Running head: Intake hedonism in pigs.

Consumption patterns: A proposed model for measurement of solution palatability in pigs

D. Frías*; T. Tadich*; R. Franco-Rosselló†; D.M. Dwyer‡§ and J. Figueroa*2.

*Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, La Pintana 8820000, Santiago, Chile. †Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain. ‡School of Psychology, Cardiff University, Cardiff CF10 3AT, UK, §School of Psychology, University of New South Wales, Sydney, NSW, 2052, Australia.

The present study was supported by the Program U-INICIA VID 2013 from Universidad de Chile, the Chilean Government research project “FONDECYT Iniciación Nº 11140576 and the Nutrition and Welfare group (SNIBA) of the Universitat Autònoma de Barcelona.

We thank David Solà-Oriol and Francisco Pérez for their experiment collaboration.

2Corresponding author: jaime.figueroa@u.uchile.cl

NOTE: This is a copy of the authors’ pre-print manuscript prior to acceptance for publication in the Journal of Animal Science. This article may not exactly replicate the final version published in Journal of Animal Science. It is not the copy of record. The final publication is available at https://www.animalsciencepublications.org/publications/jas.
ABSTRACT: In animal production, the palatability of feeds or solutions has typically been inferred from measurements of preference or acceptance. However, laboratory studies in rats have demonstrated that palatability quantified through the analysis of the microstructure of licking can dissociate from simple measures of consumption. The aim of this study was to evaluate palatability in pigs by using consumption patterns. Pigs (n = 24) were exposed (in pairs – with video recording) to different sucrose solutions (0.5, 1, 2, 4, 8, 16 and 32%) over seven consecutive 10min tests (one concentration/day). Total consumption, number of consumption approaches (A) and real consumption time (RCT) were measured. Palatability was estimated through consumption pattern (RCT/A), analogous to the licks/bout measure used in rats. Data was analysed by sucrose concentration. Spearman correlation coefficients were estimated between log sucrose concentration and total consumption, A, RCT and RCT/A. Total consumption and RCT showed inverted-U functions relative to sucrose concentration. Consumption pattern (RCT/A) presented a dose effect ($P < 0.005$) and positive correlations with sucrose concentration ($R = 0.23, P = 0.034$). As with rats, consumption pattern could represent an interesting and novel measure of feeding behaviour reflecting palatability in pigs.

Keywords: palatability, pigs, sucrose solutions, welfare
INTRODUCTION

The assessment of palatability or hedonic reactions during animals’ intake have been typically based on the preference or acceptance of feeds or solutions. However, these measures are also influenced by components of the feeding situation beyond palatability (Forbes, 2010). Laboratory studies in rats have demonstrated that palatability quantified through the analysis of licking microstructure (or orofacial responses) can dissociate from simple measures of consumption. For example, consumption of sucrose is highest at moderate concentrations, while lick cluster size (mean number of licks per bout of drinking) increases monotonically with sucrose concentration (Davis and Smith, 1992; Dwyer, 2012). This technique can also determine changes in palatability after flavour preference and aversion learning (Dwyer, 2009; 2012). In addition, drug treatments thought to influence hedonic responses in humans also influence lick cluster size (Higgs and Cooper, 1998). This pattern of evidence strongly supports the idea that lick cluster size is a valid index of hedonic reactions and solution palatability in rodents.

Estimating the hedonic reactions in productive animals like pigs could be of particular interest for their nutrition and management – both through evaluating/improving welfare and through helping to maximise intake. For example, a reduction in hedonic reactions to normally palatable foods could be used as an indicator of poor welfare (negative emotional state) and decrease production capacity, this state could potentially be remediated by reformulation of diets to enhance positive hedonic reactions. Investigating hedonic reactions also provides evidence concerning the mechanism by which diet manipulations impact on overall consumption, for example by identifying whether otherwise beneficial inclusions might be rejected on the basis of low palatability. Despite recent interest in pigs’ feeding behaviour (Figueroa et al., 2012) there are currently no
measures that deliver direct estimates of pigs’ hedonic reactions during intake. The present study aimed to compare consumption patterns (analogous to the licks/bout measure used in rats) to other feeding behaviour measures such as total consumption as indicators of the palatability of sucrose solutions in pigs.

MATERIALS AND METHODS

The experiment was conducted at the weanling unit of the Universitat Autònoma de Barcelona (UAB) pig facilities, and pigs returned to commercial production within the UAB facilities after the experiment. Experimental procedures were approved by Ethical Committee on Animal Experimentation of the UAB (CEAAH 1406).

A total of 40 male and female 42d-old pigs [(Large White x Landrace) x (Pietrain)], weighing 9.2 ± 0.9 kg were used. Pigs were weaned at 28 days of life in a weaning room equipped with automatic, forced ventilation and slatted floor. They were ad-libitum fed with a commercial powder feed except for 1 hour before and after each test. In the second week after weaning (35-41 days old) pigs were acclimated to the experimental conditions by offering a dish of water for one hour each morning (09:00 to 10:00 h) at the front of each pen. At the beginning of the third post-weaning week (42d-old), 24 pigs were randomly selected, weighed and placed into experimental testing pens (1.6 m² in floor area). They were exposed in pairs (n = 12) to different sucrose solutions (0.5, 1, 2, 4, 8, 16 and 32%) over seven consecutive 10min tests (one concentration/day). Half of the pig-pairs were tested with increasing sucrose concentrations (0.5 to 32%) and the rest with decreasing concentrations (32 to 0.5%). Pigs were video recorded (4 Video-cameras, IR Outdoor Cameras 700tvl 1/3 cmos Sony®, SENKO SA, Santiago, Chile) during the testing to allow behavioural sampling over a period of 10m per session.
Total consumption, number of consumption approaches (A), and real consumption time (RCT) were measured. Total consumption was measured by weighing dishes at the beginning and end of each test. Consumption approaches and RCT were assessed from the video recordings (RCT = Total time at the feeder; A = number of times the feeder was approached with a consumption result), by focal continuous sampling over the 10 min test period. Although the overall analysis presented here focuses on the whole 10 min consumption period, we also performed additional analyses on the first (1-5 min) and second (6-10 min) sub-periods to examine how parameters might change across time.

Consumption, A, RCT and RCT/A were analysed with ANOVA using the MIXED procedure of the statistical package SAS® (SAS Inst. Inc., Cary, NC) with sucrose concentration as a repeated measure (0.5, 1, 2, 4, 8, 16 and 32%) and test order (increasing or decreasing concentration) as a between subject factor. The experimental unit was the pig-pair with results expressed as the average of both pigs’ data. Spearman correlation coefficients were used to evaluate monotonic relationships between log sucrose concentration and total consumption, A, RCT and RCT/A by using the CORR procedure of SAS®. Alpha was set at 0.05 for all analyses.

RESULTS

Total consumption, A and RCT were affected by the sucrose concentrations during the total experimental time (P = 0.012; P = 0.028 and P = 0.028 respectively). These parameters showed inverted-U functions relative to sucrose concentration with the highest values at intermediate levels (Figure 1). Test order did not affect any parameter (P > 0.05). However, an interaction between test order and sucrose concentration appears on A (P = 0.004) and RCT/A (P = 0.008). There were no significant Spearman correlations between sucrose concentrations and consumption (R < 0.01, P = 0.975), RCT (R = 0.07, P = 0.516)
or A (R = - 0.07, P = 0.518). ANOVA also revealed RCT/A was influenced by sucrose concentration (P = 0.005). RCT/A showed significant Spearman correlations with sucrose concentration (R = 0.23, P = 0.033) indicating that unlike the other measures, RCT/A does show a monotonic increase with sucrose concentration.

DISCUSSION

Pigs displayed inverted-U functions between intake and sucrose concentration with higher consumption observed at intermediate concentrations. However, for consumption patterns (i.e. RCT/A), adapted from lick cluster size used in rats (Dwyer, 2012) and similar to what Clouard et al. (2014) described as the “duration of the drinking episodes”, the highest values were found as sucrose concentration increased until a point where it seem to reach to a plateau. That is, pigs spent longer periods in each feeder approach as sucrose concentration increased. These results are consistent with prior rodent work, where mean lick cluster size increases monotonically with the hedonic value of a solution (e.g. the sweet taste of sucrose) (Davis and Smith, 1992; Dwyer, 2012). Thus, the present results suggest that consumption patterns during intake provide a more direct measure about pigs’ hedonic reactions to sensory cues, such as sweet taste, than do simple intake measures such as overall consumption. That said, it should be acknowledged that the rate of increase in RCT/A with concentration was stopped at the highest concentrations reaching a plateau. An additional analysis suggest that RCT/A values did not correlate with concentration when the final (6-10min) of the test period was considered alone. These observations may suggest that the sensitivity of this method might be attenuated with very palatable solutions or as exposure is extended (possibly due to ceiling effects in palatability or satiation). Thus further work will be required to determine the ideal parameters for consumption pattern analysis in pigs and establish if there are particular boundary conditions for this technique.
Despite these caveats, the clear dissociation between total intake and RCT/A measures in response to changes in sucrose concentration demonstrates the limitations of using simple consumption measures as an indication of hedonic responses or palatability. As a result, total intake (or even the preferences) will not necessarily reflect more palatable diets and may limit the reliability of any recommendations regarding optimal feed inclusions. In short, the current study suggests that the analysis of consumption patterns could represent an interesting and novel measure in feeding behaviour reflecting palatability in pigs. Moreover, the fact that changes in the internal state of rodents (e.g. through learning or stress – Dwyer, 2012) can selectively influence consumption patterns, also raises the possibility that the analysis of feeding consumption patterns in pigs may offer a particularly valuable tool for identification of hedonic dysfunctions or welfare problems in animals kept in production systems.

LITERATURE CITED

Figure 1. Means (±SEM) of total consumption (g), real consumption time (RCT), number of total approaches (A) and consumption pattern (RCT/A) over 10 min. from pigs (n = 12) exposed to different sucrose concentrations.