Capillary flow characteristics of an autogenic and autonomic healing agent for self-healing concrete

Diane Gardner, Daniel Herbert, Monica Jayaprakash, Anthony Jefferson, Alison Paul

a Ph.D, C.Eng, Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, UK. Email: GardnerDR@cardiff.ac.uk

b Ph.D, Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, UK.

c Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, UK.

d Ph.D, C.Eng, Cardiff School of Engineering, Cardiff University, Queen’s Buildings, The Parade, Cardiff, CF24 3AA, UK.

e Ph.D, Cardiff School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK.

ABSTRACT

Capillary flow through discrete cracks is the main mechanism by which healing agents embedded within cementitious matrices travel to zones of damage to afford the host matrix a healing ability. However, the nature of the interaction between the healing agents in their fluid state and the host matrix is unknown and may limit the ability to predict the behaviour and efficacy of self-healing systems. This study considers the capillary flow characteristics of a low viscosity cyanoacrylate and Ground Granulated Blast Furnace slag in a water suspension using glass capillaries and channels formed from a range of concrete mixes. Both healing agents conformed closely to Poiseuille’s law and experienced increases in viscosity over the 40 minute period that they were exposed to a cementitious environment. Numerical simulations of the capillary rise response of the healing agents in a discrete
crack confirmed that the rate of damage and degree of saturation of the concrete element will have a significant influence on the choice of healing agent in the design of self-healing systems.

INTRODUCTION

Self-healing cementitious materials are receiving significant interest from not only the research community but also the general public and industry, due to their ability to address the social, financial and environmental concerns with infrastructure degradation (King 2013; Ortolani 2014). Numerous techniques have been proposed for achieving self-healing cementitious materials which either rely on enhancing the material’s intrinsic ability to heal (Engineered Cementitious Composites, use of supplementary cementitious materials) or engineering the material via the use of inclusions within the cementitious matrix that carry autogenic (natural) or autonomic (man-made) healing agents. Both techniques primarily rely on the transport of fluid (water or healing agent) in a discrete crack to microcracked zones of damage.

The selection of a healing agent is driven mainly by cost and availability, although it is important that its physical properties such as viscosity, surface tension, bonding characteristics and its compatibility with the cementitious matrix over time, are considered during the selection process. In general, healing agents with low viscosity and significant capillary potential are usually preferred.

Compared to autonomic healing agents, autogenic healing agents such as those based on supplementary cementitious materials (Sahmaran et al. 2013), mineral admixtures (Ahn and Kishi 2010) and geomaterials (Kishi 2013) afford improved compatibility with the host matrix due to the nature of the chemical composition of the healing products. Moreover, through the use of a pozzolanic material, bond strengths comparable with those of undamaged cementitious materials may be achieved. Varying methods have been proposed to embed autogenic healing agents into cementitious materials. These range from combining them in their natural form with other mix
components or encapsulating them within microcapsules of varying shell material (Kanellopoulos et al. 2015; Van Tittelboom and De Belie 2013). In the former their long term reactivity is questionable particularly since their supply will be exhausted as part of the continual cement hydration process. Conversely, in the latter, their longevity is improved but their reactivity is dependent on the host matrix environment and the presence of water to carry the dry-powder-based healing agent from its point of encapsulation to the site of damage via a range of transport mechanisms, including capillary action.

Chemical agents such as epoxies, cyanoacrylates, and polyurethane are frequently used as concrete repair products and as such have been employed in a range of autonomic self-healing concrete studies (Cao et al. 2014; Wang et al. 2013; Joseph et al. 2010; Maes et al. 2014). These healing agents have been encapsulated in either microcapsule or vascular based systems. Nevertheless, in all cases the predominant transport mechanism is capillary action.

Self-healing studies on cementitious materials are generally conducted at small scale to demonstrate the feasibility and effectiveness of the particular healing system. This necessitates the use of mortar rather than concrete to avoid excessive heterogeneity, which occurs when the maximum aggregate particle size becomes large relative to the principal structural dimension (Van Tittelboom and De Belie 2013; Joseph et al. 2010). Similarly, previous studies conducted on the capillary rise response of healing agents have also been predominantly limited to mortar based cementitious materials (Gardner et al. 2012; Gardner et al. 2014). The need to upscale self-healing materials is now apparent and dictates a move to concrete specimens that replicate structural elements, environmental conditions and typical damage events found in civil engineering infrastructure. As a result, the capillary flow may be influenced by (i) the crack morphology, as cracks deviate around coarse aggregate particles; (ii) the absorptivity of the cementitious matrix as a result of coarse aggregate particle inclusion, (iii) the density of the matrix for differing strength concretes and (iv) the degree of
saturation of the concrete. All of these factors have the potential to influence the parameters used in
modelling the capillary rise response, namely the surface tension, contact angle and viscosity of the
healing agent.

To date, there have been a limited number of reported studies on the mechanisms of capillary flow
and the flow properties of healing agents in concrete. Whilst acknowledging the contributions of
previous investigations (Gardner et al. 2012; Gardner et al. 2014; Dong et al. 2015), it remains true that
the mechanisms governing these processes are neither fully understood nor properly characterised.
The aim of this study is to address this by establishing the capillary flow characteristics of both an
autonomic healing agent and autogenic healing agent through a series of experimental investigations,
with particular attention given to their Hagen-Poiseuille and capillary flow characteristics.

This paper firstly presents experimental data concerning the characterisation of the flow properties of
the two healing agents, in particular the Hagen-Poiseuille flow properties, time-surface tension, time-
contact angle and time-viscosity relationships. A brief summary of previously developed flow theory
(Gardner et al. 2014) is then provided and a numerical model is used to simulate the capillary rise
behaviour of the two healing agents in a discrete crack, using the flow properties reported earlier in
the paper.

CHARACTERISATION OF FLOW PROPERTIES

The flow properties of two healing agents, alongside water, were characterised in this experimental
study. The autonomic healing agent was a low viscosity cyanoacrylate (PC20) (Cyanotech, 2016) with
a specific gravity of 1.06. The autogenic healing agent was a suspension of Ground Granulated Blast
Furnace Slag in water (GGBS(S)) (Hanson, 2015). The GGBS had a specific gravity of 2.9 and was
combined with water in the ratio of 40:60 by mass to give a suspension with a density of 1358kg/m³. A
series of characterisation tests were performed on the healing agents in both a non-cementitious and
cementitious environment. These tests and the associated results are reported in detail in the next 4 sections.

Hagen-Poiseuille flow of healing agents

Firstly, to characterise the flow properties of the healing agents and establish the applicability of Poiseuille’s Law to the present situation, the experimental arrangement presented in Fig. 1 and the Hagen-Poiseuille (H-P) flow equation, given in Equation (1), were used. For Poiseuille’s law to be applicable to a particular fluid, its dynamic viscosity should be insensitive to both pressure and flow rate.

\[\Delta P = \frac{8 \mu L Q}{\pi r^4} \]

where \(L \) = channel length (m); \(Q \) = flow rate (m\(^3\)/s); \(r \) = capillary radius (m); \(\mu \) = dynamic viscosity (Ns/m\(^2\)) and \(\Delta P \) = Pressure drop (N/m\(^2\)) over the channel length \(L \).

In this study, the flow channel comprised glass capillary tubes with internal diameters of 0.8mm and 1.2mm and lengths of 100mm, 200mm and 300mm. These tube dimensions were chosen to limit the influence of end effects and to allow the development of laminar flow, with the aim of obtaining reliable flow properties. The authors were not trying to replicate the tubes in any particular vascular or encapsulated self-healing system in these particular tests.

The tests were conducted using initial heights (\(h_0 \)) ranging from to 450 to 1900mm, dependent on the capillary tube radii, length and healing agent, as summarised in Table 1. The change in surface height (\(h(t) \)) was measured using an AOS X-Motion high speed video camera.

The results, presented in Figure 2, demonstrated that the response of both healing agents conformed closely to Poiseuille’s law, with a minimum correlation coefficient of 0.9968 for the 200L 0.8D PC20
test. The viscosity of the healing agent calculated from each test is given in Table 2. The average viscosity of PC20 was subsequently calculated as 3.15×10^{-3} Ns/m2, which falls within the viscosity range published by the manufacturer (Cyanotech 2016). Similarly the GGBS(S) had a viscosity of 3.20×10^{-3} Ns/m2.

Time-surface tension relationship

A Lauda TVTI drop volume tensiometer (see Fig. 3), calibrated with distilled water and ethanol samples, was used to examine the influence of healing agent curing (PC20) and settling (GGBS(S)) on the variation of surface tension (γ) with time. A syringe volume of 1ml was chosen with a 1.35mm inner diameter needle employing a drop rate of 0.2-40s/μl. PC20 is known to cure in the presence of moisture and therefore surface tension measurements were repeated with 2.5ml of water in the base of the drop receiving cell. GGBS(S) suspensions were made with tap water (TW) and the sample for measurement was taken from the middle layer of the sample following 30 seconds vigorous shaking and 30 seconds settling time. However, further settling of the suspension was observed during the course of the measurement and could be clearly seen on removal of the syringe from the tensiometer. In order to address this, a series of readings over three drop rates (and hence drop times) were taken to observe the change in GGBS(S) surface tension with time.

Table 3 presents the surface tension results measured to an accuracy of 0.1mN/m. Similar surface tension results have been published in the literature for water at 20°C (Richards and Coombs 1915) and Ethyl Cyanoacrylate (O’Neil 2006). The addition of GGBS to water results in a 30% reduction in the surface tension compared to tap water alone. Of significant interest is the consistency in the surface tension measurements for each healing agent, regardless of (a) the presence of moisture in the cell to encourage curing (PC20) or (b) a change in drop time which would affect the degree of sediment settling (GGBS(S)). In the case of the former this supports the theory that PC20 will only start to cure/bond when in contact with a surface, and therefore a suspended drop of PC20 is unlikely
to demonstrate any significant change in surface tension over the timescales considered in these
experiments. For the GGBS(S) surface tension results it can be seen that there is negligible change in
surface tension for the 3 different drop rates.

Substrate-contact angle relationship

The influence of a range of substrates on the contact angle (θ) of the healing agents was examined via
the sessile drop technique. Three different substrates were used, the first being Thermo Scientific
Gerhard Menzel Superfrost glass slides in the “as supplied” condition (described by the manufacturer
as washed and polished). The second substrate was the open cast face of a high strength concrete
(HSC) cube, manufactured using the mix proportions in Table 4 and dried for 12 hours at 25°C prior
to testing to provide an unsaturated surface (HSC UNSAT). The third substrate was a HSC cube
which was soaked in water for 1 hour to provide a saturated surface (HSC SAT). The two latter
substrates were used to observe changes to the contact angle when in contact with a cementitious
surface. The HSC cubes were cast 7 days prior to testing.

The sessile drop technique, a schematic view of which is given in Figure 4a, was performed using a
drop volume of 10μl. The technique was performed 3 times on each substrate. Images of the drops
were captured with a Veho Discovery VMS-001 microscope, an example of which is given in Figure
4b. Imaging techniques developed by Stalder et al. (2006) were used to obtain the drop profile and
contact angles on either side of the drop, as indicated in Figure 4c, which were then used to provide
an average contact angle for the drop. The contact angle reported for each substrate was taken as the
average contact angle of the 3 drops on that substrate and is reported in Table 5 along with the
coefficients of variation (COV%).

For all fluids analysed, the contact angle is greater for the HSC surfaces than the glass surface. This
may be expected since it is well known that, in general, contact angles increase with surface
roughness (Wenzel 1936; Cassie and Baxter 1944; Fox and Zissman 1950; Momber 2000) and the HSC
samples certainly had a higher surface roughness than the glass. The two main issues that cause this increase are the greater relative contact area present when a surface is rough (Wenzel 1936) and the fact that the surface will absorb some of the fluid and the resulting capillary actions provide an increased pinning force (Momber 2002). It is also clear that the contact angles are slightly greater for the saturated HSC specimens than for the unsaturated cases. It may be that, in effect, the presence of a more continuous fluid phase around the droplet increases the pinning perimeter, although the latter would have to be verified with further investigation.

Although higher contact angles are reported on HSC substrates than on glass for all the healing agents considered, the magnitude of the difference between the contact angles varies, indicating the presence of an additional interaction between the healing agent and the substrate. The curing time of a thin cyanoacrylate film on a borosilicate glass plate was reported by the Cambridge Polymer Group (2004) to be 5 minutes with 80% curing observed in the first 2 minutes. It is therefore suggested in the current study that the increased alkalinity and presence of moisture on the surface of the HSC, even in the unsaturated state, will increase this curing rate such that immediate curing of the drop at the adhesive/surface interface effectively pins the drop in place preventing further wetting of the surface. Conversely, the latent hydraulic and pozzolanic properties of GGBS(S) have reaction times in the order of weeks/months, which are greatly in excess of the duration of the tests reported herein.

The sessile drops were observed for one hour following the initial measurement. Negligible change in the contact angle was observed for PC20 after this one hour period, whilst the water and GGBS(S) sessile drops evaporated after 15 minutes of exposure to the laboratory environment.

Time-Viscosity relationship
The development of a bespoke viscometer, as shown in Figure 5, designed to examine the change in viscosity of the healing agent when in contact with a cementitious matrix has previously been
reported by the authors (Gardner et al. 2014). A modified version of this viscometer, which comprises two flexible tubes and a narrow rectangular channel in a concrete specimen, is reported herein.

A series of flow tests over time were conducted in which a rectangular channel 25mm wide by 1mm deep formed through concrete blocks of varying strengths (mix proportions given in Table 6) was connected to two L-shaped flexible tubing channels, 4mm in inner diameter. The rectangular channel was selected to represent the flow conditions in a planar crack. The connection between the flexible tubing channels and the rectangular channel was made by countersinking the flexible tubing 10mm into the side of the concrete specimen and affixing it with cyanoacrylate glue. The channels were cleaned with pressurised air and the block arrangement was tilted to the left hand side about the pivot point, at which point the healing agent was introduced into channel 1 (see Figure 5) such that the channel was almost full. A stopper was placed in the end of channel 1 and the block arrangement was then returned to the horizontal position and the stopper removed. This allowed the movement of the healing agent through a clean, non-coated channel in the concrete to be observed. Subsequent tests involved the movement of the healing agent through the previously coated concrete channel. The movement of the healing agent free surface (i.e. dh_1/dt) was recorded using a high speed video camera. The test was repeated at 20 second intervals for 1 minute, and then at 3 to 4 minute intervals for a further 15 minutes followed by 3 further readings at 20 minute intervals. Tests were conducted using saturated (SAT) concrete specimens, which had been soaked in water for one hour prior to testing and unsaturated (UNSAT) concrete specimens, which were dried for 12 hours at 25°C prior to testing. The GGBS(S) tests are denoted UNSAT because the specimens were initially dry; however, the near surface zones of the channels quickly became saturated. Preliminary tests for GGBS(S) with both initially saturated and unsaturated specimens showed no appreciable difference and thus only the initially unsaturated specimen results are reported.
The theory related to the displacement of the free surface, previously presented by Gardner et al. (Gardner et al. 2012; Gardner et al. 2014), is summarised below. Here, an amendment is made to the \(K_{HP} \) term to account for the rectangular central channel, and to the solution to the governing differential equation to allow for instances when the discriminant of the associated characteristic equation has positive roots.

The moment balance inside the viscometer is given by equation (2), in which \(u_i \) is the flow velocity of the fluid in channel \(i \) (\(i \) designating the flexible tube or channel in the mortar), and the superior dot denotes the time derivative. \(L_i \) is the length of channel \(i \) (m); \(h_i \) is the height of the healing agent above the centre line of the horizontal portion of channel \(i \) (m); \(A_i \) is the area of channel \(i \) (m\(^2\)); \(r_i \) is the radius of channel \(i \) (m); \(d_c \) is the depth of the rectangular concrete channel (m); \(\rho \) is the healing agent density (kg/m\(^3\)) and \(\mu \) is the dynamic viscosity (Ns/m\(^2\)).

Mass continuity of the fluid implies that \(u_i = -\dot{h}_i \), \(\bar{h} = \frac{h_1 + h_3}{2} \) and \(A_i u_i = \text{const.} \)

Applying these conditions in equation (2) and rearranging gives the governing differential equation in (3).

\[
\rho g (h_1 - h_3) A_1 + 8 \mu \sum_{i=1}^{2} A_i \frac{L_i u_i}{r_i^2} - 12 \mu A_3 \frac{d_3^2}{d_c^2} - \rho \sum_{i=1}^{3} A_i \frac{L_i u_i}{r_i} = 0
\]

\[\dot{h}_i + \frac{K_{HP}}{\rho L_T} \dot{h}_1 + \frac{2g}{L_T} h_i = \frac{2g}{L_T} \bar{h} \]

in which \(K_{HP} = 8 \mu \sum_{i=1}^{3} \frac{L_i}{r_i^2} + 12 \mu \frac{L_3}{d_c^2} \)

and \(L_T = \sum_{i=1}^{3} L_i \)
A solution to equation (3) is given in equation (5) for the case when the discriminant of the associated characteristic equation has positive roots;

\[h_1 = e^{i\frac{\alpha}{2}} \left(h_{10} - \bar{h} \right) \left[1 - \frac{\alpha}{\chi} \right] + \bar{h} \]

(5)

where \(\lambda = -\alpha + \sqrt{\alpha^2 - 4\beta} \) and \(\chi = -\alpha - \sqrt{\alpha^2 - 4\beta} \) and \(\alpha = \frac{K_{up}}{\rho L_T} \) and \(\beta = \frac{2g}{L_T} \).

Similarly, a solution to equation (3) is given in equation (6) for the case when the discriminant of the associated characteristic equation has complex roots;

\[h_1 = e^{i\frac{\alpha}{2}} \left(h_{10} - \bar{h} \right) \left[\cos \left(\frac{\alpha}{\chi} \right) + \left(\frac{h_{10} - \lambda}{\chi} \right) \sin \left(\frac{\alpha}{\chi} \right) \right] + \bar{h} \]

(6)

where \(\lambda = -\left(\frac{\alpha}{2} \right) \) and \(\chi = \sqrt{\beta - \left(\frac{\alpha}{2} \right)^2} \) and \(\alpha, \beta \) as above

The initial conditions used in the solution to derive (5) and (6) are as follows:

\[h_1 = h_{10} \text{ and } \dot{h}_1 = \dot{h}_{10} @ t=0 \]

The viscosities for the two healing agents over time were computed by using a least squares fit of equation (5 or 6) to the associated experimental data and are shown in Figure 6. It can be observed that there is no significant change in the viscosity of the PC20 in both a saturated (SAT) and unsaturated (UNSAT) environment over the first 5 minutes of the test. However, on constant exposure to air and the cementitious matrix, there is evidence of PC20 curing after 5 minutes characterised by a continual increase in viscosity beyond this point. It is difficult to determine whether the viscosity change of the PC20 results from gradual hardening of the bulk fluid or hardening of the PC20 on the flow channel edges, the latter resulting in a reduction in the central channel cross section. Initial investigations would suggest that since the total length of fluid in the test at t= 30 mins remains within 3% of the length of fluid at t=0 secs, then gradual hardening of the bulk fluid as a result of repeated agitation and contact with an alkaline environment would seem the most
likely reason. There is a marked difference in the time-viscosity relationship between SAT and UNSAT specimens and specimens of differing strength. For saturated specimens the higher strength specimens have a slower rate of viscosity change, which may be attributed to lower permeability of the concrete matrix which helps maintain, rather than absorb, a layer of water on the surface, thereby offering a temporary barrier between the concrete matrix and the healing agent. This temporary barrier would diminish with time due to water loss from the specimen through evaporation. For unsaturated specimens the effect of concrete strength is not as well defined and after 35 minutes no movement of the PC20 was recorded in any of the specimens. It is hypothesised that, in the absence of a water rich layer on the flow channel surface, the curing of the PC20 was not impeded and that the moisture naturally present within the specimens was sufficient to allow curing to occur.

The minor increase in viscosity of PC20 over the first 5 minutes of exposure to the cementitious environment has negligible impact on the extent of capillary rise. This makes PC20 a potentially suitable healing agent for structures in which damage occurs quickly and a rapid healing response is required. However, if damage occurs at a slow rate, such that crack propagation happens gradually then the self-healing efficiency of the system will be limited by the PC20 curing process. Moreover, with smaller apertures than those employed in the current viscometer study, particularly those apertures approaching the bonding width of PC20, this viscosity increase may be accelerated. Below 5 minutes, viscosities in the range of $1.82 - 2.94 \times 10^{-3}$ Ns/m² were recorded and are similar to those calculated according to the Poiseuille law, suggesting little influence of the alkaline environment on the viscosity of PC20 at the point when they first come into contact with each other.

The viscosity of GGBS(S) increases significantly over the first 40 seconds (Figure 7a), although the magnitude of this viscosity increase is dependent on the concrete mix under consideration, which in turn is an indirect indicator of the channel surface. There was evidence of water absorption into the matrix for the C20 specimens over the first 40 seconds resulting in a change in the concentration of the
Nevertheless, this change was negligible (58.5:41.5 as opposed to 60:40) and therefore the increase in viscosity may be primarily attributable to the settling of the suspension and subsequent blocking of the flow channel. Further investigation is required here to fully quantify this effect.

NUMERICAL SIMULATION OF CAPILLARY RISE RESPONSE

In this section a previously reported capillary rise model is used to demonstrate the influence of the flow characteristics presented in this paper, summarised in Table 7, on the capillary rise response of GGBS(S) and PC20 in a discrete planar crack. The theory supporting the capillary model is provided in full by Gardner et al. (2014). The correction parameters associated with frictional dissipation at the moving front (β_m), stick-slip behaviour of the meniscus (β_s) and wall friction (β_w) are 0.35Ns/m2, 0.12 and 0m3/Ns respectively, as suggested by Gardner et al. (2014) for 7 day old concrete. Simulations of capillary rise are conducted for a crack width of 0.2mm using the flow characteristic parameters associated with C50 concrete. Although the viscosity of both healing agents demonstrated time-dependence, when in contact with the cementitious matrix, this effect was more apparent and prolonged in the PC20 viscosity measurements. Therefore, simulations are presented using the healing agents’ viscosity at 20 seconds (GGBS(S) and PC20) and 30 minutes (PC20 alone), as shown in Figure 8.

It is the higher contact angle associated with saturated specimens that reduces the equilibrium rise height in comparison to unsaturated concrete specimens. Although further viscosity tests for increasing exposure times were conducted for GGBS(S), significant settling of the suspension was observed after 2 minutes. The numerical simulation suggests that the GGBS(S) reaches its equilibrium capillary rise height in approximately 10s. Experimental capillary rise simulations of similar GGBS(S) suspensions in planar concrete cracks (Gardner et al. 2013) have shown that, once the equilibrium capillary rise height of GGBS(S) is reached, the meniscus starts to rise again after approximately 5 seconds. This is caused by the settlement of GGBS particles and the subsequent capillary rise response.
being driven by the flow characteristics of pure water rather than GGBS(S), provided that the crack
plane is not blocked by GGBS particles. If the viscosity of water is assumed to be constant then the
difference in capillary rise response between saturated and unsaturated concrete specimens will be
negligible since the contact angle of water in contact with the cementitious matrix is similar in both
saturated and unsaturated states.

From Figure 8 it can be seen that the capillary rise response of the PC20 healing agent at 20 seconds
exposure time is the same in both saturated and unsaturated concrete specimens due to the limited
effect the concrete surface condition has on viscosity and contact angle at this exposure time. In
practice, this suggests that when PC20 is introduced into the crack at the time of crack formation
(with <20 seconds exposure to the cementitious matrix) the moisture state of the concrete at the time
of damage has negligible impact on the capillary rise response of the healing agent. At short exposure
times for PC20, the capillary rise time is short (approx. 15 seconds) compared to the timescale
involved in viscosity changes (approx. 660 seconds). Therefore, the introduction of a time dependent
viscosity function into the numerical model at short exposure times would have limited influence on
the capillary rise response.

As discussed previously, slow propagation of cracks and hence continued exposure of PC20 to the
cementitious environment has the potential to significantly retard the capillary rise response. Indeed,
the simulations of capillary rise confirm that PC20 exposed to the cementitious matrix for 1800
seconds takes 17 times longer (326.7 seconds as opposed to 18.5 seconds) to reach the equilibrium
capillary rise height compared to PC20 exposed for only 20 seconds. Moreover, during the capillary
rise, further increases in PC20 viscosity will occur upon additional exposure to the cementitious
environment, which, according to the results may impede capillary flow to the point that the full
equilibrium rise height is never realised. What is shown in this paper is therefore an upper limit of
capillary rise for longer exposure times.
Whilst the simulations performed here have yet to be refined further in terms of imbibition of fluid into the cementitious matrix around the crack plane, they do provide an indication of the influence of healing agent type on the capillary rise response and hence the potential success or limitations of self-healing systems employing the types of healing agent investigated herein.

CONCLUSIONS

In order to correctly model the rate of capillary rise, the time dependent properties of two healing agents were investigated. Firstly, the H-P flow characteristics of water, PC20 and GGBS(S) were investigated. Both fluids were shown to have Newtonian flow characteristics. Contact angles were also time independent, nevertheless, contact with unsaturated and saturated mortar surfaces yielded higher contact angles compared to a glass surface. Viscosity measurements of PC20 showed little influence of time dependency over the first 5 minutes of exposure to a cementitious environment. However, between 5 minutes and 40 minutes the viscosity of the PC20 increased to such a value that it was no longer possible to induce movement of the column of PC20 in the experimental arrangement. This effect was more pronounced in unsaturated specimens of lower concrete strengths. For the GGBS(S), the rate of viscosity increase was greater than that observed for PC20 (over the first 40 seconds), although this may be attributed to blockage of the flow channels via the settling of the GGBS(S) rather than a true increase in viscosity of the suspension through any form of chemical interaction with the cementitious environment.

The numerical simulation of the capillary rise response of both healing agents in a discrete planar crack using the experimentally determined flow parameters has proven that the time taken to achieve the equilibrium capillary rise height is dependent on the viscosity of the healing agent which in turn is influenced by the saturation of the concrete specimen and the exposure time of the healing agent to the cementitious matrix. The rate of damage or rather crack propagation together with the
saturation state of the concrete structure will therefore have a significant influence on the choice of healing agent for any embedded self-healing system.

In summary, it has been demonstrated that it is possible to measure the flow characteristics of self-healing agents in order to better simulate their capillary rise response in discrete cracks in concrete. These simulations will in time inform the efficient design of self-healing systems, through the correct selection of healing agent for the intended healing time and volume.

ACKNOWLEDGEMENTS

Engineering and Physical Sciences Research Council (EPSRC) research grant EP/J021776/1 and EP/K026631/1 and the loan of the Photron DVR High Speed Camera from the EPSRC Engineering Instrument Pool, are gratefully acknowledged. Information on the data underpinning the results presented here, including how to access them, can be found at Cardiff University data catalogue at [http://doi.org/10.17035/d.2016.0011488877].

REFERENCES

Fig. 1. Hagen-Poiseuille experimental arrangement

Fig. 2. Hagen-Poiseuille flow characteristics

Fig. 3. Drop volume tensiometer arrangement

Fig. 4. (a) Sessile drop measurement arrangement; (b) typical microscope image of sessile drop and (c) Image-J drop snake analysis on sessile drop

Fig. 5. Bespoke viscometer for time-viscosity measurements

Fig. 6. Full Time-Viscosity relationship for GGBS(S) and PC20.

Fig. 7. Time Viscosity relationship for GGBS(s) and PC20 over a) the first 40 seconds of exposure and b) the first 1200 seconds of exposure

Fig. 8. Capillary rise simulations for GGBS(S) and PC20 using experimentally measured flow characteristic parameters.
Table 1. Hagen Poiseuille experimental variables

<table>
<thead>
<tr>
<th>Healing agent</th>
<th>Capillary tube diameter (mm)</th>
<th>Capillary tube length (mm)</th>
<th>Initial h₀ range (mm)</th>
<th>Test reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>0.8</td>
<td>100</td>
<td>750 - 450</td>
<td>100L 0.8D Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1000 - 700</td>
<td>200L 0.8D Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>1600 - 1100</td>
<td>300L 0.8D Water</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>100</td>
<td>750 - 350</td>
<td>100L 1.2D Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1000 - 450</td>
<td>200L 1.2D Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>1000 - 650</td>
<td>300L 1.2D Water</td>
</tr>
<tr>
<td>GGBS(S)</td>
<td>0.8</td>
<td>100</td>
<td>1500 - 1300</td>
<td>100L 0.8D GGBS(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1900 - 1500</td>
<td>200L 0.8D GGBS(S)</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>100</td>
<td>1500 - 1300</td>
<td>100L 1.2D GGBS(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1500 - 1000</td>
<td>200L 1.2D GGBS(S)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>1900 - 1200</td>
<td>300L 1.2D GGBS(S)</td>
</tr>
<tr>
<td>PC20</td>
<td>0.8</td>
<td>100</td>
<td>1500 - 1200</td>
<td>100L 0.8D PC20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1600 - 1300</td>
<td>200L 0.8D PC20</td>
</tr>
<tr>
<td></td>
<td>1.2</td>
<td>100</td>
<td>1300 - 1000</td>
<td>100L 1.2D PC20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200</td>
<td>1500 - 1000</td>
<td>200L 1.2D PC20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>300</td>
<td>1600 - 1300</td>
<td>300L 1.2D PC20</td>
</tr>
</tbody>
</table>
Table 2. Viscosity results for healing agents and water for all Hagen-Poiseuille test arrangements

<table>
<thead>
<tr>
<th>Test reference</th>
<th>Viscosity (x10^-3 Ns/m²)</th>
<th>Average Viscosity (x10^-3 Ns/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100L 0.8D Water</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>200L 0.8D Water</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>300L 0.8D Water</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>100L 1.2D Water</td>
<td>2.06</td>
<td>1.42</td>
</tr>
<tr>
<td>200L 1.2D Water</td>
<td>1.53</td>
<td></td>
</tr>
<tr>
<td>300L 1.2D Water</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>100L 0.8D GGBS(S)</td>
<td>2.95</td>
<td></td>
</tr>
<tr>
<td>200L 0.8D GGBS(S)</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>100L 1.2D GGBS(S)</td>
<td>4.66^a</td>
<td>3.20</td>
</tr>
<tr>
<td>200L 1.2D GGBS(S)</td>
<td>3.48</td>
<td></td>
</tr>
<tr>
<td>300L 1.2D GGBS(S)</td>
<td>3.37</td>
<td></td>
</tr>
<tr>
<td>100L 0.8D PC20</td>
<td>2.65</td>
<td></td>
</tr>
<tr>
<td>200L 0.8D PC20</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>100L 1.2D PC20</td>
<td>4.05</td>
<td>3.15</td>
</tr>
<tr>
<td>200L 1.2D PC20</td>
<td>3.22</td>
<td></td>
</tr>
<tr>
<td>300L 1.2D PC20</td>
<td>2.96</td>
<td></td>
</tr>
</tbody>
</table>

^a omitted from average calculation due to settling of suspension observed in the test causing tube blockage
Table 3. Surface tension for tap water (TW) and healing agents PC20 and GGBS(S) over a range of drop times

<table>
<thead>
<tr>
<th>Healing agent</th>
<th>Relative Humidity in cell (%)</th>
<th>Drop rate (s/μl)</th>
<th>Drop time (s)</th>
<th>Surface Tension, γ (mN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>53</td>
<td>0.20</td>
<td>7.4</td>
<td>72.2</td>
</tr>
<tr>
<td>PC20</td>
<td>53</td>
<td>0.25</td>
<td>5.5</td>
<td>34.8</td>
</tr>
<tr>
<td>PC20</td>
<td>53</td>
<td>1.00</td>
<td>22.0</td>
<td>34.4</td>
</tr>
<tr>
<td>PC20</td>
<td>70</td>
<td>1.00</td>
<td>22.0</td>
<td>34.5</td>
</tr>
<tr>
<td>PC20</td>
<td>70</td>
<td>40.00</td>
<td>714.0</td>
<td>34.2</td>
</tr>
<tr>
<td>GGBS(S)</td>
<td>53</td>
<td>0.20</td>
<td>5.0</td>
<td>49.9</td>
</tr>
<tr>
<td>GGBS(S)</td>
<td>53</td>
<td>0.70</td>
<td>17.4</td>
<td>49.7</td>
</tr>
<tr>
<td>GGBS(S)</td>
<td>53</td>
<td>1.20</td>
<td>28.3</td>
<td>49.9</td>
</tr>
</tbody>
</table>
Table 4. High strength concrete (HSC) mix proportions

<table>
<thead>
<tr>
<th>Cement</th>
<th>Fine</th>
<th>Coarse</th>
<th>Water</th>
<th>Silica Fume</th>
<th>Superplasticiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregatea</td>
<td>Aggregateb</td>
<td>437kg/m3</td>
<td>664kg/m3</td>
<td>1113kg/m3</td>
<td>140kg/m3</td>
</tr>
</tbody>
</table>

amax aggregate size 4mm \hspace{1cm} bmax aggregate size 10mm
Table 5. Contact angle results for varying substrate and healing agent

<table>
<thead>
<tr>
<th>Healing agent</th>
<th>Glass (°) (COV(^a)%</th>
<th>HSC UNSAT (°) (COV%)</th>
<th>HSC SAT (°) (COV%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>10.9 (21.6)</td>
<td>22.8 (10.9)</td>
<td>24.8 (11.4)</td>
</tr>
<tr>
<td>GGBS(S)</td>
<td>14.7 (13.5)</td>
<td>20.9 (17.8)</td>
<td>28.1 (12.5)</td>
</tr>
<tr>
<td>PC20</td>
<td>9.5 (19.8)</td>
<td>14.1 (18.0)</td>
<td>15.6 (18.3)</td>
</tr>
</tbody>
</table>

\(^a\) coefficient of variation (%)
Table 6. Mix proportions for concrete specimens

<table>
<thead>
<tr>
<th>Designation</th>
<th>Cement (kg/m³)</th>
<th>Fine aggregate<sup>a</sup> (kg/m³)</th>
<th>Coarse aggregate<sup>b</sup> (kg/m³)</th>
<th>Water (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20</td>
<td>402.8</td>
<td>781.2</td>
<td>974.5</td>
<td>241.6</td>
</tr>
<tr>
<td>C30</td>
<td>409.6</td>
<td>794.5</td>
<td>991.1</td>
<td>204.8</td>
</tr>
<tr>
<td>C50</td>
<td>416.7</td>
<td>808.3</td>
<td>1008.3</td>
<td>166.7</td>
</tr>
</tbody>
</table>

^amax aggregate size 4mm
^bmax aggregate size 10mm
Table 7. Flow characteristics for simulation of the capillary rise response of PC20 and GGBS(S) in a planar crack in C50 concrete.

<table>
<thead>
<tr>
<th>Flow characteristic</th>
<th>GGBS(S) (@20s)</th>
<th>PC20 (@20s)</th>
<th>PC20 (@1800s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healing agent viscosity on unsaturated surface, μ_{UNSAT} (x10^{-3} Ns/m²)</td>
<td>4.60</td>
<td>1.95</td>
<td>42.00</td>
</tr>
<tr>
<td>Healing agent viscosity on saturated surface, μ_{SAT} (x10^{-3} Ns/m²)</td>
<td>4.60⁺</td>
<td>1.57</td>
<td>8.54</td>
</tr>
<tr>
<td>Surface tension, γ (mN/m)</td>
<td>49.85</td>
<td>34.56</td>
<td>34.56</td>
</tr>
<tr>
<td>Contact angle on unsaturated substrate, θ_{UNSAT} (°)</td>
<td>20.9</td>
<td>14.1</td>
<td>14.1</td>
</tr>
<tr>
<td>Contact angle on saturated substrate, θ_{SAT} (°)</td>
<td>28.1</td>
<td>15.6</td>
<td>15.6</td>
</tr>
<tr>
<td>Healing agent density, ρ (kg/m³)</td>
<td>1358</td>
<td>1060</td>
<td>1060</td>
</tr>
<tr>
<td>Correction factor frictional dissipation at moving front, β_m (Ns/m²)</td>
<td>0.35</td>
<td>0.35</td>
<td>0.35</td>
</tr>
<tr>
<td>Correction factor stick slip behaviour of meniscus, β_s (unitless)</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Correction factor wall friction, β_w (m³/Ns)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

⁺viscosity of GGBS(S) not recorded in saturated concrete therefore viscosity in unsaturated concrete assumed for simulation purposes.