the depositional basin from the continent, according to the formula: \[CIA = \frac{Al_2O_3}{\left(Al_2O_3 + CaO + Na_2O + K_2O\right)} \times 100 \]. Extensively applied, the CIA index reveals subtle changes in weathering fluxes (Nesbit and Young, 1982; Maynard, 1993; Bahlburg & Dobrzinski, 2011), where increasing CIA values generally indicate amplified chemical dissolution of rocks and selective release of dissolvable CaO, Na_2O and K_2O into solution (Nesbit & Young, 1982; Maynard, 1993; Bahlburg & Dobrzinski, 2011). The broken rock particles enriched in the poorly soluble Al_2O_3 fraction, settle to the seafloor as weathered sediments carrying a chemical composition different from the source. In the absence of chemical dissolution, no net chemical change is expected in the composition of sediments compared to source and thus a low CIA index. CIA indices for detritus of 0-55, 55-75 and >75, are considered unweathered, unweathered to slightly weathered and weathered to highly weathered, respectively (Nesbit & Young, 1982; Maynard, 1993; Bahlburg & Dobrzinski, 2011). The redox conditions under which sediments formed were obtained from REE composition normalized to the North American Shale Standard (NASC) (Groment et al., 1984).

3 Results

3.1 Lithostratigraphy

Field-wide sedimentological and lithostratigraphical mapping of the CVSB in the summer and fall of 2014, enabled the assessment of the lateral and vertical coverage of the Milos iron oxide-rich facies relative to the Mn-rich sandstones that dominate the Early Quaternary sedimentary basin (Fig. 2). Six stratigraphic sections,
representing marine siliciclastic lithofacies sequences, were investigated along a ~1 km SW-NE trending portion of the CVSB infill (Supplementary Figs 1-7). Sequence stratigraphy was conducted on outcrops and vertical shafts and tunnels left behind by extinct Mn mining activity. Two of those sections; Section A located at 36°44’17.85”N, 24°21’17.72”E and Section B located at 36°44’35.11”N, 24°21’11.25”E, contain stratigraphic units composed of layered, bedded, or laminated rocks that contain ≥15 % Fe, in which the Fe minerals are commonly interlayered with quartz or chert, in agreement with the definition of Precambrian BIFs (James, 1954; Gross, 1980; Bekker et al., 2010). These IFs are descriptively referred to here as microfossiliferous iron formation (MFIF) according to Chi Fru et al. (2013, 2015), and non-microfossiliferous iron formation (NFIF) (this study), respectively (Fig. 2). The MFIF and the NFIF occupy at most ~20% of the entire CVSB infill. The stratigraphy and sedimentary lithofacies are illustrated below, using lithofacies codes modified after Bouma (1962), Miall (1978, 1985), Lowe (1982), Mutti (1992) and Shanmugam (2016).

Further field stratigraphic survey revealed considerable lithologic variability within three fault-bounded volcanosedimentary sub-basins in the CVSB (Fig. 2), which for the sake of simplicity are referred to as Basin 1—host of the MFIF; Basin 2—host of economic grade Mn ore; and Basin 3—host of the NFIF (Fig. 2). Each section is framed by distinct marginal normal faults that strike in the NW-SE and NE-SW to NNE-SSW directions, distinguishable by distinct lateral sedimentary facies exhibiting unique vertical sequence stratigraphy (Fig. 2; Supplementary Figs 1-7). Faulting in the CVSB is related to major geographical activation of extensional structures at intervals that shaped Milos into a complex mosaic of neotectonic units (Papanikolaou et al., 1990).
3.1.1 Section A (36°44'17.85''N, 24°21'17.72''E)

Informally known as “Little Vani”, Section A is the type section containing the MFIF at the base. It crops out in the W-SW edge of the CVSB (Figs 1 & 2) as a ~6-7 m high cliff resting stratigraphically on submarine dacitic and andesitic lavas and domes. This section extends laterally in the N-NE direction for an estimated 300–500 m.

The MFIF is correlatively interpreted to be in direct stratigraphic contact with Late Pliocene-Early Pleistocene (2.5–1.5 Ma) basement submarine dacitic-andesitic rocks. Lithologically, the MFIF comprises laminated and massive fine-grained red and white weathered ferruginous jaspelitic red chert layers (Chi Fru et al., 2013, 2015). The chert layers contain morphologically distinct Fe minerals dispersed in a fine-grained siliceous matrix (Fig. 3), marked by the notable absence of pyrite and an extremely low S content (Chi Fru et al., 2013, 2015). Layers are tabular and typically laterally continuous at scales of several meters, whereas wave and current structures (e.g., cross-lamination), are generally absent from the MFIF. The hematite-rich MFIF laminae (Table 1) are built by massive encrustation of anoxygenic photoferrotrophic-like microbial biofilms by precipitated Fe (Chi Fru et al., 2013). The base of the MFIF outcrop, is visibly mineralized by black diffused bands/veins composed of Mn oxides (Fig. 4 & Table 1).

A markedly reddish 2-3 m-thick section immediately overlies the MFIF, comprising a distinct package of Fe-rich beds that transition up the section from fine to reddish medium and coarse-grained to pebble–cobble conglomerate volcaniclastic sandstone beds (Figs 4A & 5). The lower 1-2 m consist of fine-grained sandstone beds that are well to moderately sorted, containing a 20-40 cm thick portion dominated by plane parallel-laminated sandstone/sandy tuff, massive to plane
parallel-laminated sandstone/sandy tuff, and massive sandstone/sandy tuff lithofacies (Fig. 5; Supplementary Fig. 1). The fabric of these Fe-rich sandstone facies consists of sub-angular to sub-rounded and 100–600 µm fine to medium-grained volcaniclastic K-feldspar grains, making up to 75% of the total rock, with variable amounts of quartz and clay mineral grains.

The latter are overlain by a ~1-1.5 m sequence of poorly-sorted tabular clast-supported pebble-to-cobble conglomerate beds with an erosional base, grading upward into coarse to medium-grained Sh beds, arranged in alternating conglomerate cycles (Fig. 5), averaging 20-40 cm in thickness. The cobble/pebble conglomerate clasts include intraformational volcanic rocks (dacite, andesite), allochthonous volcaniclastic sandstone, and volcaniclastic microclasts (e.g. K-feldspar), cemented by hematite (Fig. 5; Chi Fru et al., 2013; Kiliias et al., 2013). Towards the westernmost edge of the “Little Vani” section, there is a facies change from the graded Gcm/Sh rhythms to a predominantly Fe-rich conglomerate Gcm bed (Fig. 4A), termed the conglomerate-hosted IF (CIF) in Chi Fru et al. (2015), with a maximum thickness of ~0.5 m and a cobble size range of ~10 cm. The Fe-rich conglomerate bed transitions upward into medium-grained pebbly reddish ferruginous Sm with thin volcanic rock and sandstone pebble lenses. This in turn grades upwards into a very-fine-grained greenish glauconite-bearing plane parallel-laminated sandstone to siltstone bed; characterized by soft-sediment deformation structures, such as flame structures, convolute bedding and lamination structures, loop bedding, load casts, and pseudonodules (Supplementary Figs 1-2).

The “Little Vani” section is eventually capped along an erosional surface by an overlying 1-2 m thick section dominated by medium to fine-grained and moderately to poorly-sorted reddish Fe-rich tabular sandstone beds, 10–40 cm thick,
topped by patchy sub-cm to cm-thick Mn-rich sandstones (Fig. 5; Supplementary Figs 1-2). Dominant lithofacies of the Fe-rich sandstone cap include planar and hummocky cross-bedding, exhibiting bioturbation in places. The Fe-rich lithofacies cap is laterally discontinuous, thinning out basinwards towards the N-NE, and can be observed smoothly grading into a 1-2 m thick section composed of cm to sub-cm-thick Mn–rich volcaniclastic sandstone lithofacies, described below in Section B. No Fe-rich hydrothermal feeder veins are obvious in the MFIF, however feeder veins and Mn horizons can be observed to truncate laminations in the MFIF, and up through the whole “Little Vani” section (e.g., Figs 4C & 5).

3.1.2 Interpretation of Section A

The MFIF rests directly on the submarine dacites-andesites that were deposited in relatively shallow but dominantly below a wave base submarine setting (Stewart and McPhie, 2006). The fine-grained, finely laminated nature of the MFIF, and, the lack of evidence of current or wave structures (e.g., symmetric ripples or hummocky cross-stratification), coupled to the absence of volcanogenic detrital particles and intraclast breccia structures, indicate a low energy sedimentation environment at ca. ≥ 100-200 m depth, marked by negligible volcanic interference (e.g., Tice and Lowe, 2006; Trower and Lowe, 2016; Konhauser et al., 2017). This interpretation is supported by the observed enrichment of Fe in the MFIF; a characteristic of relatively deeper water lithofacies (Trower and Lowe, 2016; Konhauser et al., 2017). This view is compatible with the proposition that hematite enrichment in the MFIF was under the control of photoferrotrrophic biofilms (Chi Fru et al., 2013) known to thrive at lower light intensities (Kappler et al., 2005; Li et al., 2013; Konhauser et al., 2017). The quiet environmental conditions would have ensured the formation of such stable
photoferrotrophic biofilms over extended periods of time that would have facilitated
the oxidation of hydrothermally released Fe(II) and the depositon of Fe(III) minerals.

The overlying lithofacies sequence record a switch to faster accumulation of
volcaniclastic turbidites on the quiet MFIF deposit, with the fine, medium to coarse-
grained sandstone lithofacies typifying deposition during low and high density
turbiditic flows in the middle to inner parts of a turbidite fan-like environment (Lowe,
1982; Mutti 1992; Talling et al., 2012; Orme and Laskowski, 2016; Shanmugam,
2016; Wang et al., 2017). Massive conglomerates containing both allochthonous
sandstone clasts and intraformational andesite-dacite are interpreted as channelized
submarine debris flows or slump deposits sourced from adjacent topographic highs
(Lowe, 1982; Stewart and McPhie, 2006; Orme and Laskowski, 2016). Also,
deposition from a waning low density turbidity current is indicated by the upward
fining bed of pebbly Fe-rich sandstone, greenish glauconite bearing sandstone and
laminated siltstone. Up section, the abundance of parallel and cross stratified Fe-rich
and Mn-rich sandstone facies along an erosional surface, reflect a change in
deposition to a high energy, shallow submarine shoreface/foreshore setting, above a
wave base.

In summary, stratigraphic observations in the “Little Vani” section indicate that
the MFIF constitutes the older IF deposited on the CVSB basement lavas. Following
MFIF deposition, there have been a series of upward lithologic changes which reflect
gradual shoaling, accompanied by tectonic instability, topographic growth, submarine
erosion, and massive sediment supply by density/gravity flows of volcanogenic
debris. It is proposed that these changes were controlled by a combination of
submarine volcano-constructional processes, synvolcanic rifting and volcano-tectonic
uplift, resulting in cyclic changes in depositional water depth (Stewart and McPhie,
3.2 Section B (36°44'35.11''N, 24°21'11.25''E)

This ~8-10 m-thick fault-bounded stratigraphic section, here referred to as “Magnus Hill”, is the type section that contains the NFIF (Figs 2 & 7; Supplementary Figs 3-4).

Two lithostratigraphic units—a lower unit A and an upper unit B—are identified in this study. Unit A is made up of a lower sandstone facies that is ~4-5 m thick, dominated by a Mn-oxide cement exhibiting a grayish to black, coarse to very coarse-grained volcaniclastic sandstone beds, overlain by reddish brown Fe-rich massive sandstone beds (Fig. 8 & Supplementary Figs 3-4). Unit B, ~5 m thick, unconformably overlies unit A and comprises two distinct packages of beds that transition up section from brownish gravel-to-pebble conglomerate beds (0.5-1.0 m thick), in contact with the very fine-grained NFIF deposit (Supplementary Fig. 8 & 9).

The NFIF is capped by patchy cm-thick crustiform Mn oxides. Bifurcating feeder veins composed of barite, quartz and Mn and Fe-oxide minerals cut through the underlying sandstone beds (Supplementary Fig. 4).

Sandstone beds are moderately to well-sorted and 5-15 cm thick, and Mn-mineralized lithofacies include plane parallel-laminated sandstone, plane parallel laminated to rippled sandstone, planar cross-bedded sandstone, and massive sandstone. Secondary lithofacies include thinly bedded (1-5 cm thick) greenish glauconite-bearing heterolithic sandstone and thin (< 5 cm thick) white to pale-brown sandy tuff beds interbedded with the other Lithofacies. The sandstone facies host the main economic grade Mn oxide ores in the CVSB, which typically construct texturally diverse cements associated with a variety of volcaniclastic detritus (i.e., K-
feldspar, lithic fragments, altered volcanic glass, quartz, sericitized plagioclase, chloritized biotite) and authigenic barite and or glauconite. This constitutes part of a separate study devoted to the Mn ores and will not be dealt with further here, as the focus of the current study is on the IFs. Kilič (2011), however, suggested that many of the sedimentary structures identified within the Mn-mineralized sandstone lithofacies are associated with microbial mat growth.

The NFIF is composed of strongly banded Fe-rich rocks (Fig. 7) exposed on the topmost part of “Magnus Hill”. About 2-3 m thick, the NFIF consists of mm to sub-mm thick, dark grey and brown Fe-rich bands, interbanded with reddish brown Si-rich layers (Figs 7 & 9-11; Supplementary Figs 10-11). Sedimentary structures in the NFIF are predominantly characterized by rhythmic mm to sub-mm thick bedding (e.g., Fig. 7). The iron oxide-rich bands made up mainly of hematite (Table 1 & Fig. 10C) are typically composed of very fine-grained angular to sub-angular volcanic dust material (i.e., fine volcanic ash with particle size under 0.063 mm, K-feldspar, tridymite and cristobalite (Table 1) in an amorphous Si and crystalline hematite matrix (Fig. 12). The predominantly amorphous Si-rich bands are typically planer, finely laminated and composed of microcrystalline to cryptocrystalline ferruginous chert.

The NFIF is directly overlain by a ~1 m thick laminated to massive well-indurated, nodular-pisolitic ironstone bed (Fig. 8A, C & D) that locally preserves a sub-horizontal fabric reflecting the bedding in the original sediment or contain various ferruginous clasts such as fragments, nodules, pisoliths, and ooliths set in a hematite-rich siliceous matrix (Fig. 8C). Scattered cm-scale pisoliths display a crude concentric internal layering, characterized by open and vermiform voids filled by cauliflower-like Mn oxides overprint (Fig. 8D).
3.2.1 Interpretation of Section B

We interpret the ferruginous NFIF lithofacies to represent the deepest water deposits in the “Magnus Hill” section based on its very fine-grained sedimentary composition, fine laminations and a paucity of intraclast breccias (e.g., Trower and Lowe, 2016, and references therein). These combined with the lack of evidence for wave and current-formed sedimentary structures (e.g., hummocky cross-stratification, trough, ripple cross-stratification, and erosional contacts), indicate quiet water low energy sedimentation, below a likely fair-weather wave base (Simonson and Hassler, 1996; Trendall, 2002; Krapež et al., 2003; Trower and Lowe, 2016; Konhauser et al., 2017). This interpretation is consistent with (1) up section lithofacies change from predominantly sandstone facies of the lower unit to conglomerate facies (Fig. 8B), probably related to a series of channel deposits in an inner-turbidite fan-like setting (Orme and Laskowski, 2016). This sedimentary sequence shows overall deepening from a tidal to shoreface zone depositional environment to an offshore zone during periods of high sea level stand (Trower and Lowe, 2016); (2) conclusions of previous workers suggest that lithofacies with Fe-rich composition similar to the NFIF, were deposited from seawater in a basinal settings (Lowe and Byerly, 1999; Tice and Lowe, 2006). The hypothesized deepening of the “Magnus Hill” section is generally consistent with the interpretation that active rifting was occurring during the filling of the CVSB (Papanikolaou et al., 1990; Stewart and McPhie, 2006; Liakopoulos et al., 2001; Papavassileiou et al., 2017), resulting in the transition from a relatively shallow and deeper water setting represented by the sandstone and conglomeratic deposits, to a relatively deeper quiet water environment, characterized by the finely laminated NFIF facies (Trower and Lowe, 2016).
Sedimentary structures and microbial mat fabrics (Kilias et al., 2011) in lithostratigraphic unit A are interpreted to record a variation between storm-dominated shallow-marine (lower shoreface), stable shallow-marine environment with low sedimentation rate in an upper to middle shoreface, and tide-influenced environments (e.g., Noffke et al., 2003; Ramos et al. 2006; Kilias, 2011; Ossa et al., 2016).

We interpret that each graded Fe oxide-rich band of the NFIF (Supplementary Figs 8 & 9), represents an individual fallout deposit from a proximal pyroclastic eruption (Stiegler et al., 2011; Trower and Lowe, 2016). This interpretation is supported by normal grading in fine volcanic ash content that reflects their likely origin as pyroclastic fallout deposits in an otherwise quiet water setting (Lowe, 1999). For example, tridymite is a stable SiO$_2$ polymorph formed at low pressures of up to 0.4 GPa and at temperatures of ~870-1470 °C (Swamy et al., 1994; Koike et al., 2013; Morris et al., 2016). The coincidence of tridymite formation with silicic volcanism is in agreement with the widespread distribution of andesite, dacite and rhyolitic lava domes in the CVSB. For example, vapour phase production of tridymite together with sanidine identified in this study (Fig. 10) and iron oxides is principally associated with rhyolite ash flow (Breitkreuz, 2013; Galan et al., 2013). Similarly, Cristobalite is a SiO$_2$ polymorph associated with high temperature rhyolitic eruptions (Horwell et al., 2010). Finally, in situ carbonaceous laminations are absent, suggesting that benthic microbial mat growth had no influence on deposition of the NFIF (Trower and Lowe, 2016). Ironstones overlying the NFIF are difficult to interpret with the existing data, but may represent primary granular iron formations (GIF); i.e., a facies transition from BIF-style to GIF-style IF (e.g., Bekker et al., 2010), or supergene ferruginous duricrust formation resulting from subaerial weathering (Anand et al., 2002).
3.3 Geochemistry

The SEM-EDS-electron micrographs of the NFIF thin sections reveal distinct Fe and Si-rich layers alternating periodically with each other in a fine sediment matrix as shown by the grain size (Figs 9 & 11 & Supplementary Figs 9-11). Laser ablation ICP-MS line analysis indicates Si and Fe count intensities in the Milos BIF-type are comparable to the 2.5 Ga Precambrian BIF reference from the Kuruman IF formation, Transvaal Supergroup, South Africa (Fig. 11). The laser ablation ICP-MS data further show that dramatic fluctuations in Fe concentrations control the Si to Fe ratio in both types of rocks, despite the thousands of millions of years gap between them.

No other Fe(III)(oxyhydr)oxide minerals have been identified in the Cape Vani Fe-rich facies different from hematite. Electron imaging of the NFIF Fe-rich bands suggests Si, Al and K-rich phases are mostly associated with the volcanioclastic material predominated by K-feldspar clasts (Fig. 9; Supplementary Figs 10 & 11). A unique feature of the NFIF is that the hematite in the Fe-rich bands occurs in tight association with a carbonaceous material (Fig. 10C), but not for the hematite in the Fe-rich sandstones and in the MFIF. This is also the case for the CIF overlying the MFIF. Hematite showing a fluffy texture and at times presenting as framoidal particles, is sprinkled in the Si-rich cement containing traces of Al and K in the MFIF rocks (Fig. 3). Lack of association of the framoidal-iron-rich particles with S, following SEM-EDS analysis, rules out a pyrite affiliation. This is consistent with the non-sulfidic conditions proposed for the deposition of the Milos BIF-type rocks, as are their Precambrian predecessors. TEM analysis suggests platy nano-Fe oxide-rich particles predominate in the NFIF and MFIF, confirmed by overlaid X-ray Energy Dispersive spectra taken from selected areas (Fig. 12) and consistent with the XRD
data showing hematite in both samples. The platy hematite needles in the Milos BIF-type rocks are morphologically, and by size, comparable to hematite needles reported in the ∼2.5 Ga Kuruman BIFs (Sun et al., 2015).

Unlike the iron-rich bands, volcaniclasts in the Si-rich bands are much smaller in size, occurring mainly as fine-grained (Supplementary Fig. 8-11), signifying predominant precipitation during periods of weaken hydrothermal activity. The SiO$_2$ matrix in both the MFIF are fine-grained, occurring mainly as amorphous opal in the NFIF and crystalline quartz in the MFIF (Figs 10B & 12A-B), while in the MFIF it is mainly present as crystalline quartz (Fig. 12C-D). Relative concentrations of Al, K and Ti in the samples are generally low, with bulk-measured concentrations in both the Si-/Fe-rich bands, together with the SiO$_2$ and Fe$_2$O$_3$ content, strongly covarying with continental crust concentrations (Fig. 13A). Mn impregnation of the MFIF, preserved in the form of replacement layers mostly identified as cryptomelane (K(Mn$^{4+}$,Mn$^{2+}$)$_8$O$_{16}$) (Table 1), is below detection in the NFIF. Rare hausmannite (Mn$^{2+}$Mn$^{3+}$$_2O_4$) was detected in a few cases in the MFIF (Fig. 10D).

Trends of major elements from which CIA indices were calculated (Fig. 13B), covary with those of the continental crust (Fig. 13A). Continental crust averages, refer to the zone from the upper continental crust to the boundary with the mantle (Rudnick & Gao, 2003). The calculated CIA indices average 52 with one outlier at 22 (Fig. 13B). No distinct relationship could be established between the CIA indices and the respective IFs or between the distinct alternating Si- and Fe-rich bands (Fig. 13). Highly weathered clay minerals resulting from the chemical decomposition of volcanic rocks, e.g., kaolinite representing maximum CIA values of 100 or 75-90 for illite, are absent in the analyzed materials. The absence of carbonates in the rocks strengthened the CIA indices, since CIA indices are expected to be lower when Ca
carbonates are present (Bahlburg and Dobrzinski, 2011). TiO₂ content—a detrital proxy—is mostly constant and covaries with the CIA values (Fig. 13B), suggesting little variability and limited continental weathering input. A fairly strong negative linear correlation was found between SiO₂ and Fe₂O₃ values normalized to TiO₂ (inset, Fig. 13B).

Shale-normalized REE values (REE(SN)) for both the MFIF and NFIF are consistent with previous reports (Chi Fru et al., 2013, 2015), and show patterns typical of marine sedimentary environments affected by hydrothermal activity throughout Earth’s history (e.g., Planavsky et al., 2010). There is a notable absence of significant negative Ce(SN) anomaly for both the MFIF and NFIF (Fig. 14A-B). These observations are statistically corroborated by true Ce anomalies, calculated as Ce/Ce* (Ce(SN)/0.5Pr(SN) + 0.5La(SN)) and Pr/Pr* (Pr(SN)/0.5Ce(SN) + 0.5Nd(SN)) and considered significant when Ce/Ce* and Pr/Pr* are less than and greater than 1, respectively (Bau et al., 1996; Planavsky et al., 2010) (Fig. 14B). Further, the Eu/Eu* anomalies averages for the MFIF and NFIF and the distinct Fe-/Si-rich bands, suggest a ~2× higher Eu/Eu* signal for the Si-rich bands relative to the Fe-rich bands and between the MFIF and NFIF deposits (Fig. 14C). Average Pr and Yb shale normalized ratios (Pr/Yb*)—a light vs. heavy REE enrichment proxy (Planavsky et al., 2010)—indicate similar enrichment levels of light and heavy REE in both the NFIF and MFIF, as well as in the Fe- and Si-rich bands (Fig. 14C).

3.4 Lipid biomarker distribution and chemotaxonomy

Bulk δ¹³C org averaged −25.4‰ (SD:±0.22), −25.2‰ (±0.26) NFIF Fe-/Si-rich bands and −25.6‰ (SD:±0.12) for bulk MFIF, respectively (Table 2). A fractionation effect between the alternating Fe-/Si-rich layers (Δ¹³C Fe-rich NFIF-Si-rich NFIF) is estimated to be
~0.23‰ (SD±0.036), while Δ^{13}C$_{Fe}$-rich NFIF-MFIF and Δ^{13}C$_{Si}$-rich NFIF-bulk MFIF, is 0.13‰ (SD:±0.11) and 0.36‰ (SD:±0.14), respectively. These differences are small and within the margin of error of analysis, suggesting no strong distinction in δ^{13}C$_{org}$ preserved in the different IFs and their various facies. They are interpreted to mean similar carbon fixation processes operated during intervals of predominant Si and Fe(III)(oxyhydr)oxides deposition in both IFs. Attempts to discriminate between these environments by lipid biomarker analysis revealed mainly C$_{16}$-C$_{19}$ fatty acid methyl esters (FAME) in the Fe-rich NFIF bands and in bulk MFIF, while the Si-rich NFIF bands contain mainly C$_{12}$-C$_{21}$ FAMEs, suggesting either selective preservation (lipid recovery was lower in the Fe-rich MFIF bands) or shifts to different potential biological populations during the deposition of the different layers. Preserved lipids discriminate against typical microbial lipid biomarkers like hopanoids, while C3 plant FAME are detected in all studied materials (Fig. 15). The anaerobic bacteria indicator, 10MeC$_{16:0}$ FAME, was however identified in a few bands.

4 Discussion

4.1 Sedimentological processes

The three sub-basin interpretation of the CVSB is consistent with previous proposals suggesting that sedimentation within the CVSB was characterized by active synvolcanic rifting which must have been important in shaping basin topography and the creation of sub-basin architecture (Papanikolaou et al., 1990; Stewart and McPhie, 2006; Liakopoulos et al., 2001; Papavassiliou et al., 2017). Moreover, this tectonic regime would suggest that the location(s) of volcanism were continually changing relative to the two stratigraphic sections, which themselves were also being affected, i.e. changes in depositional water depth and sedimentation style or and/or that local
submarine or subaerial topographic highs impeded the lateral continuity of sedimentary units (Stewart and McPhie, 2006; Trower and Lowe, 2016). Chi Fru et al. (2015) have suggested there is an upward deepening of the overall depositional setting recorded in the “Little Vani” section, consistent with rifting during CVSB infilling time.

The CVSB floored by dacitic/andesitic lava domes and overlain by volcanlastic infill, dates back to Upper Pliocene-Lower Pleistocene. A complex mosaic of lithologically diverse sedimentary units (blocks), confined by neotectonic marginal faults, characterizes the CVSB (Fig. 2). The most pronounced of these faults being the NW-trending Vromolimni-Kondaros fault (Papanikolaou et al., 1990) that has been proposed as the trigger of the hydrothermal activity that deposited Mn ore in the CVSB (Papanikolaou et al., 1990; Liakopoulos et al., 2001; Alfieris et al., 2013; Papavassiliou et al., 2017). The stratigraphically tight coupling between Mn and Fe deposition, linked by Fe oxide minerals in feeder-veins, and positive Eu anomalies (Fig. 14) indicating vent-sourced Fe (Maynard, 2010), associate Fe mineralization to fault-triggered hydrothermalism in the CVSB. This is consistent with models of geothermal fluid circulation along fault lines as conduits for the Mn-rich fluids that formed the Milos Mn ore deposit (Hein et al., 2000; Liakopoulos et al., 2001; Glasby et al., 2005; Kilias, 2012; Papavassiliou et al., 2017). More importantly, the overall complex neotectonic structure of the CVSB (Papanikolaou et al., 1990) would explain the creation of restricted basins, with sedimentological, lithological and geothermal conditions that enabled the development of unique biogeochemical circumstances in which the NFIF and MFIF formed.

The presence of the three depositional basins is supported by the fact that the sequence lithologies in each fault-bound unit are characterized exclusively by
occurrences of specific and variably thick stratigraphic packages that tend to be absent in others. For example, the MFIF occurs restricted to basin 1 and the NFIF to Basin 3. Basin 2 is further distinguished by 35-50 m thick interbedded ore-grade Mn-mineralized and glauconitic sandstones/sandy tuffs, much less developed in Basins 1 and 3 (Fig. 2). The presence or absence of a stratigraphic sequence, together with its thickness variation, are interpreted as a result of local syntectonic sediment formation conditions in each basin as a result of block tectonic movements along fault lines (Papanikolaou et al., 1990; Nijman et al., 1998). It may also be attributed to unique basin scale water column redox conditions (e.g. Bekker et al., 2010, and references therein), post-depositional erosion and changing sea level stand (Cattaneo & Steel, 2000).

The lack of hydrothermal feeder veins or seafloor exhalative structures (i.e., chimneys) in the MFIF and NFIF lithologies, suggests that hydrothermal Fe(II) was delivered by diffuse flow and that the Milos-IF formed on the seafloor. Importantly, a number of studies propose that the main Mn deposit in Basin 2 formed in two stages. First boiling hydrothermal fluids precipitated sulfide at depth, leading to first generation microbial-induced deposition of Mn oxides as pyrolusite and ramsdellite. Tectonic uplift resulted in the replacement of the first generation Mn minerals by second-generation Mn oxides, including cryptomelane (Hein et al., 2000; Liakopoulous et al., 2001; Papavassiliou et al., 2017). Cryptomelane replacement of the original Fe(III)(oxyhydr)oxides in MFIF therefore suggests that deposition of the MFIF is coeval with first stage Mn deposition in Basin 2. This observation also indicates that at this time, two active fault-bounded basins probably existed in the CVSB; i.e., Basins 2 and 3 (Fig. 2). For example, the underlying Mn-enriched sandstone lithology in Basin 3, stratigraphically correlated to the sandstone Mn
25

A subsequent geomorphological/chemical reconfiguration formed Basin 3, orchestrating the deposition of the NFIF in a deeper, small-restricted basin (Fig. 2). The deepening of Basin 3 is strongly demonstrated by an underlying fine upward grading of a transgressive-type Fe-rich lag deposit, that transitions into the NFIF. This uplifting into shallower water event that prompted second generation deposition of Mn oxides in Basin 2 and the substitution of Fe(III)(oxyhydr)oxides by Mn in sub-Basin 1, potentially triggered this environmental change in Basin 3. The MFIF and NFIF sequences are therefore temporally and spatially distinct (Fig. 2).

4.2 Formation Mechanism of The Milos BIFS

4.2.1 Paragenetic sequence

It is stressed that the previously generalized model proposed for biological deposition of the Milos IF, refers exclusively to parts of what is now designated as MFIF (Chifru et al., 2013). The NFIF is strongly banded, but does not display the typical microfossils seen in the MFIF, where diffused microbanding apparently relates to the distribution of microbial mats in thin sections (Chifru et al., 2013, 2015). The distinction of microcrystalline quartz and amorphous silica phases in the MFIF and NFIF, respectively, together with nano-crystalline hematite particles, suggests a primary amorphous silica origin in both deposits, diagenetically transformed to quartz in the MFIF. The difference in silica crystallinity between the IFs is concurrent with the older age predicted for the MFIF relative to the NFIF, from reconstructed sequence stratigraphy (Fig. 2). Hematite in BIFs is generally interpreted, based on thermodynamic stability, to be a transformation of various primary Fe(III) minerals,
with ferrihydrite often proposed as the principal precipitate from the water column (Glasby and Schulz, 1999; Bekker et al., 2010; Johnson et al., 2008; Percoits et al., 2009). It is thought that acidic pH yields mainly goethite while hematite is produced at circumneutral pH (Schwertmann and Murad, 2007). The notable absence of diagenetic magnetite and Fe carbonates (siderite and ankerite), point to negligible coupling of primary Fe(III) oxyhydroxides reduction to organic matter oxidation by the dissimilatory iron-reducing bacteria during burial diagenesis (Johnson et al., 2008). Minor occurrence of iron-silicate phases (Chi Fru et al., 2015) indicates an origin of the hematite precursor in seawater independent of the iron silicate proposed in some cases (Fischer and Knoll, 2009; Rasmussen et al., 2013, 2014). The up to 50 wt% Fe content recorded in the Fe-rich bands, indicate that large amounts of dissolved Fe(II) was intermittently sourced and deposited as primary Fe(III) minerals, through various oxidative processes in the depositional basin.

Importantly, the CIA index does not support mass weathering and mineralization of terrestrial Fe and Si, in agreement with the absence of rivers draining into the CVSB (Chi Fru et al., 2013). The specific identification of plant biolipids would at face value imply post-depositional contamination. However, samples were sawn to remove exposed layers and only the laminated bands for the NFIF were analyzed, while modern sediments from Spathi bay, located Southeast of Milos Island where hydrothermal activity is presently ensuing at 12.5 m below sea level, revealed similar plant lipids as recorded in the Quaternary IF (Fig. 15G). Post-depositional contamination with terrestrial plant lipids is therefore ruled out for the idea that recalcitrant plant biomass probably entered the sediments via seawater entrainment at the time of deposition (see Naden et al., 2005). This finding necessitates the careful interpretation of bulk $\delta^{13}C_{\text{org}}$ values obtained from both the
modern and ancient Milos sediments, involving in situ and ex situ biological contributions to 13C$_{org}$ fractionation by various known carbon fixation pathways (Preuß et al., 1989; Berg et al., 2010).

Such indication of mixing of the hydrothermal fluids with seawater may be interpreted to negate a reducing depositional environment as suggested by the Ce anomalies. However, Pichler & Veizer (1999) demonstrated that in the unconfined seafloor shallow hydrothermal vent fields at Tatum Bay, Papua New Guinea, experiencing little or no water column stratification, as low as 11% seawater is involved in the precipitation of Fe(III)(oxyhydr)oxides from hydrothermal fluids and at maximum 57%. It is therefore suggested that seawater mixing during deposition was at the lower limits. This is demonstrated by the REE analysis and the presence of anaerobic bacteria biomarkers in the NFIF formation, coupled to sediment lithology and stratigraphy, as explained below.

4.2.2 Tectono-sedimentary processes and band formation

Fluctuation in hydrothermal activity is proposed to account for the banding in the NFIF (Fig. 16), under redox depositional conditions inferred to be mainly reducing for both investigated IFs, consistent with previous reports (Chi Fru et al., 2013, 2015). Positive Eu anomalies indicate a hydrothermal origin for all but one of the sample suite (Fig. 14A). However, statistically calculated Eu/Eu* anomalies ($Eu_{(SN)}/(0.66S_{m(SN)} + 0.33T_{b(SN)})$) to correct for differences in Gd anomalies commonly encountered in seawater (Planavsky et al., 2010) are in the range of 0.1-0.58, averaging 0.42. The values are closer to the anoxic water column values calculated for Archean IFs, compared to Paleoproterozoic IFs (Planavsky et al., 2010), which may be due to their deposition in an active volcanic center like most of the Archean
Agloma BIFs (Bekker et al., 2010; Chi Fru et al., 2015). The lack of statistically significant true negative Ce anomalies (Fig. 14B) is interpreted to indicate a reducing depositional environment for both IFs.

CIA indices traditionally provide relative information on contributions from chemical weathering to sediment deposition, linked to operative hydrological and climatological patterns on land. This information is often gleaned from ancient and modern soils and from reworked siliclastic deposits in marine basins (Maynard, 1993; Bahlburg & Dobrzinski, 2011). The calculated CIA indices, however, are closer to the range obtained for unweathered and or only minimally weathered volcanic rocks (e.g., Nesbitt & Young, 1982; Bahlburg & Dobrzinski, 2011), thus pointing to a predominantly volcanic and/or hydrothermal provenance for the clastic sedimentary materials in the IFs (also see Alfieris et al., 2013).

It has been suggested that the release of reduced submarine hydrothermal fluids contributed towards maintaining water column anoxia during the deposition of Precambrian BIFs (Bekker et al., 2010). The calculated Eu anomalies (Fig. 14) and petrographic data showing volcaniclastic detritus (i.e., K-feldspar, sanidine, tridymite, cristobalite) as key rock components are in agreement with a submarine hydrothermal source for the investigated IFs. The coarse volcaniclastic detritus embedded in the Fe-rich bands compared to the finer particles in the Si-rich layers, highlights rapid oxidation of Fe(II) that coincided with periodic cycles of hydrothermal/volcanic discharge of new materials into the water column. However, the fine-grained nature of both the MFIF and NFIF deposits suggests that deposition likely occurred away from where such activity was occurring or that volcanic/hydrothermal discharge of Fe and Si was non-eruptive and disruptive. The Fe-rich bands repetitively revealed hematite grains cementing the denser volcaniclastic fragments that gradually diminish...
upwards into a zone of fine-grained hematite before transitioning into Si-rich bands consisting mainly of finer volcaniclastic detritus. These observations provide four valuable interpretational considerations for proposing a model for the formation of the alternating Si and Fe-rich bands.

1. The Si and Fe oxides-rich bands are a primary precipitate formed in the water column, by a process in which the precipitation of amorphous Si occurred during quiescent non-volcanic intervals, after the oxidation and precipitation of reduced Fe intermittently introduced into the water column by volcanic/hydrothermal activity to form the Fe oxides.

2. The repetitive zonation of distinct particle sizes, suggests density gradient sedimentation that requires a water column-like environment, rather than diagenetic alteration of pre-formed sediments by hydrothermal fluids.

3. The lack of statistically significant Ce anomaly across the Si and Fe-rich units does not support sediment diagenesis as an alternative model for explaining the origin of the Milos IF, in favor for a primary water column source. This is because the oxidation of ferrous Fe supplied by reduced hydrothermal fluids to iron oxides, requires coincidental interaction with a sizeable pool of oxygen (Johnson et al., 2008). Otherwise, light-controlled photoferrotrophy—an extremely rare sediment characteristic—precipitates Fe oxides in the absence of oxygen (Weber et al., 2006).

4. The style of deposition of the MFIF and NFIF is distinct from the post-depositional infilling of a porous sandstone sediment matrix during the formation of the Mn ores. Instead the deposition of the MFIF and NFIF in restricted portions in the basins not associated with previously accumulated sandstones, and the difficulty and lack of evidence to provide a viable
biogeochemical mechanism for the formation of the even bands of alternating Si and Fe-rich layers of several meters high and wide, does not support post-depositional pore filling of a porous sandstone matrix by Fe, as a potential pathway to the formation of the Milos IF.

4.2.3 Biological involvement

Hematite precipitation in the MFIF on microbial filaments (Chi Fru et al., 2013) was previously used to propose a generalized basin-scale mechanism for the deposition of Fe-rich rocks in Cape Vani. However such filaments are absent in the NFIF, while pure hematite grains are tightly bound to relics of an organic matter signal carrying a maximum $\delta^{13}C_{\text{org}}$ signature of -25‰ (Table 2). Similar processes are recorded in modern marine sediments where interactions between Fe and free organic matter has been reported to enable the preservation up to 21.5wt% of total organic carbon over geological time scales (Lalonde et al., 2012). Moreover, Fe generally traps and preserves organic matter at redox interfaces (Riedel et al., 2013). The data appear to suggest that the mechanism of Fe(III) (oxyhydr)oxide precipitation and preservation varied between the two IFs. The lack of similar photoferrotrrophic-like filamentous fossils reported in the MFIF (Chi Fru et al., 2013), in the NFIF, does not however rule out the potential role of microbial involvement in Fe(II) oxidation, since diverse microbial taxa carry out this process, several of which are non-filamentous (Chi Fru et al., 2012). However, our data is insufficient to enable clear quantification of the levels of abiotic vs. biotic contribution to Fe(II) oxidation in the NFIF. Nevertheless, the inferred predominantly anoxic depositional conditions as explained above, together with the identification of anaerobic bacteria biomarkers in the laminated bands, intuitively favor significant contribution of anaerobic biological Fe(II) oxidation in
the precipitation of primary Fe(III)(oxyhydr)oxides in the NFIF. See Weber et al., 2006, for a review of potential biological pathways to anaerobic Fe(II) oxidation.

Briefly, anaerobic microbial Fe(II) oxidation can proceed via nitrate reduction and by photoferrotrophy to deposit Fe(III)(oxyhydr)oxides. These mechanisms have been linked to microbial contribution to BIF formation (Weber et al., 2006; Kappler et al., 2005) and also for the MFIF (Chi Fru et al., 2013). However, it is also possible that microaerophilic neutrophilic Fe(II)-oxidizing bacteria likely played an important role, assuming a depositional setting analogous to the Santorini caldera and Kolumbo shallow submarine volcanoes, where such low-O$_2$-dependent microbial Fe(II) oxidation has been identified to actively precipitate Fe(III) (oxyhydr)oxides (Kilias et al., 2013; Camilli et al., 2015). It appears that in the MFIF, precipitating Fe(III)(oxyhydr)oxide minerals were bound and preserved free of organic carbon or that such organic carbon was diagenetically degraded. As was previously shown, Fe(III)(oxyhydr)oxides completely replaced the organic content of the filamentous microfossils in the MFIF (Chi Fru et al., 2013).

The 10MeC$_{16:0}$ FAME identified in the rocks has been reported in anaerobic organisms coupling nitrite reduction to methane oxidation (Kool et al., 2012), in sulfate and iron-reducing bacterial species such as Desulfobacter, Desulfobacula (Bühring et al., 2005; Dowling et al., 1986; Taylor and Parkes, 1983), Geobacter, Marinobacter and the marine denitrifier, Pseudomonas nautical (Kool et al., 2006; Bühring et al., 2005; Dowling et al., 1986). It had previously been proposed that post-depositional denitrification was a potential pathway for early organic matter removal, justified by the low rock organic carbon and nitrogen content in the Milos BIF-type rocks (Chi Fru et al., 2013, 2015; Table 2). Equally, the detected 10MeC$_{16:0}$ FAME has also been found in anaerobic oxidation of methane (AOM) communities (Alain et
al., 2006; Blumenberg et al., 2004), originating from sulfate reducing bacteria.

However, bulk sediment $\delta^{13}C_{org}$ of -20% does not reflect AOM activity that is expected to produce bulk $\delta^{13}C_{org}$ values that are $\leq -30\%$. Low 10MeC$_{16:0}$ FAME concentrations frustrated attempts at acquiring its compound specific isotopic signature to enable further biomolecular level reconstruction of active microbial metabolisms to explain Fe deposition mechanisms.

It is nevertheless puzzling why potential microbial biomarkers typical of marine or hydrothermal vent environments are hardly preserved in the rocks, given that microfossil evidence indicates a vast community of diverse prokaryotic assemblages in the adjacent MFIF (Chi Fru et al., 2013, 2015). Moreover, sediments of the modern Milos hydrothermal system and elsewhere on the HVA, are ubiquitously colonized by microbial life, characterized by the marked large-scale absence or low abundance of higher life forms, including plants (Kilias et al., 2013; Camilli et al., 2015; Oulas et al., 2015). One possibility could be the discriminatory preservation of lipids related to their selectivity and reactivity towards Fe(III)(oxyhydr)oxides and clays or different pathways to diagenetic degradation (e.g., Canuel & Martens, 1996; Lü et al., 2010; Riedel et al., 2013). As noted, the carbonaceous materials in the BIF-type NFIF rocks occur in tight association with hematite.

Importantly, prokaryotic biomarkers are suggested to poorly preserve in these young BIF analogues. This raises the possibility that this may provide an important explanation for why lipid biomarkers are yet to be extracted from Precambrian BIFs. Moreover, the data are compatible with low C_{org} recorded in BIFs of all ages. They suggest these unique BIF features may not be entirely related to metamorphic degradation of organic matter, since the Milos BIF-type rocks are unmetamorphosed, yet have vanishing C_{org} levels similar to the ancient metamorphosed BIFs.
4.2.4 Mn layers and the deposition of the Si-Fe-rich facies

Cryptomelane [K(Mn$^{4+}$,Mn$^{2+}$)$_8$O$_{16}$], commonly occurring in oxidized manganese deposits resulting from mineral replacements and as open space fillings (Papavassiliou et al., 2016), common in MFIF, supports the idea of post-depositional impregnation of the base of the MFIF by Mn-rich fluids. Microscopic analysis supports the epigenetic origin of the Mn in the MFIF by revealing Mn oxides growing along fractures, impregnating and replacing Fe minerals (Fig. 4B-F). The macroscopically evident thinning out to disappearance of such Mn-rich horizons up the MFIF, coupled by their development along microfractures emphasizes this epigenetic Mn origin. Mn is not a common feature of the NFIF, even though it sits on top of a thin sandstone layer impregnated by Mn, that locally forms the cap of the main Mn ore at Cape Vani. The generally accepted view is that Mn rich hydrothermal fluids rose and mineralized the Cape Vani sandstones (Hein et al., 2000; Liakopoulos et al., 2001; Glasby et al., 2005). Based on the stratigraphic location of the MFIF which pre-dates the Mn-rich sandstones, it is proposed that impregnation of the MFIF by Mn was coeval with large-scale Mn ore mineralization of the Cape Vani sandstones, implying the entire basin was likely oxygenated at the time. The lack of Ce anomalies suggests that both the MFIF and the NFIF formed in anoxic settings. Similar data for the Mn oxides have suggested formation in oxic settings (Glasby et al., 2005; Chi Fru et al., 2015). However, more sensitive proxies are needed to resolve and confirm the stratigraphic and REEs-dependent interpretation of potential redox conditions. This implies that Mn epigenetically replaced the MFIF, either because the basin was tectonically uplifted into a high–energy oxygenated shallow water setting or that sea level dropped, leading to partial metasomatism of the base of MFIF, when
oxygenated seawater mixed with hydrothermal fluids and precipitated Mn. The lack of significant Ce anomalies in the dataset also indicates that for the final deposition of the NFIF, an eventual deepening event or sea level rise, or both, were tectonically triggered, resulting in deoxygenation of parts of the CVSB.

All of this is feasible with the three-basin-fault-bounded hypothesis as a requirement for movement along fault lines in response to temporal tectonic activation. Importantly, a deepening event is suggested by the sudden change from the underlying Mn-rich layer into the conglomeratic deposit (Fig. 8B) often associated with sedimentary features that form during sea level rise and the landward migration of the shoreline (Cattaneo & Steel, 2000). The upward sequential transition from the Mn-rich facies through pebbly to fine-grained sediment to the NFIF, strongly implies that the underlying Mn-rich facies and NFIF layers formed in shallower and deeper waters, respectively, or that they are separated by an erosional unconformity. This study proposes that the NFIF that overlies the transgressive-type conglomeratic lag along an erosional contact surface was likely deposited during maximum flooding, when the basin became stagnant and stratified, and subsequently was uplifted to emergence. Similar transgression-type lithologies are indicated to have regulated primary sedimentation styles during the deposition of nearshore Paleoproterozoic BIFs (Pufahl and Fralick, 2004; Pufahl et al., 2014). Moreover, deposition of BIFs in sandstone/grainstone-dominated environments has also been suggested for Precambrian IFs (Simonson, 1985; Simonson and Goode, 1989; Pufahl and Fralick, 2004).

Uplifting is suggested by potential the weathering of the NFIF to form the ferruginous duricrust cap. Comparable ferruginous layers on Precambrian BIFs are linked to pervasive subaerial chemical weathering, via the dissolution of the silica-
rich layers and precipitation of relatively stable Fe oxides in the spaces between more resistant hematite crystals (e.g., Dorr, 1964; Shuster et al., 2012; Levett et al., 2016). This collective evidence supports the existence of a geodynamic tectonic system capable of producing shallow oxic to deeper anoxic basin conditions at different times that would explain the existence of Mn and Fe oxide layers within the same sedimentary sequence. For example, it is common knowledge that both Fe and Mn oxides will precipitate in the presence of oxygen (Roy, 1997, 2006), with kinetic rates usually being faster for the oxidation of reduced Fe than reduced Mn. In the Fe(II)-rich conditions that prevail in anoxic settings, abiotic reactions between Fe(II) and Mn oxides, produce Fe(III) leading to the dissolution of the Mn oxides to form reduced Mn, implying Mn oxides should not accumulate (Dieke, 1985). Moreover, under these conditions, biological precipitation of Fe(III) can occur rapidly, leaving dissolved Mn in solution to be deposited when oxygen becomes available. Given that the hydrothermal fluids of the Hellenic Volcanic Arc are commonly enriched in both reduced Fe and Mn, the deposition of the MFIF and NFIF therefore implies there was an existing mechanism that enabled the kinetic discrimination and deposition of the oxides of Fe and Mn into separate settings, most likely dependent on prevailing redox conditions. The accumulation of the ferruginous duricrust layer, overprinted by redox sensitive Mn-nodules, above the NFIF indicates a new shallowing event might have terminated the formation of the NFIF.

4.2.5 Modern analogues on the HVA

Mechanistic explanation for the development of potential stratified waters and reducing conditions during the deposition of the Milos BIF is problematic. However
evidence is available from present shallow submarine hydrothermal analogues in the central part of the HVA, to which the CVSB belongs. These include:

1. The crater floor of the Kolumbo shallow-submarine volcano (~600×1200 m³), which rises from 504 to 18 m below sea level near Santorini, (Sigurdsson et al., 2006; Carey et al., 2013; Kilias et al., 2013).

2. The N part of Santorini’s submerged caldera walls, which rises from 390 m below sea level to over 300 m above sea level (Druitt et al., 1999; Friedrich et al., 2006; Nomikou et al., 2013; Camilli et al., 2015).

3. The coastal embayments at the Kameni emergent volcanic islands in the centre of the Santorini caldera (Hanert, 2002; Nomikou et al., 2014; Robbins et al., 2016).

The benthic waters within Kolumbo’s crater potentially sustain O₂ depleted conditions via stable CO₂-induced water column densification, and accumulation of acidic water (pH~5), extending ~10 m above the CO₂ venting crater floor (Kilias et al., 2013). This phenomenon is believed to lead not only to obstruction of vertical mixing of bottom acidic water, but also to O₂ deprivation by precluding efficient transfer of oxygenated surface seawater into the deeper crater layer. In addition, diffuse CO₂ degassing is believed to be linked to the formation of Fe microbial mats and amorphous Fe(III) oxyhydroxides on the entire Kolumbo crater floor (Kilias et al., 2013). Prerequisites for the O₂ depleted conditions to happen are the closed geometry of the Kolumbo crater and the virtually pure CO₂ composition of the released hydrothermal vent fluids that produce oxygen stratification along a stable CO₂-pH gradient.

A similar scenario is reported for the Santorini caldera, where large (~5 m diameter) CO₂-rich, acidic (pH, ~5.93) hydrothermal seafloor pools and flow
channels, develop within m-thick microbial Fe-mats on the seafloor slope at 250-230 m below sea level. Persistent hypoxia exists in these pools, representing concentrated seafloor CO$_2$ accumulation centers generated by hydrothermal venting (Camilli et al., 2015). Here, the dissolved O$_2$ content (~80 µM or less) in the pools is ~40% depleted relative to the surrounding ambient seawater (Camilli et al., 2015). These hypoxic conditions are comparable to or even lower than those measured in the CO$_2$-rich oxygen minimum zones of coastal oceans, relative to seawater existing in equilibrium with atmospheric pO$_2$ and pCO$_2$ pressures (Paulmier et al., 2008, 2011; Franco et al., 2014). These conditions enable strong redox stratification of the pool waters, in which unique Si- and Fe-rich microbial mats are associated with amorphous opal and Fe(III)(oxyhydro)oxides (Camilli et al., 2015). Importantly, the Fe microbial mats in these CO$_2$-rich hypoxic pools are affiliated with specific microaerophilic Fe(II)-oxidizing bacteria that accumulate Fe(III) oxyhydroxides (Camilli et al., 2015; Oulas et al., 2015). These Fe bacteria are implicated in the deposition of the Precambrian BIFs (Konhasuer et al., 2002; Planavsky et al., 2009; Bekker et al., 2010).

Hypoxia is also associated with the water column of the Fe(III)-rich coastal embayments and their hydrothermal vents (≤1.0 m water depth), Kameni islands, considered a modern analogue environment for the precipitation of Precambrian BIFs (Hanert, 2002; Robbins et al., 2016 and references therein). Venting fluids are warm (20-40 °C), acidic to circumneutral (pH 5.5-6.9), enriched in CO$_2$, Fe and Si (Georgalas & Liatsikas, 1936, Böstrom et al., 1990; Handley et al., 2010; Robbins et al., 2016). Water column stratification is expressed as decreasing O$_2$ with depth that is positively related to Fe(III)(oxyhydr)oxide density and microaerophilic Fe(II)-oxidizing bacterial prevalence (Hanert, 2002). Robbins et al. (2016) found that Fe(III)-rich suspended particulate material in these “Fe bays” may be associated with
anoxia, extending up to the air-seawater interface, near the hydrothermal vents (Hanert, 2002). They consist of ferrihydrite, goethite and microaerophilic Fe(II) oxidizers.

The biogeochemical occurrence of these phenomena within the localized confines of the Santorini caldera and Kolumbo crater, may however be difficult to achieve in ordinary shallow submarine hydrothermal settings, such as those occurring on the coast of present day Milos. The same may be true for Tatum Bay, where non-volcanic and unconfined diffuse hydrothermalism is widespread (Dando et al., 1996; Pichler & Dix, 1996; Pichler & Veizer, 1999; Stüben et al., 1999; Rancourt et al., 2001; Varnavas et al., 2005).

In the Kolumbo and Santorini hydrothermal fields, benthic pH averages 5.5 and the deposition of carbonates is markedly absent (Kilias et al., 2013, Camilli et al., 2015; Robins et al., 2016). This conforms to observations in the MFIF and NFIF units where carbonate mineralization is not detected, thereby suggesting a similar low pH depositional environment for both the MFIF and NFIF. Ubiquitous Fe(III)(oxyhydr)oxide precipitation and enriched Si content are prevalent in the CO₂-rich-hypoxic shallow submarine Santorini caldera slope pools and the Kameni Fe-embayments where sulfide precipitation is inhibited (Camilli et al., 2015), or extremely rare (Robbins et al., 2016). Such sulfide-poor conditions are critical for the formation of BIFs (Bekker et al., 2010). Moreover, the anoxic amorphous Si-Fe(III)(oxyhydr)oxide-rich-sulfide-poor shallow submarine environments at Kameni islands, have been independently proposed as a modern analogue environment for Precambrian BIF precipitation (Hanert, 2002; Robins et al., 2016).

A high Si-Fe(III)(oxyhydr)oxide content, absence of carbonate and sulfide mineralization, coupled to a generally low S content have also been demonstrated for
the CVSB Fe formations (Chi Fru et al., 2013, 2015). This depositional situation is different, for example, from the unconfined shallow submarine hydrothermal systems in Tatum Bay and Bahia Concepcion Bahia Califormia Sur, Mexico, where authigenic carbonate deposition is widespread (Canet et al., 2005; Pichler & Dix, 1996, 2005). Moreover, there is strong geological evidence that within volcanic crater environments associated with high CO$_2$ emission, long-term water column redox stratification is possible under these special conditions. Further evidence is found in volcanic crater lakes (for example the shallow 205 m deep lake Nyos in Cameroon—renowned as one of Earth’s three CO$_2$ saturated volcanic lakes (Ozawa et al., 2016; Kling et al., 2005)). Here CO$_2$-induced water column stratification is associated with bottom reducing conditions characterized by a low sulfate and high Fe bottom water content relative to surface concentrations (Tiodjio et al., 2014).

5 Concluding remarks

This study shows the following new insights in light of what was previously known:

1. At least two distinct IFs (MFIF and NFIF) formed from hydrothermal mud, within two localized sub-basins in the ~1 km-long CVSB, ~2.66-1.0 Myr ago, controlled by local tectonism.

2. A working model that band formation may involve potential Fe(III)(oxyhydr)oxide filling of sediment pores and fractures during diagenesis, is not supported by the data. In addition to the lack of observation of such phenomena, as demonstrated for replacive Mn mineralization, calculated Ce and Eu anomalies, together with preliminary sequential iron extraction analysis (Poulton and Canfield, 2011; data not shown), are
suggestive of anoxic depositional conditions likely induced by the release of reduced hydrothermal/volcanic fluids into a cutoff sedimentary basin.

3. The precipitation of Fe(III) and Mn oxides require oxygen. In the absence of oxygen, Mn is not oxidized, while light and photoferrotrophy will oxidize reduced Fe to Fe(III)(oxyhydr)oxides. Both light and photoferrotrophy are however extremely rare characteristics of anoxic sediments, but a common feature of anoxic Fe\(^{2+}\)-rich waters, where photoferrotrophy is widespread (Weber et al., 2006). Collectively, these observations provide an important feasible mechanism for the knife sharp separation of the Mn oxide-rich ores in the CVSB that are also Fe(III)(oxyhydr)oxide-rich, from the highly localized MFIF and NFIF deposits that are Fe(III)(oxyhydr)oxide-rich but Mn oxide-poor.

4. The mechanism of formation of the MFIF and NFIF therefore most likely involved exhalative release of reduced hydrothermal/volcanic fluids into a restricted and deoxygenated seafloor water column where the oxidation of reduced Fe to Fe(III)(oxyhydr)oxides occurred, most likely by the activity of photoferrotrophs (Chi Fru et al., 2013).

5. Episodic intensification of hydrothermal activity is identified as a main mechanism for the formation of the millimetric BIF bands (Fig. 16), adding to the biological mechanism that was inferred from fossil records in the MFIF (Chi Fru et al., 2013, 2015).

6. Abiotic Si precipitation was apparently much slower relative to Fe(III) precipitation, resulting in Fe-rich bands in the NFIF forming in association with large fragments of volcanoclast and the Si-rich bands with fine Si grains.
A combination of the above processes produced pulses of Si and Fe in the millimetric Si and Fe-rich bands in the NFIF.

The Milos rocks fulfill sedimentological, chemical and mineralogical characteristics that established them as potentially the youngest known BIFs; following the simplistic definition that BIFs are sedimentary rocks composed of alternating layers of Fe and Si containing at least 15% iron.

Whether the rocks described here are analogues of Precambrian BIFs or not, and whether the proposed formation mechanisms match those that formed the ancient rocks, is opened to debate. Nonetheless, the present study provides mechanisms by which rocks with Fe and Si-rich bands can be formed in the modern oceans.

Data availability. Data can be accessed by request from any of the authors

Author contributions. ECF, SK and MI designed the study. ECF, SK, KG and MI performed fieldwork. ECF, JER, KG, IM and QH performed research. ECF, SK, KG, IM, QH and JER interpreted data. ECF and SK wrote paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgments. Ariadne Argyraki, Nicole Posth, Nolwenn Callac and Eva Zygouri are acknowledged field assistance during sampling and for stimulating intellectual discussions. Special thanks to Christoffer Hemmingsson for contributing to the SEM and XRD analyses. This work is funded by the European Research Council grant No. 336092 to ECF and the Swedish Research Council grant No. 2012-4364 to MI.
References

Dorr, J.V.N.: Supergene iron ores of Minas Gerais, Brazil. Econ. Geol., 59, 1203, 1964.

Klein, C.: Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am. Min., 90, 1473–1499, 2005.
Kling, G. W., Evans, W. C., Tanyileke, G., Kusakabe, M., Ohba, T., Yoshida, Y., and

Konhauser, K. O., Hamade, T., Riaswell., R., Morris, R. C., Ferris, F. G., Southam, G.
and Canfield, D. E.: Could bacteria have formed the Precambrian banded iron

Krapež, B., Barley, M. E., Pickard, A. L.: Hydrothermal and resedimented origins of
the precursor sediments to banded iron formations: Sedimentological evidence
from the early Palaeoproterozoic Brockman Supersequence of Western Australia.

Lalonde, K., Mucci, A., Quellet, A. and Gélinas, Y.: Preservation of organic matter in

Levett, A., Gagen, E., Shuster, J., Rintoul, L., Tobin, M., Vongsvivut, J., Bambery,
K., Vasconcelos, P., and Southam, G.: Evidence of biogeochemical processes in

Li, W., Czaja, A. D., Van Kranendonk, M. J., Beard, B. L., Roden, E. E., Johnson, C.

origin of the Vani manganese deposit, Milos, Greece: an overview. Ore Geol. Rev.,

Lowe, D.R.: Sediment gravity flows: II. Depositional models with special reference to

Simonson, B. M. and Hassler, S. W.: Was the deposition of large Precambrian iron formations linked to major marine transgressions? The J. Geol., 104, 665–676, 1996.

A.: Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa).

Trendall, A.F.: The significance of iron-formation in the Precambrian stratigraphic

Trower, E. J. and Lowe, D. R.: Sedimentology of the ~3.3 Ga upper Mendon
Formation, Barberton Greenstone Belt, South Africa. Pre. Res., 281, 473–494,
2016.

biogeochemical redox cycling of iron and manganese in a Palaeoproterozoic

van Hinsbergen, D. J. J., Snel, E., Garstman, S. A., Măruntănău, M., Langereis, C. G.,
Wortel, M. J. R., and Meulenkamp, J. E.: Vertical motions in the Aegean volcanic
arc: evidence for rapid subsidence preceding volcanic activity on Milos and

Varnavas, S. P. and Cronan, D. S.: Submarine hydrothermal activity off Santorini and
Milos in the Central Hellenic Volcanic Arc: A synthesis. Chem. Geol., 224, 40–54,
2005.

anaerobic microbial iron oxidation and reduction. Nat. Rev. Microbiol., 4, 752–64,
2006.
Table 1. Results of X-Ray Radiation (XRD) analysis showing major mineralogical compositions. NFIF (non-fossiliferous iron formation) and MFIF (microfossiliferous iron formation), respectively.

<table>
<thead>
<tr>
<th>Mineral phase</th>
<th>MFIF1</th>
<th>MFIF2</th>
<th>MFIF3</th>
<th>Fe-rich NFIF2A</th>
<th>Si-rich NFIF2B</th>
<th>Fe-rich NFIF2C</th>
<th>Si-rich NFIF2D</th>
<th>Fe-rich NFIF2E</th>
<th>Fe-rich NFIF2F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematite</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Quartz</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Sanidine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Tridymite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Cristobalite</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cryptomelane</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2. Stable isotope results. Letters A-F on the NFIF samples represent respective bands of the sawn rock in Figure 7E.

<table>
<thead>
<tr>
<th>Sample</th>
<th>δ^{13}C$_{org}$ vs PDB (‰)</th>
<th>C$_{org}$ (%)</th>
<th>δ^{15}N vs air (‰)</th>
<th>N (%)</th>
<th>δ^{34}S vs CDT (‰)</th>
<th>S (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe-rich NFIF2A</td>
<td>-25.63</td>
<td>0.061</td>
<td>nd</td>
<td>0.023</td>
<td>nd</td>
<td>0.01</td>
</tr>
<tr>
<td>Si-rich NFIF2B</td>
<td>-25.03</td>
<td>0.109</td>
<td>nd</td>
<td>0.017</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe-rich NFIF2C</td>
<td>-24.45</td>
<td>0.068</td>
<td>nd</td>
<td>0.013</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>Si-rich NFIF2D</td>
<td>-25.04</td>
<td>0.076</td>
<td>nd</td>
<td>0.015</td>
<td>nd</td>
<td>0.02</td>
</tr>
<tr>
<td>Fe-rich NFIF2E</td>
<td>-25.19</td>
<td>0.042</td>
<td>nd</td>
<td>0.009</td>
<td>nd</td>
<td>0.01</td>
</tr>
<tr>
<td>Si-rich NFIF2F</td>
<td>-25.49</td>
<td>0.059</td>
<td>nd</td>
<td>0.012</td>
<td>nd</td>
<td>0.03</td>
</tr>
<tr>
<td>MFIF1</td>
<td>-25.49</td>
<td>0.087</td>
<td>nd</td>
<td>0.017</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>MFIF2</td>
<td>-26.25</td>
<td>0.046</td>
<td>nd</td>
<td>0.005</td>
<td>nd</td>
<td>nd</td>
</tr>
<tr>
<td>MFIF3</td>
<td>-25.69</td>
<td>0.041</td>
<td>nd</td>
<td>0.006</td>
<td>nd</td>
<td>nd</td>
</tr>
</tbody>
</table>

ND, Not detected
Fig. 1. Geological map of Milos (redrawn from Marschik et al., 2010). (A), Geotectonic map showing the position of Milos Island, along the Hellenic Volcanic Arc (HVA). Arrows indicate the direction of subduction of the African plate underneath the Euroasian plate. (B) Milos Island. (C), The Milos iron formation is located in the 8-shaped Cape Vani sedimentary basin (CVSB). At least two IFs are present in the CVSB. These are made up of a non-fossiliferous IF (NFIF) at the juncture between the two large sedimentary basins and a microfossiliferous iron formation (MFIF) located at the SW margin in the second basin. A potential third IF (IF?) is located NE, close to the present day Aegean Sea. It is however not certain if this deposit is part of the NFIF or not, because of the open mining pit separating the two.
Fig. 2. Generalized schematic north-south geologic cross section through the ~1 km long CVSB showing interpreted geology, relationships between the main lithofacies, main fault locations, the iron and manganese formations, in support of a proposed three-basin hypothesis. Not drawn to scale. Four types of iron-rich sedimentary rocks occur in the CVSB. These include the iron-rich sandstones, the iron-Mn-rich sandstones, the conglomerate hosted iron formation (CIF) and the MFIF and NFIF formations that are depositionally and chemically distinct from the sandstone deposits.
Fig. 3. EDS-electron image showing different Fe-rich mineral phases in a Si-rich matrix from the MFIF. The bright colours correspond to the analysed elements. (A), framboidal hematite particles. A1-A4, different element compositions associated with framboidal particles in panel A. (B), Dispersed fluffy Fe-rich mineral grains. B1-B4, corresponding elements associated with the micrograph in panel A.
Fig. 4. Sedimentary profile, thin section scans and optical microscope images of the MFIF. (A), Field photo showing the sedimentary profile of the MFIF characterized by the overlying sandstone cap. (B), Photograph showing black diffused Mn-rich bands near the base of the MFIF. (C), Scanned image of thin section showing a black Mn-rich vein in the overlying MFIF sandstone showing a gradient of Mn migrating into the sandstone matrix (white arrows). (D), Light microscopy images showing details in panel C. (E), Scanned image of an MFIF thin section showing black Mn bands migration into a red iron-rich background. (F), Amplified light microscope image showing gray Mn layers migrating into a black Fe-rich matrix. White arrows show direction of movement. Boxes in C and E are amplified in D and F.
Fig. 5. Sedimentary sequence overlying the MFIF, consisting of thin (< 0.5 m) polymictic andesite-dacite cobble-pebble, and sandstone-sandy tuff pebble, and Fe-rich conglomerate facies overlain by thinly laminated Fe-rich sandstone beds. This vertical sequence is interpreted to represent a progressively deeper water environment deepening-upward sequence (A) as a result of sea level rise due to tectonic subsidence. The multiple cycles shown in panels B-D signify several potential episodes or sea level rise. Arrows in panel D showing hydrothermal feeder veins feeding the overlying layers. The sequence is overlain by a thin package of parallel and cross-bedded Mn-sandstone cap.
Fig. 6. Scanning electron microscope electron image of the volcaniclastic (K-feldspar)/iron-rich sandstone layer overlying the MFIF.
Fig. 7. Typical NFIF banded iron rocks. (A-C), Field photographs. (D), Handheld banded Fe sample. (E), Sawn NFIF sample with laminated Fe-rich bands alternating with Si-rich bands.
Fig. 8. Field sedimentology and stratigraphy of Section B sequence containing the NFIF. (A), Sharp boundary between lower Mn sandstone and unconformably overlying NFIF capped by a ferruginous duricrust. (B), Sandstone-sandy tuff pebble to gravel conglomerate lag facies, showing an upward fining character and bored clasts (black), locally overlies the Mn sandstone and capped by a sharp erosional contact with the overlying NFIF. The tip of the pen (7 cm long) rests on late blue-black Mn oxide overprint. (C), Ferruginous duricrust that comprises lithic fragments composed of (1) Fe-nodules (2) and Fe-concretions (3) in a hematite-rich matrix (4). (D), Matrix dissolution resulting in vermiform Mn nodules (1) and cavity black Mn oxide (2) infillings, post-dating the ferruginous duricrust formation.
Fig. 9. EDS-electron image showing major elemental composition of typical Fe bands alternating with Si-rich layers in the NFIF. Volcaniclastic detritus mostly present in the Fe-rich bands, suggests precipitation during active submarine volcanism. To the contrary, the Si-rich bands are composed of more fine-grain, signifying deposition during periods of minimal volcanic activity. Arrows in panels (A) and (B) depict the direction of sedimentation, which was often seen to proceed from an Fe-rich matrix mixed with large grains of volcaniclastic detritus (DM) to one composed essentially of very fine-grained Fe particles before transitioning into the very fine-grained Si-rich layer. An upward fining of the volcaniclastic particles in the Fe-rich layers transitions from one made up of volcaniclastic debris and hematite, to a mainly thin hematite-rich horizon at the top of this mixed layer (see supplementary Figs 8-11 for details). This concurrent occurrence of volcaniclast and Fe oxides and the upward fining nature of the Fe-rich layers, suggest the release and oxidation of Fe(II) coincided with the settling of hydrothermal debris resulting from the introduction of enormous amount of reduced materials into the water column (Bekker et al., 2010). The iron-rich layer ceased forming as hydrothermal/volcanic release of Fe subsided, followed by deposition of the Si-rich layer. This repetitive cycle of events is observed for tens of metres laterally and vertically, stressing that the layers are not single isolated or post-depositional replacement events, but chemical precipitates that sequentially sedimented out of the water column. Red colour in Panels (B) and (C) depict Fe and green in panels (C) and (F), Si.
Fig. 10. Raman spectroscopy of the Fe- and/or Si-rich bands from NFIF.
Fig. 11. Fluctuation in Si and Fe content measured by in situ laser ablation ICP-MS analysis. (A), Milos BIF-type rock with evenly distributed Si and iron rich bands. (B), Milos BIF type rock with large Si bands (whitish-brownish strips) and narrow Fe-rich bands (dark strips). (C), An example for the 2.5 Ga Kuruman BIF. Insets are analyzed thin sections. For scale, each thin section is ≈3.3 cm long. White arrow on thin section indicates analyzed area.
Fig. 12. TEM characterization of an NFIF and MFIF specimen. (A) lower magnification MFIF TEM-BF image. (B) High resolution images of NFIF showing amorphous Si and iron oxide crystalline lattice structures. Insets highlight a hematite particle viewed from the [1-11] axis (Rhombohedral lattice). (C) Lower magnification MFIF TEM-BF image. (D) High resolution images of MFIF showing crystalline quartz and iron oxide crystalline lattice structures. Insets in (D) show a quartz crystal viewed from the [100] axis. Both samples contain silica with a few hundred nm particle size, and smaller needle-like iron oxide particles. Spectral lines in panels (A) and (C) are X-ray Energy Dispersive elemental profiles of the individual Fe and Si mineral phases.
Fig. 13. Bulk average concentrations of major trace elements and chemical weathering indices. (A), Relationship between average major trace element content and average continental crust (Rudnick and Gao, 2003). (B), Chemical index of alteration (CIA). Inset, relationship between SiO$_2$ and Fe$_2$O$_3$.

Concentration (wt%)

SiO$_2$ FeO$_2$ Al$_2$O$_3$ K$_2$O TiO$_2$ CaO Na$_2$O

Chemical index of alteration (CIA)

Fe$_2$O$_3$/TiO$_2$ ratio

SiO$_2$ Fe$_2$O$_3$ TiO$_2$ Al$_2$O$_3$ K$_2$O CaO Na$_2$O

Concentration (wt%)

Sample average (n=11) Continental crust average (n=12)
Fig. 14. Rare Earth Element (REE) distribution in samples and calculated Ce and Eu anomalies. (A), NASC normalized REE distribution in various rock facies. (B), Ce and Eu anomalies. (C), Eu anomalies and light REE (LREE) vs. heavy REE (HREE).
Fig. 15. GC/MS chromatogram sections of total lipid extracts of the BIF (A-F) for bands excised from the sawn rock in Figure 2c. Panel G illustrates a total lipid extract of modern sediment from the Milos basin. Values beside peaks indicate the lipid δ\(^{13}\)C values due to the low intensity of the lipids recovered this was not possible for all peaks. Peaks have been annotated as the following compounds (FAME = fatty acid methyl ester, Me = methyl group, TMS = trimethylsilyl, TMSE = trimethylsilyl ester):

1. \(C_{14:0}\) FAME, (1a) \(C_{14:0}\) 13Me FAME, (2) \(C_{15:0}\) FAME, (3) \(C_{16:0}\) FAME, (3a) \(C_{16:9}\) FAME, (3b) \(C_{16:0}\) TMS, (3c) 10Me \(C_{16:0}\) FAME, (3d) \(C_{16:0}\) FAME, (3e) \(C_{16:0}\) TMSE, (3f) \(C_{16:9}\) FAME, (4) \(C_{17:0}\) TMS, (5) \(C_{18:0}\) FAME, (5a) \(C_{18:0}\) FAME, (5b) \(C_{18:0}\) TMS, (5c) \(C_{18:0}\) TMSE, (6)
$C_{19:0}$ FAME, (6a) $C_{19:0}$ 18Me TMS, (7) $C_{21:0}$ TMS, (8) $C_{22:0}$ TMS, (9) Cholesterol TMS, (10) Stigmasterol TMS, (11) beta-Sitosterol (*) Contaminants e.g. phthalates.

Fig. 16. Conceptual model showing the mechanism of band formation in the NFIF related to changes in the intensity of hydrothermal activity and chemical oxidation of Fe(II) to Fe(III) in the water column, inferred directly from our data. See Chi Fru et al. (2013) for a biological model for the formation of the MFIF.