Cardiff University | Prifysgol Caerdydd ORCA
Online Research @ Cardiff 
WelshClear Cookie - decide language by browser settings

Systems analysis of the dynamic inflammatory response to tissue damage reveals spatiotemporal properties of the wound attractant gradient

Weavers, Helen, Liepe, Juliane, Sim, Aaron, Wood, Will, Martin, Paul ORCID: https://orcid.org/0000-0002-2665-5086 and Stumpf, Michael P.H. 2016. Systems analysis of the dynamic inflammatory response to tissue damage reveals spatiotemporal properties of the wound attractant gradient. Current Biology 26 (15) , pp. 1975-1989. 10.1016/j.cub.2016.06.012

[thumbnail of 1-s2.0-S0960982216306248-main.pdf]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (7MB) | Preview

Abstract

In the acute inflammatory phase following tissue damage, cells of the innate immune system are rapidly recruited to sites of injury by pro-inflammatory mediators released at the wound site. Although advances in live imaging allow us to directly visualize this process in vivo, the precise identity and properties of the primary immune damage attractants remain unclear, as it is currently impossible to directly observe and accurately measure these signals in tissues. Here, we demonstrate that detailed information about the attractant signals can be extracted directly from the in vivo behavior of the responding immune cells. By applying inference-based computational approaches to analyze the in vivo dynamics of the Drosophila inflammatory response, we gain new detailed insight into the spatiotemporal properties of the attractant gradient. In particular, we show that the wound attractant is released by wound margin cells, rather than by the wounded tissue per se, and that it diffuses away from this source at rates far slower than those of previously implicated signals such as H2O2 and ATP, ruling out these fast mediators as the primary chemoattractant. We then predict, and experimentally test, how competing attractant signals might interact in space and time to regulate multi-step cell navigation in the complex environment of a healing wound, revealing a period of receptor desensitization after initial exposure to the damage attractant. Extending our analysis to model much larger wounds, we uncover a dynamic behavioral change in the responding immune cells in vivo that is prognostic of whether a wound will subsequently heal or not.

Item Type: Article
Date Type: Publication
Status: Published
Schools: Medicine
Additional Information: This is an open access article under the CC BY license
Publisher: Elsevier
ISSN: 0960-9822
Date of First Compliant Deposit: 1 November 2018
Date of Acceptance: 10 June 2016
Last Modified: 08 May 2023 15:27
URI: https://orca.cardiff.ac.uk/id/eprint/103611

Citation Data

Cited 34 times in Scopus. View in Scopus. Powered By Scopus® Data

Actions (repository staff only)

Edit Item Edit Item

Downloads

Downloads per month over past year

View more statistics