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Abstract

Several platforms are currently being explored for simulating phygal systems, whose complexity
increases faster than polynomially with the number of particles or degees of freedom in the system.
Many of these computationally intractable problems can be mapped into chssical spin models,
such as the Ising and theXY models and be simulated by a suitable physical system. Here, we
investigate the potential of polariton graphs as an e cient simulator for nd ing the global minimum
of the classicalXY Hamiltonian. By imprinting polariton condensate lattices of bespoke geomegies
we show that we can simulate a large variety of systems undergoing the U(13ymmetry breaking
transitions. We realise various magnetic phases, such as ferromagnetianti-ferromagnetic, and
frustrated spin con gurations on a linear Ising chain, the unit cells of square and triangular lattices,
a disordered graph, and demonstrate the potential for size scalability oran extended square lattice
of 45 coherently coupled polariton condensates. Our results provide @ute to study unconventional
super uids, spin-liquids, Berezinskii-Kosterlitz-Thoule ss phase transition, and classical magnetism

among the many systems that are described by theXY Hamiltonian.
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Social and natural sciences are dominated by systems with nyainteracting degrees of
freedom that operate with a large number of parameters thatharacterize the state of the
system and grow exponentially with system size. Protein fiihg [1], behaviour of nancial
markets [2], dynamics of neural networks [3], behaviour ofuli-agent systems [4], devising
new chemical materials [5], nding the ground state of spiniquids [6] { the list of hard
computational problems that modern classical computers oaot tackle for su ciently large
system sizes is large and growing. Recently, it was shown tha large variety of such
computationally intractable systems can be mapped into ce&in universal classical spin
models that are characterised by the given degrees of freegdspins”, by their interactions,
\couplings”, and by the associated cost function, \Hamiltoman" [7]. Depending on the sign,
geometry and symmetries of the couplings the problem of ndg the global minimum of
the associated cost function can be in class P, NP or NP-hard [8]. Finding the global
minimum of some classical spin models is known to be NP-compld10], which means
every other problem in NP can be e ciently transformed into it As a result there has
been much interest recently in the possibility of devising @hysical system, an analogue
simulator, to solve such spin models fi-vector models of classical unit vector sping with
the Hamiltonian H = i JiSi s, whereJ; are real numbers specifying the coupling
strengths between the sites labelledandj [11]. The Ising model corresponds to the =1
case of then-vector model, withs; 2f 1;1g: For n = 2 the n-vector Hamiltonian becomes
Hyxy = P i Jii cos(i i), where we have parameterized unit planar vectors using the
polar coordinatess; = (cos i;sin ;). The mapping of the XY model into a universal spin
model has been rigorously established [7]. Replacing theturectors in the XY Hamiltonian
with complex numbersz; = cos ; +isin ; leads to formulation as the continuous complex
constant modulus quadratic optimization problem [12, 13}hat is known to be NP-hard in
general. The interest in simulating theXY model also comes from the property df xy to be
invariant under rotation of all spins by the same angle; ! ;+ , therefore, theXY model
is the simplest model that undergoes th&J(1) symmetry-breaking transition. As such, it
is used to emulate other systems featuring a similar brokesymmetry transition whether
or not the system is quantum or classical such as the Bere#iisKosterlitz-Thouless phase
transition and the emergence of a topological order [14, 15hconventional super uids and
spin-liquid phases.

In this Article, we propose and experimentally demonstratehie use of polariton graphs



as a scheme for nding the global minimum of the classicAlY Hamiltonian. Polaritons are
the mixed light-matter quasi-particles that are formed in he strong exciton-photon coupling
regime in semiconductor microcavities [16]. Under non-resmt optical excitation, rapid re-
laxation of carriers and bosonic stimulation result in thedrmation of a non-equilibrium
polariton condensate characterized by a single many-bodyave-function [17]. Polariton
condensates can be imprinted into any two-dimensional gragy spatial modulation of the
pumping source, o ering straightforward scalability. Opically injected polariton conden-
sates can potentially be imprinted in multi-site con guraions with arbitrary polarisation
and density pro les o ering unprecedented control of the iteractions between sites. Due to
nite cavity lifetimes, polaritons decay in the form of photons that carry all the information
of the corresponding polariton state (energy, momentum, spand phase) enabling in-situ
characterisation of static polariton graphs.

In a graph of two or more coupled polariton vertices, with in@asing excitation den-
sity, polariton condensation occurs at the state with the pase con guration that carries the
highest polariton occupation [18]. This is due to the bosancharacter of the condensate for-
mation: the probability of a particle to relax in a particular state grows with the population
of that state. At condensation threshold a macroscopic corent state is formed described
by the wavefunction 4. To the leading order, 4 can be written as a superposition of the

wavefunctions ; at the sitesx; with phases ;; thatis j expli j]. Below we will

J
show that the system of an arbitrary polariton graph conderes into the global minimum
of the XY Hamiltonian: Hxy = i Jj cos j, where j is the phase di erence between
two sites, j = i ;, and J; is the corresponding coupling strength; the latter depends
on the density of the sitesi and j, the distance between themd; = jr; r;j, and the
out ow condensate wavenumbelk., which under non-resonant optical excitation depends
on the pumping intensity and pro le. The bottom-up approachfor the search of the global
minimum of the XY Hamiltonian is achievable within the linewidth of the correponding
state. This is an advantage over classical or quantum annesj techniques, where the global
ground state is reached through transitions over metastablexcited states (local minima),
with an increase of the cost of the search with the size of thgstem.

Modelling the phase couplingwe model the phase coupling in polariton graphs using

the complex Ginzburg-Landau equation (cGLE) with a saturale nonlinearity and energy



relaxation [19, 20]:
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where is the condensate wavefunctiorR is the density pro le of the hot exciton reservoir,
m is the polariton e ective mass,U, and gr are the strengths of e ective polariton-polariton
interaction and the blue-shift due to interactions with noncondensed particles, respectively,
RR is the rate at which the exciton reservoir feeds the condensa ¢ is the decay rate
of condensed polaritons, i is the rate of redistribution of reservoir excitons betweethe
di erent energy levels, 4 is the energy relaxation coe cient specifying the rate at wich
gain decreases with increasing energy, ar®l is the pumping into the exciton reservoir.
We non-dimensionalize these equations using ! P ~2=2mUp'2; r ! Corit! 2mt 3=
and introducing the notationsg = 2gr=Rr; = m ¢'3=~, p = M ZRRrP(r)=—r; =
¢~=MRg%; and b = Rg~?=2m’3 grUy: We choose'o = 1 m and consider the stationary
states.
By using the Madelung transformation = P ~exp[iS] in the dimensionless Egs. (1,2),

where =j j% u=r Sisthe velocity,S is the phase and separating the real and imaginary
parts we obtain the mass continuity and the integrated form fothe Bernoulli equation which

we write for a steady state, and, therefore, introduce the elmical potential

p_
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ro(u)_ p(r) 2P
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First, we consider a single pumping spot with a radially symntec pumping pro le. Asymp-
totics at large distances from the center of the pump gives ¢hvelocity juj = k. = constand
exp[ rk .Yr 1 From Eq. (3) at in nity, therefore, we obtain = k2  2=4k2. We
can estimate the chemical potential for a wide pumping spobghat the quantum pressure
term r 2P =P - and u, are insigni cant at the pumping center. Under this assumptia
max  (Pmax  1)=band (Pmax  1)=b+ g: Using the asymptotics of the density at

in nity and at the center of the pumping spot we can further aproximate the density of



the individual pumping spot as

(r) ° - (5)
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where the parameters; are de ned by the pumping pro le. In [18] we established expe
mentally under pulsed excitation that the coupling betweetwo pumping spots (a\polariton
dyad") can be either in-phase or with a phase dierence depending on the out ow
wavenumberk; and the distance between the spots. Below, in the steady séaexcita-
tion regime, we obtain a general criterion for the switchinpetween the relative phases. We
start by considering the wavefunction of the condensatey as the sum of the wavefunctions
of Iy individual condensates, (r) P ~(r) exp[ikcr], located atr = r; with the phases ;:

P
g(r) :'il (jr rij)exp( i): To nd the total amount of matter N we write:

Z Z
N= i = G 1Pa(kfdk; (6)
by(k) = exp( ik r) o(r)dr=
M
= kK explk ri+i); 7

i=1
R
Where*Q k) =2 01 ( r)Jo(kr)rdr and Jo is the Bessel function. The total amount of

matter becomes

X
N = IyNg+  Jjcos(i ) (8)
z,
1

1 ) ) ) )
=il K)ok i)k dk; (9)
0

whereNg = 2 Rol (r)rdr is the number of particles in a single, isolated condensate.
The oscillating behaviour of the Bessel function]y(kd; ), brings about the sign change
in the coupling constants, J; , depending on the distanced; . When J; is positive the
coupling is said to be ferromagnetic and whedy is negative the coupling is said to be anti-
ferromagnetic. We approximate the switching of the couplo sign by cosk.d + ), where
is xed by the system parameters (see Supp. Inf. for the disssion). The state with the

phase con guration that carries the highest number of parties in Eq. (8) corresponds to the

solution that minimises the XY Hamiltonian, Hyxy = i”<j Jj cos j . Between any two
polariton condensates the polariton wavefunction forms aanding wave with the density

j o2 et +2P = coskcjx dj=2j k¢x+dj=2j ], wherex isthe coordinate along
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FIG. 1: Schematic of the condensate density map for a ve-vertex polaton graph. The sign of
the coupling is annotated for some of the edges of the graph: depending ondlseparation distance
between the sites and the out ow wavevectork. the interactions are either ferromagnetic (solid-
blue lines) or anti-ferromagnetic (dashed-red lines). At each verex r; of the graph polaritons have

a local phase ; that is mapped to a classical vector spins; = (cos j;sin ;).

the line that connects the two nodes separated by a distancg and = (x dj=2y).
Between two polariton condensates the density oscillatesgportional to 1 +cos(k.x+ j ),
from which the phase dierence j of a single shot realization can be extracted directly.
For more complex geometries the phase dierence can be vex through interferometry
and Fourier-space analysis. In Fig. 1 we plot the density of aofariton graph, where for
simplicity we have annotated the sign of the coupling for soenof the edges of the graph.
Depending on the separation distance between the verticesdathe out ow wavevector k.,
the interactions are either ferromagnetic (solid-blue lies) or anti-ferromagnetic (dashed-red
lines). At each vertexr; of the graph polaritons have a local phase, which in the following
we map to a classical vector spis; = (cos j;sin ;) and annotate on top of each vertex as
calculated from the minimisation of theXY Hamiltonian.

The Ising polariton chain: we theoretically describe and experimentally address the mi
imization of the XY Hamiltonian for the simple case of a linear polariton chain Wi equal
spacingd = d; between neighbours. In the steady state excitation regimeje can calculate
the maximum particle number of a polariton dyad as a functiorof the separation distance,
d, by numerically integrating the cGLE to nd the solutions of Egs. (3-4) that maximizeN
for a given pumping prole p(r) = po[exp( jr d=2j?)+exp( jr + d=2j?)] of a charac-
teristic width ~ 1; the results are shown in Fig. 2(a). The relative phases thatalise the
maximum particle number switch periodically between 0 and with the period 2=k . as
shown by superimposing the function cok{d+ ) in Fig.2(a); we have used the experimen-

tal parameters for the pumping pro le andk. as described in \Wavevector Tomography" in
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FIG. 2. (a) The maximum number of particles, N, of a polariton condensate dyad formed under
incoherent pumping of two nodes as the function of the productk.d between the nodes obtained
by numerical integration of the cGLE for a xed k¢ starting with random initial conditions and
choosing the realization that maximizesN. The solid black line corresponds to the maximum
number of particles in the in-phase ferromagnetic con guration and the dashed black line to the -
phase di erence anti-ferromagnetic con guration. The switching ocaurs with the periodicity 2 =k
as the superimposed graph of cogtd + ) illustrates in red, where 225 . (b-e) Experimental
realization of an Ising chain of ve equidistant polariton nodes with latt ice constants of 9m ,
11.1m, 11.4m,and 13.4m respectively. The false-grey scale images show the normalised
real-space photoluminescence intensity at the energy of the condeai®; (b,c) are saturated at 0.7
and (d,e) are saturated at 0.25 to increase the visibility of the low intensity fringes between the

nodes. The corresponding.d are shown by solid circles on (a).

Supp. Inf. Where the coupling is ferromagnetic (anti-ferroagnetic) the graph of the max-
imum number of particles is plotted with a solid (dashed) lie. We experimentally address
an analogue of the Ising chain by injecting a linear chain ofve equidistant polariton con-
densates through non-resonant, continuous wave and spdlifamodulated optical excitation
of a multiple InGaAs quantum well strain compensated semicdactor microcavity [21] that
allows for detection of the polariton photoluminescence ithe transmission geometry (for
the sample description read the \Microcavity sample" and fothe description of the excita-
tion/detection scheme read the \Experimental setup” in Sup. Inf.). Figures 2(b-e) show the
real-space photoluminescence intensity of the linear chatondensate with increasing lattice
constantfrom 9m to 13.4m, at condensation threshold. The relative phase di erence
realised between neighbours in the chain is either or zero. The linear chain con gura-
tion restricts the spins to two states e ectively reducing he chain to the Ising model. The
patterns are clearly distinguishable by the number of frirgs (density maxima) between the
sites: zero or even for anti-ferromagnetic and odd for femagnetic coupling. In Fig.2(a) we
have annotated the abscissa with solid circles for each ofetlwo separation distances from
which the expected sign of coupling is depicted, showing gbagreement with the experi-
ment. The observed phase con gurations realise the ferrogaetic and anti-ferromagnetic

Ising spin chain.



FIG. 3: Spin con gurations of square polariton lattices. The diagrams of the rumerically calcu-
lated spins vectors at the pumping sitess; = (cos j;sin ;), the real-space energy tomography of
the experimental realisations, and the averaged condensate densitief the numerically simulated
condensate wavefunctions for several realizations are shown on the tle€entral and right columns
respectively. Solid and dashed blue lines on the spin vector diagram@$eft column) indicate ferro-
magnetic and anti-ferromagnetic coupling, respectively. The false-g@y scale images of the middle
column show the normalised real-space photoluminescence intengiait the energy of the conden-
sate at condensation threshold; (c) is saturated at 0.5 to increase the sibility of the low intensity
fringes between the vertices. The con gurations shown are some elemtary building blocks of
square lattices such as (a,c) anti-ferromagnetic, (b) ferromagnetic,d) 90 -compass. The centers
of the pumping spots are shown by white dashed circles on the numeral density pro les (right

column). The parameters of the numerical simulations of Eqgs. (1,2) are $ited in the Supp. Inf.

Equidistant vertices across a circlewe consider a geometry dfy incoherently pumped
equidistant polariton vertices positioned on the circumfence of a circle. For equal sepa-
ration distancesd = d; between adjacent sites theXY Hamiltonian to minimise becomes
Hyy = J P !'il cos( ii+1); whereJ = Jj , the summation is cyclic and we took into account
only nearest neighbour interactions. |10 is positive, then all sites lock in phase (;.; = 0).

If J is negative, the minimum ofHxy occurs for i+ = , when Iy is even and for
4l = (In  1)=ly whenly is odd (y > 1). For odd number of vertices, therefore,
the con gurations bring about topological vortices of winthg (Iy  1)=2, whose proper-
ties we explore elsewhere [22]. We experimentally accesssin regimes through incoherent
injection of polaritons at the vertices of a square; Figure 3(b,c) show the spin con gura-
tion, experimental results of the real-space photoluminesnce intensity at the energy of the
condensate at condensation threshold and numerical simtitms for a square with lattice
constants that lead to anti-ferromagnetic, ferromagneti@and the next anti-ferromagnetic
coupling respectively. Similar to the Ising polariton chai the type of coupling is clearly
distinguishable by the number and symmetry of fringes betwa the vertices: zero or even
for anti-ferromagnetic (Fig.3(a,c)) and odd for ferromagre coupling (Fig.3(b)). These
observations are in agreement with the phase di erence reported in Ref.[23]. We can thus

summarise in the case of the square lattice cell that for fenmagnetic coupling polaritons at
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the vertices lock with zero phase di erence and for anti-feomagnetic coupling polaritons
at neighbouring vertices lock with phase di erence.

90 compass modelin the context of solving universal spin models apart from #trivial
all ferromagnetic or all anti-ferromagnetic coupling corgurations in a square geometry,
more complex coupling con gurations are of interest. Exanigs of such con gurations are
the compass models, where the coupling between the interispin components is inherently
directionally dependent. Such compass-type coupling apgrs in various physical systems,
where the interactions are sensitive to the spatial orientn of the involved orbitals. In
polariton graphs the compass models with direction depenatecoupling or spin glassy models
with random couplings can be realised by changing the pumgrintensity and preserving
the square geometry, or alternatively, tuning the separatin distances so that each vertex has
one ferromagnetic and one anti-ferromagnetic coupling waitits nearest neighbours. In Fig.
3(c) we have realised the 90compass model, where each vertex has one ferromagnetic and
one anti-ferromagnetic coupling with its neighbours as itsi clearly distinguishable by the
number of fringes between nearest vertices. The 98ompass, where both ferro- and anti-
ferromagnetic coupling appear across the two orthogonaladjonals here, has been proposed
as a model to Mott insulators with orbital degrees of freedorand frustrated magnets [24],
the plaquette orbital model [25], and the orbital compass nuel on a checkerboard lattice
[26]. Other systems accessible through polariton graphsciude fully random couplings in
the square lattice that describe the thermodynamic behawmw of several disordered systems,
such as magnetic systems with random Dzyaloshinskii-Moayinteractions [27], disordered
Josephson junction arrays [28], disordered substrates [28hd vortex glasses in highk

cuprate superconductors [30].

FIG. 4: Spin con gurations of the diamond-shaped polariton lattices. The mlumns of images
are as described in the caption to Fig.3. The con gurations shown are somel@mentary building

blocks of triangular lattices such as (a,c) anti-ferromagnetic and (b) feromagnetic rhombuses. The
false-grey scale images of the middle column show the normalised reglese photoluminescence
intensity at the energy of the condensate at condensation threshold satated at 0.5 to increase

the visibility of the low intensity fringes between the vertices.

Triangular lattice: the XY Hamiltonian has been simulated on a triangular lattice of
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FIG. 5. Spin con gurations of a random polariton graph. The panels of images are as @kcribed
in the caption to Fig.3. The false-grey scale image of the middle column siw the normalised
real-space photoluminescence intensity at the energy of the condesig at condensation threshold

saturated at 0.5 to increase the visibility of the low intensity fringes between the vertices.

atomic condensates discovering a variety of magnetic phaseand frustrated spin con gura-
tions [31]. In the case of an anti-ferromagnetically coupepolariton triad, arranged at the
vertices of an equidistant triangle, the phase con guratio that minimizes the XY Hamilto-
nian corresponds to 1 winding (2 =3 phase di erence between the condensates) [18]. Here,
we experimentally realise a unit cell of a triangular lattie (rhombus con guration) under
incoherent injection of polaritons. Figure 4(a,b,c) show th spin con guration, experimental
results of the real-space photoluminescence intensity dte energy of the condensate at con-
densation threshold and numerical simulation for a rhombusith lattice constants that lead
to anti-ferromagnetic, ferromagnetic and the next anti-fisomagnetic coupling, respectively.
In the case of ferromagnetic coupling between nearest ndiglirs and neglecting opposite
neighbours interactions across the long diagonal axis ofetthombus, theXY Hamiltonian
is minimised atHyy 5J when all polariton sites lock in phase, as shown in Fig. 4(b).
Similarly, in the case of anti-ferromagnetic coupling betvem nearest neighbours theX'Y
Hamiltonian is minimised at Hyxy 3J when there is phase di erence between the
outer edges of the rhombus. This con guration forces the rintbus in a frustrated state
wherein opposite vertices have the same phase. This type fstrated spin con guration is
experimentally realised in Fig. 4(a,c). The correspondingaes in Figs. 4(a,b,c) are shown
in the order of increasing distance between the sites, théoee, the anti-ferromagnetic states
of Figs. 4(a) and 4(c) belong to two di erent bands of anti-fetomagnetic regions separated
by a ferromagnetic band (the alternating anti-ferromagnet/ferromagnetic couplings bands
are shown in Fig. 2(a)). The measured density pro les show s@nclear di erences: the
local minimum at the center of the rhombus along the long diamal in Fig. 4(a) is replaced
by a local maximum in Fig. 4(c).

Random polariton graph: beyond the minimization of the classicaXY Hamiltonian of
polariton condensates on regular lattices we test our platim on a disordered polariton

graph of ve vertices. We took a graph initially consisting 6 a half-hexagon for a lattice
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FIG. 6: The rst row shows the normalised real-space photoluminescece intensity at the energy
of the condensate at condensation threshold in a false-grey scale for (a,apti-ferromagnetic and
(b) ferromagnetic con guration of 45 coherently coupled polariton condensaés arranged at the
vertices of a square lattice; (a) is saturated at 0.7 and (b,c) are saturaté at 0.3 to increase the
visibility of the low intensity fringes between the vertices. The second row shows the normalised
photoluminescence intensity of the two-dimensional Fourier-spaceorresponding to the lattices of
(a-c) at the energy of the condensate at condensation threshold in a falsgrey scale; (a,b) are
saturated at 0.5 and (c) is saturated at 0.3 to increase the visibility of the low intensity coherent

spots.

constant that leads to anti-ferromagnetic coupling, but wh one spot breaking the symme-
try. This is achieved experimentally by slightly displacig one spot on the graph. Figure
5 shows the spin con guration, experimental results of theeal-space tomography of the
photoluminescence intensity at the energy of the condensaat condensation threshold and
numerical simulations that correspond to this graph. For tb symmetric con guration of
a half-hexagon and considering only nearest neighboursanactions, theXY Hamiltonian
is minimised at Hyy 3:86] with an alternating winding around each cell slightly de-
viating from 2 =3 di erence reported for a single equilateral triangle (se8upp. Inf. for
details). Breaking the symmetry leads to a di erent phase diribution, while maintaining
the winding around each cell. The analysis of the fringes ohé experimental image (with
the di erent rows of local maxima along the two long diagonal shows that the symmetry
is explicitly broken.

Extended polariton lattices:in the following we explore the potential of the polariton sn-
ulator in nding the global minimum of the XY Hamiltonian with increasing the number
of vertices on a square lattice. Figure 6(a,b,c) shows the eeimental results of the nor-
malised real-space photoluminescence intensity at the egg of the condensate at condensa-
tion threshold for 45 coherently coupled polariton condeages arranged at the vertices of a
square lattice. The lattice constants chosen here result anti-ferromagnetic, ferromagnetic
and next anti-ferromagnetic coupling respectively. Figuré(d,e,f) shows the corresponding
normalised photoluminescence intensity of the two-dimeiasal Fourier-space corresponding

to the lattices of Fig.6(a-c) at the energy of the condensatd aondensation threshold. The
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contrast of the interference pattern observed in the Founiespace images is indicative of the
degree of coherence across the lattice. In particular, thew intensity centre surrounded by
sharp intense \Bragg peaks" in Fig.6(d,f) indicates anti-fi’omagnetic coupling, whereas the
high intensity centre in the two-dimensional Fourier-spae of Fig.6(e) indicates ferromagnetic
coupling. We nd that in the steady-state excitation regimeand for the number of vertices
that we are technically capable to realise, -up to 45 here-hé injected square polariton
lattices always condense with the phase con guration thatarresponds to the ground state
of the bespokeXY Hamiltonian.

Discussion and conclusionsUnlike a proposal for a quantum computer that is intended
as a universal platform, analogue simulators are proposed solve specialized classes of
problems suited for the architecture and capabilities of # underlying physical system.
For example the intensely investigated superconducting gatum bits platform intends to
simulate the Ising model with transverse elds through the gadratic unconstrained binary
optimization model (QUBO) [32]. Trapped ions were used to smtate Ising, XY, and
XYZ interactions between e ective spins [33]. Another scalablplatform that bene ts from
high temperature operation is the coupled degenerate OPOsirig Machine, which solves
the MAX-CUT [34, 35]. Our polariton platform simulates the XY model, which can be
formulated as a quadratic non-convex constrained optimiian model (QNCO). The hardest
instances of all mentioned problems are in the NP-hard clasal complexity class of problems.
QUBO or MAX-CUT can be mapped into QNCO and vice versa but with a hugeverhead
on the number of nodes [7]. Therefore, assuming that all pfatms eventually show better
than classical computer behavior it is likely that each pldorm will be used to address
its own type of problems. Most relevant platforms addressinthe XY Hamiltonian for a
large number of spins are the optical lattices of atomic coedsates [31] and the photon
lasers networks [36]. Whereas both are scalable, they areelikto reach a local rather than
the global minimum of the Hamiltonian. In both the photon laserand polariton platform,
the phase con guration of the lasers or the condensates, dtd threshold, corresponds to
the global minimum of the energy landscape. In the case of tpmlariton platform, it is
possible to operate in the steady state regime at thresholdnd as we have demonstrated
experimentally, achieve the global minimum of theXY Hamiltonian; photon laser systems
that operate stably well above threshold are described by ¢hkuramoto model and can be

trapped in local minima of the energy landscape. In the conations we considered so far,
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the energy gap between the ground and excited states is largean the linewidth and that
allows for the ground state to be accurately found. Further ark is needed to establish how
the energy gap relates to the linewidth in more general latte con gurations. Clearly for the
polariton simulator introduced here, more work also is need to determine the fundamental
computation power, the upper limit on the number of coherefy coupled vertices and level
of connectivity. Nevertheless, the optical approach of imptting two-dimensional polariton
lattices of arbitrary geometries and density pro les allow for tunable coupling strengths
between vertices and as we have demonstrated it o ers the mottial for rapid scalability

utilising mature semiconductor and photonic technologies
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