AN EVALUATION OF OSMOTIC TECHNIQUE UNDER ULTRAVIOLET GERMICIDAL IRRADIATION EXPOSURE

*Mohd Yuhyi Mohd Tadza1, Nurhidayah Mahazani2 and Snehasis Tripathy2

Faculty of Civil Engineering and Earth Resources, Universiti Malaysia Pahang, Malaysia1 School of Engineering, Cardiff University, United Kingdom2

*Corresponding Author, Received: 27 April 2016, Revised: 27 October 2016, Accepted: 30 Nov. 2016

ABSTRACT: The osmotic technique, which uses polyethylene glycol (PEG) solutions of varying concentrations with semi-permeable membranes of different molecular weight cut-offs (MWCO), is commonly used to apply suction in soils. Cellulose acetate membranes which are most commonly used, are susceptible to microbial attacks. This in turn will lead to the intrusion of PEG into soil specimens. Osmotic and vapour equilibrium techniques are often used to establish drying suction-water content soil-water characteristic curves (SWCC). In this study, suction values of 0.11 to 300 MPa were applied on Andrasssy bentonite slurries. At higher applied suction, the osmotic tests were carried under short length ultraviolet germicidal irradiation (UVGI). In addition, Atomic Force Microscopy (AFM) and Fourier Infrared (FTIR) were employed to evaluate the changes in the semi-permeable membranes and PEG molecules, respectively. The water content of the clay obtained from the osmotic tests was found to be greater at the overlapping suction region. Interestingly, under UVGI exposure, the water content was found to be in good agreement with the water content determined using the osmotic technique at low suction and the vapour equilibrium technique at higher suction. FTIR spectrum and AFM results revealed that some changes had occurred on both the PEG and in the membrane pore sizes. However, these changes did not affect the final water content in the bentonite and therefore, more precise suction-water content SWCC for the clay could be established.

Keywords: Clay, Suction, Osmotic, Microbes, PEG, UV, Cellulose Acetate

1. INTRODUCTION

Bentonite is expensively used in various geoenvironmental applications. Bentonite in various forms such as loose powder, compacted and slurry have been used in the construction of liners, engineered barriers, isolation walls and backfill material [1][2]. Bentonites have been considered due to their unique containment properties (i.e. low permeability, high sorption capacity, self-sealing membrane characteristics, and durability in a natural environment) [3][4]. As of late, the study of soil microbes and their interactions in bentonite buffer has been of interest in nuclear waste repository applications [5]. Previous studies have shown that the presence of microbes can affect the geochemistry of bentonites and thus, influence their properties and engineering behavior [6][7][8][9][5].

The engineering behavior of unsaturated soils (viz. shear strength, volume change, permeability) due to changes in the water content are commonly predicted by establishing the suction-water content soil-water characteristic curves (SWCCs). In the laboratory, the suction-water content SWCCs are commonly established using various techniques to predict the changes in the water content in soils [9][10][11]. Recently, the vapour equilibrium and osmotic techniques have gained widespread acceptance as reliable methods for controlling suction in soil specimens [11]. The vapour equilibrium technique, which utilizes thermodynamic principles to control the relative humidity of various acid and salt solution vappours in a closed system, is used to apply suction in soil [9]. In the osmotic technique, on the other hand, the soil specimen is placed in a semi-permeable membrane and is brought into contact with polyethylene glycol (PEG) of predetermined concentration. In this technique, two polymers are commonly used, namely aqueous solution of (PEG) and cellulose acetate semi-permeable membrane [12].

One of the main drawbacks of the osmotic technique when using PEG 6000 along with molecular weight cut-off (MWCO) 3500 semi-permeable membrane, is the intrusion of PEG solution into the soil specimen particularly at higher applied suction [13]. This problem occurs due to the breakage of the semi-permeable membrane by soil fungi [14]. As soil hosts a diversity of microbes, the breakage of the semi-permeable membrane in osmotic tests is found to be inevitable. Removal of soil microbes prior to conducting osmotic tests is therefore crucial to ensure precise determination of soil-water SWCCs.

The main focus of this paper is to evaluate the use of short-length ultraviolet germicidal
irradiation (UVGI) to remove soil microbes prior to conducting osmotic tests. In this study, the suction-water content SWCC for Andraszay bentonite was established using both osmotic and vapour equilibrium techniques. The microbial characteristics of the bentonite were established before the removal of said microbes by exposing both PEG solutions and the soil specimens to UVGI. Atomic Force Microscopy (AFM) and Fourier Transform Infra-red (FTIR) spectroscopy were employed before and after exposure of UVGI to determine if there any changes to PEG molecules and cellulose semipermeable membrane as a result of the irradiation.

2. LITERATURE REVIEW

2.1 Suction-Water Content SWCC

PEG is a hydrophilic polymer made up of molecular chains having the chemical formula: \(\text{HO-[C_2H_4O]_n-H} \) [9]. The use of PEG-water mixtures along with suitable semipermeable membranes enables the application of osmotic gradients in an osmotic system. During the commencement of an osmotic test, a soil specimen is enveloped by a semipermeable membrane and immersed in an aqueous solution of PEG of varying concentrations. Cellulose acetate, an acetate ester of cellulose (C\(_6\)H\(_{10}\)O\(_3\)(OH)\(_3\)) is commonly used for this purpose [14]. In some cases, polysulfonate membrane is also used [9]. The semipermeable membrane is expected to prevent the passage of PEG molecule to soil–water systems. A review of literature suggested that, the osmotic technique has been successfully used for applying suction in soils up to 1.5 MPa. Although the technique can be further extended to 12 MPa using smaller molecular weight PEGs (i.e. PEG 1500) [12], the application of osmotic technique at higher applied suction appears to be limited to PEG 6000 only. This could be due to unavailability of lower MWCO semipermeable membranes [14]. For suction higher than 10 MPa, the vapour equilibrium technique is often opted for. The vapour equilibrium technique has been used to apply total suction from 3 up to 1000 MPa [9](11).

In order to obtain a continuous suction-water content SWCC that covers a wide range of suction for any given soil, suction-water content from both techniques are commonly plotted together. Studies in the past have shown disagreement between the test results from both vapour equilibrium and osmotic tests at higher applied suctions [15](10). The differences were mainly attributed to alterations of the membrane pore sizes which enabled the crossing of PEG molecules into soil specimens [13]. The magnitude of the alteration was found to be significant for lower MWCO membranes.

2.2 Intrusion of PEG

Soil microbes (i.e. bacteria and fungi) exist in both naturally occurring and commercially available bentonites [8][5]. The biodegradation of cellulose acetate based material by soil microbes has been studied for a long time by number of authors [16][17]. It is anticipated that, these microbes were responsible for the degradation of the membrane. The antibacterial property of PEG was found to be insufficient in removing soil microbes [14]. In geotechnical application, Kassif & Ben Shalom [18], recommended the usage of penicillin during laboratory tests to eliminate the bacteria to ensure long-term performance of cellulose acetate membranes. However, a recent study revealed that the breakage of the membrane is due to biodegradation of cellulose acetate by soil fungi [14]. Mold Tadza et al. [14] also noted that the use of penicillin is ineffective in removing soil fungi. Thus, other methods of disinfection may be required to eliminate the presence of cellulose degrading fungi in soil specimens.

2.3 Ultra Violet Germicidal Irradiation

The application of short-length UVGI in disinfection and removal of microbes is widely used and accepted in the microbiology community [19]. This method was also applied in disinfection of medical instruments and operation theaters [20]. The UV exposure at 200-280 nm for a certain period of time damages cell’s DNA and RNA, thus destroying the ability of the microbes to reproduce [21]. The germicidal effectiveness peaks at UVC, which is the subdivision of the UV wavelength (between 260-265 nm) [22]. Various types of soil bacteria and fungi were completely eliminated when exposed directly to UV lamp under laboratory conditions [23][21].

The main concern of using UVGI in osmotic technique is that the UV exposure may also lead to degradation of both the PEG molecules and cellulose acetate membrane. PEG can be photochemically degraded when exposed to UV. However, prolonged exposure is required. Das & Gupta (2005) noted that some changes in the FTIR spectrum of PEG when exposed under UV lamp for more than 1 hour. In the presence of oxidation chemicals such as hydrogen peroxide and titanium oxide, the degradation of PEG in aqueous form was found to occur at shorter periods of exposure
Direct degradation of cellulose acetate under UV and O3 has not been reported elsewhere. However, previous researches have shown that cellulose acetate-based materials were found to degrade under UV exposure at different wavelengths (i.e. 275-390 nm) in the presence of photosensitizers and oxidation catalysts [17]. Thus, the objective of this study is to explore the effect of UVGI exposure within this context.

3. EXPERIMENTAL TECHNIQUES

3.1 Determination of Geotechnical and Microbiological Properties of Bentonite Samples

The physical and microbiological properties of the Andrassey bentonite was first determined following standard laboratory procedures described in [10][14]. The microbiological properties of the bentonite, namely bacteria and fungi determination were carried out following plating slide culture, streaking, and isolation techniques [19]. Potato dextrose agar (PDA) was used for culturing fungi, whereas Nutrient agar (NA) was used to culture bacteria.

The clay specimen was initially suspended in 0.9% NaCl solution to separate the microbes from the soil [27]. Isolation of each microbe was carried out in an independent laboratory using the polymerase chain reaction (PCR) protocol and identification of the specific strain was done by referring to the international microbiological characterization database. No vertical lines or borders are needed.

3.2 Establishing the drying suction-water content SWCC

Bentonite slurry was initially prepared by mixing bentonite powder thoroughly with deionized water to slightly greater than liquid limit (i.e. 1.2 x LL). The bentonite-water mixture was stored in sealed plastic bags and kept in an air-tight container to allow for water equilibration to take place for about 7 days prior to preparing the specimens for the laboratory tests.

Osmotic tests were carried out by applying suction of 0.15, 0.25, 0.42, 1.03, 1.7, 3.65, 5.08, 6.64, 7.74, and 9.96 MPa using two types of PEG. PEG 20 000 was used for applying lower suction up to 2.67 MPa, whereas PEG 6000 was used for applying suction greater than 2.67 MPa. The applied suction in vapor equilibrium were 3.6, 14.58, 23.58, 39.38, 111.77 and 262.75 MPa corresponding to the relative humidities (RHs) of saturated solutions of K2SO4, KNO3, KCl, NaCl, K2CO3, and LiCl respectively. The suction of each PEG and saturated salt solutions were measured using a chilled mirror dew-point hygrometer. Decagon WP4C was used for this purpose.

PEG 20 000 and SpectraPor semipermeable membranes with MWCO value of 14 000 were used for applying suction less than 3.0 MPa, whereas PEG 6000 and SpectraPor membranes with MWCO value of 3500 were used for applying higher suction. Specimens for the osmotic tests were prepared using the bentonite slurry in cellulotic tubes of the semipermeable membranes (MWCO 14 000 and MWCO 3500). Both ends of the semipermeable membrane tubes were then securely fastened using polypropylene clips prior to immersing the specimens in PEG solutions.

For applied suction higher than 3.0 MPa using PEG 6000, duplicate tests were conducted under UVGI exposure. For this purpose, the tests were conducted using Esco Airstream Horizontal Laminar Flow Clean Bench (Glass Side Wall). The UV lamp automatically switched off after 10 minutes. For establishing suction-water content relationship using vapor equilibrium, bentonite slurries were initially prepared in 38 mm diameter stainless steel rings. Once prepared, the slurry specimens were carefully extended and transferred directly into test desiccators.

3.3 AFM Analyses

After completion of the osmotic tests, the membranes were carefully removed and rinsed before being directly transferred to a Nanowizard II scanning probe AFM from JPK Instruments for morphological scanning.

3.4 FTIR Analyses

A PerkinElmer Spectrum 100 spectrometer was used for studying the chemical and molecular changes of the PEG solutions. FTIR spectroscopy generates spectrum patterns according to the infrared intensity (i.e. wavenumber or wavelength) and the fraction of infrared transmitted by certain chemical bonds [28].

The spectrum patterns were then interpreted following methods described by Morrison & Boyd [29]. A sudden shift or distortion to the spectrum will generally indicate degradation or changes to either chemical bonds or molecule structure [20]. PEG 6000 solutions at the end of osmotic tests (i.e. with and without UVGI exposure) were collected and tested.
4. RESULTS AND DISCUSSION

4.1 Geotechnical and Microbiological Properties of Andrassy Bentonite

The properties of Andrassy bentonite is presented in Table 1. The bentonite in this study was found to exhibit a large surface area and high surface charge characteristics which make it ideal for soil microbes [34]. Referring to Table 1, it was found out that eight microbes were present within the soil. (i.e. Bacteria: Bacillus anthracis, Staphylococcus aureus, Micrococcus luteus, Actinomycetes Xylosoxidans; Fungi: Paecilomyces lilacinus, Trichoderma atroviride, Fusarium proliferatum, Rhodotorula mucilaginosa).

All eight microbes are considered to be common soil microbes. Interestingly, two strains of fungi (i.e. Paecilomyces lilacinus and Trichoderma atroviride) found in the soil specimen has the potential to degrade cellulose [14]. Remarkably, no presence of microbes were observed on both PDA and NA plates after UVGI exposure, indicating that complete removal of microbes were obtained after 10 minutes of UVGI exposure.

Table 1 Geotechnical properties of Andrassy bentonite

<table>
<thead>
<tr>
<th>Geotechnical properties</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific gravity, Gs</td>
<td>2.78</td>
</tr>
<tr>
<td>Liquid limit, wL (%)</td>
<td>129.30</td>
</tr>
<tr>
<td>Plastic limit, wP (%)</td>
<td>46.12</td>
</tr>
<tr>
<td>Shrinkage limit, wS (%)</td>
<td>34.00</td>
</tr>
<tr>
<td>Specific surface area, S (m2/g)</td>
<td>734.27</td>
</tr>
<tr>
<td>Cation exchange capacity, B</td>
<td>42.77</td>
</tr>
<tr>
<td>(meq/100g)</td>
<td></td>
</tr>
</tbody>
</table>

4.2 Effect of UVGI on Suction Calibration Curve

Figure 1 shows the measured concentrations of PEG solutions with and without UVGI exposure used in this study. Similarly, the calibration curves established using Eq. 1 [12] were plotted together for comparison.

\[s = \alpha c^3 + \beta c + \gamma c \] \hspace{1cm} (1)

where \(s \) is the suction and \(c \) is the concentration of PEG solution in g of PEG/ g of water. Fitting parameters, \(\alpha, \beta \), and \(\gamma \) are -3.527, 14.334 and -0.8055, respectively. The suctions measured increased with an increase in the concentrations of PEG solutions. Interestingly, good agreement was noted between the suction measured with in this study with the calibration curve provided by Tripathy and Rees [12]. Interestingly, similar suction values were noted for the calibration curve established for PEG 6000 solutions exposed to UVGI. Hence, no recalibration of the suction and concentration curve was required for PEG 6000 exposed to UVGI.

Fig 1 Measured suction versus concentration of PEG/g of water

4.3 Suction-water content SWCC

Figure 2 shows the equilibration plot at applied suction of 3.65 MPa using PEG 6000. Some differences were noted between the equilibration time for specimen with and without UVGI exposure.

The specimen that has undergone UVGI was found to equilibrate much longer (i.e. 8 days) as compared to 6 days for the specimen without UVGI exposure. Interestingly, the final water content attained for the specimen exposed under UVGI was slightly greater compared to the specimen that has not been exposed to UVGI. It is expected that a much faster equilibration was obtained due to alteration of the membrane pore sizes.

Fig 2 Time equilibration plot in osmotic test at suction 3.65 MPa.

The drying suction-water content SWCC is shown in Fig. 3. The final water contents of the soil specimens were found to decrease with an
increase in the applied suction. Smooth curve joining the osmotic test at lower suction (i.e. PEG 20000), and higher suction (i.e. vapor equilibrium). However, some disagreements were noted between osmotic test results (see PEG 6000 without UVGI exposure) and vapor equilibrium test results. The osmotic tests results at the overlapping suction region were found to remain lower than that of water contents obtained from vapor equilibrium. Similar observation was reported by Tripathy et al. [10] for other types of bentonites. The lower water contents are primarily attributed to the intrusion of PEG solution into the bentonites specimens. On the contrary, water contents obtained using PEG 6000 that has undergone UVGI were found to complement the test results of both osmotic test at lower suction and vapor equilibrium at higher applied suction.

Fig. 3 Drying suction-water content SWCC

4.3 Effect of UVGI on Membrane Pore Size

Figure 4a and 4b present typical AFM images of MWCO 3500 membrane with and without UVGI exposure at the end of the osmotic tests. The membrane is composed of series of well-organized regenerated cellulose acetate strands to form a mesh like formation. AFM images revealed that both membrane pore sizes were larger than that specified by the manufacturer. It is believed that these differences were caused by degradation caused by cellulose degrading microbes present within the soil. Similarly, degradation also occurred due to UVGI exposure.

Some differences were noted between the pore size of membrane after the test and the pore size of membrane exposed to UVGI. Differences in the structural arrangements of the strands were also observed. Alteration of the membrane pore sizes by cellulose degrading microbe in this study (i.e. without UVGI) was found to be greater than those that have undergone UVGI exposure. Surprisingly, although alteration of the membrane pore sizes occurred after UVGI exposure, the final water contents determined in the osmotic tests were found to be in better agreement with those of the osmotic test at lower suction and the vapour equilibrium water contents.

4.4 Effect of UVGI on FTIR Spectrum

Comparison of FTIR spectrums for PEG 6000 solutions after completion of osmotic tests with and without UVGI exposure is shown in Fig. 5. Slight differences were noted on 3369 cm⁻¹ peaks corresponding to O-H bond. It is noted that a slightly higher transmittance were obtained for PEG solution after osmotic tests without UVGI exposure. Apart from that the primary molecular structure of PEG remained somewhat unaffected by the exposure of UVGI, indicating that no degradation occurred.

Fig. 4 AFM images of MWCO 3500 semi-permeable membrane after osmotic tests (a) without UVGI and (b) with UVGI exposure.

Fig. 5 Comparison of FTIR spectra for PEG 6000 with and without UVGI exposure.
5. CONCLUSION

Results of the investigation after conducting osmotic test under UVGI exposure have been presented in this paper. Based on the test results, the following conclusions were drawn:

i. All soil microbes in this study were completely eliminated by 10 minutes of UVGI exposure, and thus degradation of membrane by microbes is prevented.

ii. Water contents obtained after UVGI complemented vapour equilibrium and osmotic tests results at lower suction, and more precise SWCC were established.

iii. the FTIR Spectrum showed that UVGI had some effects on the O-H bond and pore size of the cellulose acetate semipermeable membrane. These effects were found to be insignificant in the determination of final water contents of the bentonite.

6. ACKNOWLEDGEMENTS

The authors would like to express their gratitude to Universiti Malaysia Pahang for providing financial support under RDU 130384. The authors would also like to thank the Malaysian Nuclear Agency for providing AFM service for this study.

7. REFERENCES

Copyright © Int. J. of GEOMATE. All rights reserved, including the making of copies unless permission is obtained from the copyright proprietors.