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Abstract

Software-defined networks (SDNs) have proven to be an efficacious tool for un-
dertaking complex data analysis and manipulation within data intensive appli-
cations. SDN technology allows us to separate the data path from the control
path, enabling in-network processing capabilities to be supported as data is mi-
grated across the network. We propose to leverage software-defined networking
(SDN) to gain control over the data transport service with the purpose of dy-
namically establishing data routes such that we can opportunistically exploit the
latent computational capabilities located along the network path. This strategy
allows us to minimize waiting times at the destination data center and to cope
with spikes in demand for computational capability. We validate our approach
using a smart building application in a multi-cloud infrastructure. Results show
how the in-transit processing strategy increases the computational capabilities
of the infrastructure and influences the percentage of job completion without
significantly impacting costs and overheads.

Keywords: software-defined networks, in-transit, smart buildings, cloud
federation, CometCloud

1. Introduction

There has been recent interest in moving away from centralized, large-scale
data centers to a more distributed multi-cloud setting (as demonstrated by
significant interest in cloud federation and interoperability efforts). Such a
multi-cloud environment is often formed by a network of smaller virtualized5

infrastructure runtime nodes with an unstructured architecture. On the other
hand, network providers are increasingly becoming potential sources of general
purpose computation. They are minimizing the amount of network-specialized
hardware hosted in their data centers and moving towards the use of commodity
hardware. This strategy follows state of the art networking approaches, such10

as Software-defined networking (SDN) and Network Functions Virtualization
(NFV). Software-defined networking (SDN) in particular is an approach devised
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to simplify network management through abstraction of lower-level functional-
ity. Specifically, SDN separates control plane (where to send data) from data
plane (data forwarding functions). This enables the software-based control plane15

to be run on commodity servers and to leverage the latest-generation of pro-
cessors, which are faster than embedded-class processors in most switches [1].
On the other hand, NFV goes a step further and extends the as-a-service cloud
model to offer networking functions on-demand using virtualization techniques.
The key reason for using virtual machines (VMs) is the possibility of elastically20

scaling functions by simply adding or removing VMs based on data workload
characteristics. This approach promises, as the cloud, a reduction in capital
expenses and fast delivery of new functionality. As in the case of SDN, this
approach is also implemented on commodity hardware [2].

Data centers managed and operated by network providers form a signifi-25

cant part of the current Internet infrastructure, as there is a large number of
such data centers that are almost ubiquitous across the world. These data cen-
ters may not be as powerful as computational data centers, hosted by cloud
providers or traditional high performance computing (HPC) providers. How-
ever, their ubiquity and the fact that we have to necessarily use them when30

moving data over the Internet, make them a very interesting source of pervasive
computing at the edge of the network. Understanding how the availability of
commodity servers within such “network data centers” can contribute towards
data processing would enable an effective way to extend the boundaries of a
cloud system – from a high end, often localized data center, to multiple dis-35

tributed data centers that can process data while it is in transit from source to
destination.

In this paper we propose a model to leverage the use of computational capa-
bilities within such network data centers to offer general computation services
co-located with network services. In this way, we can use more efficiently the40

resources of these network data centers while providing an extra source of rev-
enue for those who operate and manage them. Hence, spare capacity within
such network data centers can be more efficiently utilized and monetized. We
extend the network controller capabilities to not only offer information about
the network topology but also to identify sources of computation. We envision45

an ensemble of network data centers that can optimize the data routes based
on flows and offer in-transit computational capabilities.

The rest of the paper is organized as follows. Section 2 presents our motivat-
ing use case. Section 3 presents our in-transit computational model, followed by
the proposed in-transit optimization strategies in Section 4. Section 5 defines50

the problem of allocating workload using our computational model. Section 6
presents the implementation of our in-transit computational model. Section 7
describes evaluation and results. Section 8 collects the related work. Finally,
Section 9 presents the conclusions and ongoing activities.
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2. Motivating Use Case55

An instrumented built environment, which can consist of single/multiple
buildings (homes, office buildings, sports facilities, etc), provides a useful sce-
nario to validate the use of in-transit analysis capabilities. Depending on the
number of sensors within a single building, the frequency at which data is cap-
tured from such sensors and the particular data analysis objective (e.g. reduce60

energy consumption, improve efficiency of HVAC (heating, ventilation and air
condition) function, improve comfort levels based on occupancy, etc), the com-
putational capability requirements can vary significantly. In some instances
such data is often analyzed off-line (in batch mode) to enable improvements
in building design or to support long term facilities management. In other in-65

stances (evidenced by recent use of such instrumented environments), real time
analysis needs to be carried out (over intervals of 15 to 30 minutes generally) to
enable better energy efficiency and use of such infrastructure. When multiple
such buildings are considered (e.g. within a business park, University campus
or a housing association), the overall computational requirement can increase70

considerably.
In order to maintain a comfortable living environment, it is often necessary

to consider multiple objectives that may have conflicting targets, e.g. mini-
mum energy consumption, minimum CO2 emission, or maximum comfort level.
Optimization for the building operation stage (which can also include facilities75

management) requires different approach compared to the building design stage,
e.g., some key design variables can no longer be changed (to find the most opti-
mum solutions for design). It needs to take the as-built building environment to
find the optimum solutions either against single or multi-objectives. To provide
practical real time decision making in building energy management based on80

real time monitored data, it is necessary to develop a ’behaviour’ of a building
energy system by using various simulation tools. During the process, domain
experts are often involved in order to identify the main use cases and scenar-
ios with associated input parameters and feasible outputs. In the modelling
process, different relevant components have to be assessed and calibrated iter-85

atively, and the developed building energy simulation model is then executed
(as the calculation engine) within a generic optimization program. In this work
we execute multiple EnergyPlus1 instances, a software that requires significant
computational resources to run, with different input parameter ranges.

Various types of sensors are used to monitor energy efficiency levels within90

a building, such as: (i) solid-state meters for accurate usage levels, (ii) envi-
ronmental sensors for measuring temperature, relative humidity (RH), carbon
monoxide (CO), and carbon dioxide (CO2) levels, (iii) temperature measure-
ments using both mechanical (e.g., thermally expanding metallic coils) and
electrical means (e.g., thermistors, metallic resistance temperature detectors95

(RTD), thermocouples, digital P-n junctions, infrared thermocouples) to pro-

1http://apps1.eere.energy.gov/buildings/energyplus/
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vide sufficient accuracy. When dealing with large buildings such as sports facil-
ities, the accuracy of these sensors is often questionable, largely because of the
significant drift that occurs after initial calibration. In some buildings, there
are specific requirements for sensors when monitoring CO2 concentration, air100

flow, humidity, etc and these sensors are more expensive to use and deploy.
We use sensor data from the SportE2 project pilot called FIDIA [3], a public

Figure 1: Energy optimization scenario.

sports building facility, located in Rome, Italy. SportE2 is a research project
co-financed by the European Commission FP7 programme under the domain of
Information Communication Technologies and Energy Efficient Buildings. This105

project focuses on developing energy efficient products and services dedicated to
needs and unique characteristics of sporting facilities. The building has meter-
ing capability to determine consumption of electricity, gas, biomass, water and
thermal energy. This data can be accessed through a specialist interface and
recorded for analysis. The sub-metering of thermal and electrical consumption110

within grouped zones (gym/fitness and swimming pool is also provided along
with “comfort” monitoring by functional area: gym, fitness room and swimming
pool). In these areas the Predicted Mean Vote (PMV) index is used (which mea-
sures the average response of a group of people to a thermal sensation scale –
such as hot, warm to cool and cold) – it is one of the most widely recognized115

thermal comfort models, and is measured as a function of the activity performed
within a particular part of the building. Additional details can be found in [4].

3. In-transit Computational Model

Novel networking approaches, such as SDN and NFV, require a central or-
chestrator or controller that manages routing tables and other network func-120

tions. Such orchestrator has knowledge of the overall network architecture that
it is used to, for example, optimize traffic routes based on utilization and avail-
able bandwidth. We propose to extend such a controller to enable the man-
agement of computational capabilities available at each network data center.
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The idea is to collect information about the available computational capabili-125

ties together with the rest of the network information (e.g., traffic, bandwidth,
etc). Since networking is a critical service, its infrastructure is typically over-
dimensioned to easily deal with spikes in demand and failures [1]. Hence, we
could enable general purpose computation on network data centers by offering
the idle capacity of their resources to application users. For example, we could130

share commodity hardware by deploying different types of VMs that isolate gen-
eral purpose computation from network functions. In this way, we could easily
displace or terminate general purpose computation if resources are required to
support network operations.

Offering computational capabilities in a scalable manner requires having a135

service local to each data center that provisions computational resources and
allocates workload onto such resources. In its simplest instance, this service
could be a queue that allocates computation onto VMs and interacts with the
service that allocates network functions to prevent interference. More advance
computation services can involve creating a virtual staging area which allows140

data to be diverted directly from the network to local resources for computation
and subsequently placing it back into the network after processing [5].

Due to limited computational capabilities, network data centers are not in-
tended to perform large computations but rather perform small operations on
data that is moving through the network. This could be the basis for new145

business models that not only consider bandwidth reservation but also the com-
putation that can be performed along the data path. For example, a client may
require certain amount of bandwidth and latency to satisfy his/her Quality-of-
Service (QoS – e.g. throughput in a workflow), but due to the current status
of the network it may not be possible to satisfy such requirements within some150

pre-defined constraints. However, a controller may estimate that QoS could
still be satisfied with lower bandwidth and latency requirements, if in-transit
computation is carried out when the data is moving from source to destination.
Although data is moving slower through the network, certain results will be
available when it reaches the destination. Hence, it would be possible to main-155

tain the QoS of the system (e.g., throughput) by utilising spare capacity within
network data centers.

4. In-transit Optimization Approach

We consider a marketplace where a manager within a built environment
needs to decide whether a given workload should be computed using local re-160

sources or it should be outsourced to a remote site. Typically, computation
within a single building may be carried out locally – generally utilizing com-
putational resources that are geographically local to the sensors producing the
data. However, when multiple buildings are considered, such as in a smart city
scenario, it may be necessary to outsource computation to another sites. This165

enables computational resource sharing, which not only improves resource uti-
lization, but also increases the resilience to failures and peaks in the demand
of the whole infrastructure. Unlike in the single building case, when outsource
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workload to external sites, it necessary to consider both the computational and
data transfer costs. Additionally, we need to identify where to compute the170

workload and how to take advantage of in-transit computation, by leveraging
computational power embedded within the network infrastructure (e.g., SDN
switches, network data center). We consider that we have an SDN Controller
that knows the topology of the network as well as the computation offered by
each node, as defined in previous section.175

In our scenario we consider that the service level agreement (SLA) of a job (in
this instance, an energy simulation with a particular set of input parameters)
includes a deadline, a budget, and a minimum job completion ratio. Using
terminology common in distributed systems, we differentiate between a job and
a task. A job contains multiple tasks, and the job completion ratio measures the180

total number of tasks completed within a given deadline compared to the total
number of tasks that make up a single job. In our marketplace, various resource
providers are asked to send their offers given a SLA. The building manager or
client evaluates all offers and selects the one that maximizes the utility of his/her
decision function. For example, a client may select the provider that offers a185

higher completion ratio of a job, subject to deadline and budget constraints. In
this paper we devise two strategies to improve the utility of the decision function
by leveraging in-transit computation.
Traditional client: This strategy allows clients to transparently improve the
utility of their decision function while operating as always. In this strategy,190

the client continues to rely on computational data centers (resource providers)
to ensure his/her QoS are met. Hence, this client does not wish to include in
his/her decision function the possibility of performing in-transit computation.
In this case only the resource providers that can meet the required SLA offer
their services to the client. In this way the client is certain that his/her SLA195

can be met and a decision is taken using the information of those offers. Once
the decision has been made, the controller can optimize the route from client to
the selected resource provider and allocate in-transit resources along the data
path. In this instance, in-transit computation is carried out without the client’s
intervention – it is transparent to such client.200

In-transit aware client: This strategy aims at maximizing the utility of a
client’s decision function by taking into account all sources of computation from
source to destination. Thus, we envision this strategy being used by a client that
wishes to influence his/her decision by the computational capabilities available
in-transit, along the data path, and at the destination resource provider. As205

opposed to the previous strategy, in this case the client receives offers from
all resource providers interested in computing the workload, even from those
that cannot meet the required SLA by themselves. Next, the client asks the
controller to optimize the route to each one of these resource providers. Once
all the information is collected and evaluated by the client, a decision that210

maximizes the utility of the decision function and meets the required SLA can
be taken considering all sources of computation in the system as well as the
optimized routes to them.
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Both in-transit optimization strategies are subject to two constraints. First,
the time that can be allocated to in-transit computation is limited by the time215

at which data must reach the destination (i.e. the computation is scheduled
to start). We assume that the destination resource provider can give us an
estimation of the time when the job is scheduled to start. Although we are using
cloud services, a resource provider may delay the execution of a job if it considers
that the SLA can be met (e.g., complete the required number of tasks) within220

the deadline. The second constraint is that the cost of in-transit computation
plus the cost of computation at the destination provider cannot exceed the
budget. One must consider that if in-transit computation is performed, then
less computation needs to be done at the destination resource provider.

Next, we formalize the in-transit optimization problem proposed in this pa-225

per. The problem to optimize is similar for both strategies, the only difference is
that in the first case we optimize a single time for the selected resource provider,
while in the second case we optimize for all candidate resource providers.

5. Problem Definition

A client needs to compute a job J , composed of k tasks {j1, ..., jk}, that is230

generated at the client’s location – this location is defined as source s. In case
the client wishes to outsource a job, it is necessary to identify where to compute
the workload and how to take advantage of in-transit computation. The place
to compute the workload may be a remote resource provider – its location is
defined as destination d. The service level agreement (SLA) of a job J includes:235

a deadline (Deadline(J)) by which results have to be returned to the client;
a budget (Budget(J)) that sets the maximum amount available to spend on
computing job J ; and a minimum job completion ratio CRatio(J) defined as
the ratio between the k′ completed tasks and the overall number of tasks k,
where k′ ≤ k, of job J .240

We define two types of computational resources, namely computational data
centers (resource providers or sites) and network data centers (in-transit re-
sources). Resource providers or sites collectively form a federation and are the
main sources of computation in our infrastructure. When outsourcing workload
in our scenario, these sites represent the source s and the destination d. On245

the other hand, network data centers offer resources at the edge of the network.
We consider that we have a set of q network data centers R : {r1, ..., rq}. Both
sites and network data centers are equipped with SDN routers to ensure control
over the network. We consider that there is some waiting time W (J) before a
job J can be executed at resource provider d. During this time, the job is idle250

and it is using storage space at the destination resource. Hence, we would like
to identify and configure a data path that leverages in-transit computation to
take advantage of W (J) for a job. We define the following variables:

• P (ri) is the average number of tasks that resource ri completes per unit
of time.255
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• E(ri) is the amount of time spent computing in resource ri.

• CE(ri) is the cost per unit of time of using resource ri for computation.

• T (ri, rk) is the amount of time spent transferring data between resources
ri and rk.

• CT (ri, rk) is the cost of reserving a network channel per unit of time.260

• W (J) is the waiting time before job J can start its computation at desti-
nation resource.

• CRatio(J) is the completion ratio of job J , i.e. the ratio between com-
pleted tasks and total number of tasks composing job J .

To leverage in-transit computation and minimize the amount of time a job265

is idle at destination, the objective of our problem becomes maximizing the
amount of tasks completed in-transit, which is defined as follows:

max
∑

i

P (ri) ∗ E(ri) (1)

subject to being ready to compute at destination resource d at the scheduled
time (2), performing computation within the given deadline (3), keeping costs
within the given budget (4), and making sure that the completion ratio is sat-270

isfied (5):

∑

i

E(ri) + Transfer(J) ≤ W (J) (2)

∑

i

E(ri) + Transfer(J) + E(d) ≤ Deadline (3)

Cost(J) ≤ Budget (4)∑
i[P (ri) ∗ E(ri)] + P (d) ∗ E(d)

k
≥ CRatio(J) (5)

where the Transfer(J) is the overall transfer time of a job, which is defined
as the sum of the time spent transferring data from source (s) to first network
data center (ri), the sum of the time spent transferring data between network
data centers ∈ R, and the time spent transferring data between the last network275

data center (rk) and destination (d):

Transfer(J) = T (s, ri) +

q∑

i

q∑

k 6=i,k

T (ri, rk) + T (rk, d) (6)

Cost(J) is the overall cost of computing job J , defined as:
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Cost(J) = CostExecMid + CostExecDest + CostNet (7)

where the cost of computing in-transit (CostExecMid) is defined as:

CostExecMid =
∑

i

[CE(ri) ∗ E(ri)] (8)

the cost of computing at the destination resource d (CostExecDest) is defined
as:280

CostExecDest = CE(d) ∗ E(d) (9)

and the cost of transferring data associated with a job (CostNet) is defined as:

CostNet = T (s, ri) ∗ CT (s, ri) +

q∑

i

q∑

k 6=i,k

[T (ri, rk) ∗ CT (ri, rk)]

+T (rk, d) ∗ CT (rk, d) (10)

subject to E(rk) 6= 0. Note that the time and cost of returning results to the
client is negligible as only a few parameters are sent.

6. Implementation

We extend our federation model [6] to expose in-transit capabilities to par-285

ticipant sites of the federation. Figure 2 shows our architecture. We include a
service, called Controller, that is aware of the network topology, using SDN tech-
nology, and also has information about the available computational capabilities
of each network data center. Each network data center has a SDN router and
a set of computational resources – referred as in-transit resources in Figure 2.290

This service can be consulted by different federated sites to optimize workload
scheduling using the strategies proposed in Section 4.

This federation model is built using the CometCloud framework [7]. Comet-
Cloud is an autonomic framework for enabling real-world applications on software-
defined federated cyberinfrastructure, including hybrid infrastructures integrat-295

ing public and private Clouds, data-centers and Grids. The CometCloud feder-
ation is created dynamically and collaboratively, where resources/sites can join
or leave at any point, identify themselves (using security mechanisms such as
public/private keys), negotiate terms of federation, discover available resources,
and advertise their own resources and capabilities [8].300

CometSpace [9] provides tuple-space like abstraction for coordination and
messaging in the federation model. Specifically, we define two types of coordi-
nation spaces. First, a single management space (CometCloud Federation Space)

9
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Figure 2: Federated architecture that exposes in-transit capabilities.

spans across all resource sites creating and orchestrating the federation. Second,
multiple shared execution spaces (SE-Space) are created on-demand during ap-305

plication workflow executions to satisfy computational or data needs. Execution
spaces can be created within a single resource site, or can burst to others, such
as public clouds or external HPC systems.

7. Evaluation

7.1. Configuration of Testbed310

We deployed our federation model on the Amazon EC2 cloud platform. In
our experiments, we used a total of 8 VM instances that emulated different
geographically distributed sites. 3 VMs represented site resources: Site1, Site2,
and Site3. The other 5 VMs were in-transit resources: Mid2, Mid3, Mid4, Mid5,
and Mid6 – located between sites, see Figure 3. As described in section 4, our315

model considers that we can have computational resources (either from a re-
source provider or from a network data center) co-located with each SDN router.
An overview of the deployed testbed is depicted in Figure 3. We considered a
geographically distributed infrastructure, which was emulated by configuring
different network bandwidths connecting the sites. Specifically, three in-transit320

resources were located near Site3, the other two were located near Site2, and
all of them were located at identical distance from Site1. This network config-
uration is inspired in data obtained from previous experiments [4, 8].

In this work, we considered three different infrastructure scenarios: (i) Base:
in-transit resources and sites have the same computational power; (ii) Higher:325

in-transit resources are less powerful than those at the resource providers’ sites;
and (iii) Highest: in-transit resources are much less powerful than site resources.
The cost was set to be proportional to the computational capabilities in re-
sources. Table 1 collects various scenarios using different types of EC2 VMs,
and Table 2 collects the characteristics of the different types of VMs, based on330

Amazon EC2.
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Figure 3: Infrastructure. Solid lines indicate high bandwidth links and dashed lines indicate
slow bandwidth links. We assume each SDN router is co-located with computational resources.

Table 1: Infrastructure Scenarios.

Scenario In-transit Resources Site Resources

Base c4.2xlarge c4.2xlarge
Higher c4.2xlarge c4.4xlarge
Highest c4.2xlarge c4.8xlarge

All instances were deployed with Mininet [10] and the network between them
was configured to emulate a SDN environment among these 8 mininet instances.
Each VM had one mininet host and one mininet switch. Switches were connected
to each other using Generic Routing Encapsulation (GRE) tunneling[11]. Band-335

width allocation for data links was implemented in the hosts using token bucket
filter. Routing tables and connections were controlled by a POX SDN controller
(POX is a python based SDN controller). We had an additional VM designated
as the controller of the network. The controller managed network connections
using two types of connections: (i) UDP was used for gathering information;340

and (ii) TCP was used for regular communication and establishing data paths.
TCP rules for each switch were installed in a proactive manner. That is, every
time a switch connected to the controller (i.e. when switch starts), the controller
would install rules.

We implemented our in-transit optimization approach, described in Sec-345

tion 4, as follows. We defined our protocol for communication between the
controller and hosts using UDP packets. We established that switches would

Table 2: Resource Properties

Resource Type vCPU ECU Memory Price ($/Hour)

c4.2xlarge 8 31 15 0.464
c4.4xlarge 16 62 30 0.928
c4.8xlarge 36 132 60 1.856

11



forward all UDP packets to the controller unless a specific destination was in-
cluded in the packets. We used this rule to enable communication between
client and controller. Specifically, when the source site (i.e. client) wanted to350

communicate with the controller, it would send a UDP packet without desti-
nation field instantiated. This packet would be automatically forwarded to the
Controller. Upon receipt of this packet, the controller would send UDP packets
to all in-transit resources (hosts) asking for their status and capabilities infor-
mation. Since those UDP packets would have a specific destination, switches355

knew where to send them (i.e. in-transit resources). Then, the controller would
gather all replies, analyze their information, and create a plan. This plan was
returned to the client and included a data transfer path as well as information
about the allocated in-transit computation.

For example, in the case of the building scenario, each building has a Build-360

ing Manager Service (BMS) that periodically collects all the information from
sensors of the building under its control. Hence, this BMS acts as a client in
our infrastructure and needs to decide where the workload is computed and
collects the results to establish new setpoints. Using the network configuration
defined before, this BMS can contact resource provider sites as it would in a365

non-SDN scenario, e.g., via TCP socket communication. However, when inter-
acting with the controller, the BMS simply needs to send an UDP message that
is automatically forwarded to the controller. Using this approach, the use of
SDN does not involve complex changes in the client and changes in the network
are transparent as well.370

We considered a use case where several smart buildings required analysis
of their sensor data to optimize energy consumption. Based on the FIDIA
pilot [3], we considered that these buildings could generate three type of jobs,
as described in Table 3. In our previous work we focused on studying the cost of
using SDN [6], in these experiments we focused instead on the feasibility of using375

in-transit computation to meet job completion deadlines. Hence we established
a budget large enough to satisfy every decision, and the limiting factor was the
deadline of the job. For all types of jobs, we established in the SLA that at
least 60% of the tasks, within a job, must be completed before the deadline (to
achieve a particular accuracy target). Hence, the decision function for each job380

was to maximize its completion ratio subject to the deadline and cost.

Table 3: Job Information.

JobType Data Size(MB) Budget Deadline(s) Tasks†

JobType1 10 20 120 10
JobType2 20 30 150 20
JobType3 30 40 180 30

† – A job is composed of a set of tasks

In each experiment, a total of 326 jobs were generated and inserted, using
a Poisson distribution, from Site1 to a federated marketplace. Once a job was
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inserted in the federation, different sites (i.e. Site1, Site2, and Site3) offered
their services using a blind auction mechanism. The marketplace was based385

on the problem specification identified in Section 5, which established how to
calculate costs and satisfy required SLAs.

We made use of two strategies: No in-transit computation: in these
experiments only resource providers’ sites can perform computation – labeled
as “No In-Transit” in the experiment results. In-transit computation: in390

these experiments in-transit resources can contribute computational resources.
We used both strategies defined in section 4:

• Traditional client, where in-transit optimization happens after a destina-
tion site (resource provider site) has been selected – labeled as “In-Transit”
in the experiment results.395

• In-transit aware client, where in-transit optimization is taken into account
when selecting a destination site – labeled as “In-Transit2” in the experi-
ment results.

7.2. EnergyPlus Optimization

In these experiments, we considered that jobs were computed using Energy-400

Plus. Table 4 shows the completion time for each job type when computed using
EnergyPlus. EnergyPlus independently computes each one of the tasks compos-
ing a job, and it was assumed that all tasks within a job had similar completion
time (i.e. job completion time divided by number of tasks composing job).

Table 4: Time to completion of EnergyPlus job types.

JobType c4.2xlarge c4.4xlarge c4.8xlarge

JobType1 80 s 40 s 20 s
JobType2 100 s 50 s 25 s
JobType3 120 s 60 s 30 s

First, we evaluated the effect of our in-transit strategies on the job accep-405

tance rate. In our experiments, the acceptance rate was limited by the ability
of resources to complete jobs within the given SLA (i.e. deadline and com-
pletion ratio). We used three different infrastructure scenarios (see Table 2):
Base, where in-transit resources were equivalent to provider resources (sites);
Higher, where provider resources were twice as powerful as in-transit resources;410

and Highest, where resources were four times more powerful than in-transit
resources.

Figure 4 collects the results of this first experiment. It can be observed
that in-transit resources helped to increase the number of accepted jobs in the
federation, when the computational capacity of resource providers (sites) was415

not enough to satisfy the overall workload. This was the case for scenarios Base,
Higher, and Highest, as the no in-transit strategy shows. In these three cases,
we observe an increase (with reference to the no in-transit case) of up to an
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Figure 4: Job Acceptance Ratio. “in-transit” corresponds to the strategy Traditional client

and “in-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Ta-
ble 1.

19% for the Base scenario, around a 41 % for the Higher scenario, and around
31% for the Highest scenario. The Highest scenario was able to accept all jobs420

submitted for the In-transit strategies (i.e. In-transit and In-transit2) due to
the high-end capabilities of the federation sites.

In order for us to better understand the nature of these improvements, we
collected the number of computations, expressed in core/hours, that each re-
source contributed to the federation. Figure 5 collects the overall normalized425

core/hours used for the different scenarios.
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Figure 5: Normalized Core/Hours. “In-transit” corresponds to the strategy Traditional client

and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Ta-
ble 1.

The Base scenario shows that in-transit resources (labelled as Middle in
Figure 5) contributed to increase the overall core/hours of the system between
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17% and 21%, when compared with the case where no in-transit strategy was
used. However, this additional core/hours does not significantly increase the430

acceptance ratio, as it can be observed in Figure 4. The main reason is that our
strategies are focused on aiding resource providers (labelled as Site in Figure 5)
and are influenced by the performance of these resources. In this scenario many
jobs are rejected due to lack of computational capacity at the end sites, and
therefore there were not many jobs with idle/wait time that could benefit from435

in-transit computation. On the other hand, in the Higher scenario, many more
jobs were accepted by the federation, as in-transit resources were able to increase
the available capacity (core hours) up to 44%, of which approximately 42 % was
contributed by in-transit resources. Finally, the Highest scenario shows that
most of the workload was computed by the resources owned by the provider.440

In this scenario in-transit resources represented approx. 18% of the overall
computation.

Next we analyzed if in-transit computation can increase the completion ratio
of accepted jobs. As previously explained, a job is composed of tasks and the
SLA specifies the minimum completion ratio for a job to be accepted. However,445

from the client’s perspective higher completion ratio means better accuracy of
the resulting energy usage/efficiency model (thereby leading to greater poten-
tial energy savings and comfort levels within a building). Figure 6 shows that
the completion ratio for the in-transit strategies improved up to 25%, when
compared with the no in-transit strategy. Additionally, the in-transit2 strat-450

egy achieved a lower completion ratio than the in-transit strategy. The reason
is that this strategy aims at maximizing the number of jobs accepted at the
expense of reducing the completion ratio.
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Figure 6: Job completion ratio. “In-transit” corresponds to the strategy Traditional client and
“In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Table 1.

We have also collected information regarding the overheads involved when
computing jobs in the system. These overheads include the time a job spent455

transferring data in the system (network overhead), shown in Figure 7, and
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the time that a job was waiting idle to be computed (queue time), shown in
Figure 8. Figure 7 shows that, on average, the use of our in-transit strategies
increased the time jobs spent transferring data between 4–29%. This increase
in the network overhead was caused by the particularities of our use case, which460

required all data to be available at the data center prior to initiating any com-
putation. Therefore, when allocating the workload across multiple data centers
(in-transit and core cloud) the overheads increased. This drawback does not af-
fect other types of applications, such as video analytics, where data processing
can be overlapped with data transfer. Nevertheless, while the network overhead465

increased, we can observe in Figure 8 that the idle time of the jobs executed
using the in-transit strategies decreased up to 80%, when compared with the no
in-transit case.
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Figure 7: Network Overheads per job. “In-transit” corresponds to the strategy Traditional

client and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to
Table 1.

Finally, we studied the impact of our in-transit strategies on the cost of
computing jobs and the revenue generated from the system. Figure 9 shows the470

average cost of each type of job for different scenarios and computational strate-
gies. These results show that the average cost of computing a job increased by
up to 22% on average. In these scenarios the in-transit computation contributed
to a higher completion ratio, hence the increase in cost.

We have also studied how the generated system revenue is distributed amongst475

data center sites and in-transit resources. Figure 10 contains these results. For
the Base scenario, introducing in-transit resources (labeled as Middle) did not
affect the revenue of the sites, in fact it increased their revenue by a 3 % and
it also increased the overall wealth/revenue within the system. On the other
hand, in the Higher scenario, the revenue of the sites was increased by a 1 %480

when introducing in-transit resources. In the Highest scenario, the site revenue
decreased around a 6% when using the in-transit strategies. However, in all
cases the overall revenue of the system increased between a 17 and a 48 %.
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Figure 9: Average Job Cost. “In-transit” corresponds to the strategy Traditional client and
“In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Table 1.

7.3. Complementing EnergyPlus Optimization with Neural Networks-based Ap-

proximate Models485

The previous experiments showed that EnergyPlus optimization requires
large amounts of computational resources, which affected the number of jobs
that the system was able to accept and the associated job completion ratio (i.e.
the number of tasks within a job which could be completed by a deadline). In
order to: (i) reduce potential resource requirements; (ii) improve use of in-transit490

resources, we suggest the use of trained artificial neural network (ANN) models
alongside EnergyPlus. The ANN based model can complement the execution of
EnergyPlus, and provide an approximation of EnergyPlus output.

We map an ANN based optimization process as a function f(a) : Ia → Ra,
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Figure 10: Overall Revenue. “In-transit” corresponds to the strategy Traditional client and
“In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Table 1.

where Ia is a set representing the input of the ANN model (the same inputs495

used for EnergyPlus) and Ra is the out from the learned ANN model (the same
outputs as EnergyPlus). These input/output sets (Ia/Ra) are based on multiple
executions of EnergyPlus over time, representing historical data recorded in the
building facility over time. Each execution of EnergyPlus generates data that
can be used to subsequently train an ANN model. As the size of this training500

data grows, the ANN model can replace an EnergyPlus execution and provide
an approximate result in a shorter time interval. We assume a three phase
execution when an ANN has been used (phase 1 and 2 taking place primarily
on the data centre resources):

• Phase 1: EnergyPlus simulations are executed based on measured param-505

eter values from the building. A minimum of 30 simulations are required
to acquire enough data to progress to phase 2. The only jobs executed in
this phase are generated by EnergyPlus.

• Phase 2: EnergyPlus simulation is co-scheduled with ANN training. Jobs
submitted to the system now comprise of both ANN training and Ener-510

gyPlus instances. Once the required mean square error has been achieved
on the ANN training, Phase 3 is initiated. The workflow used for training
the ANN is presented in Algorithm 1. It should be noted that in order
to adequately sample the input parameter Ia space adequately, in some
instances we may need to generate artificial EnergyPlus simulations.515

• Phase 3: Now that the trained ANN model is available, this is deployed
over in-transit nodes. The ANN model has a considerably lower execu-
tion time (as outlined in results in this section) compared to EnergyPlus
simulation. However, ANN model output is very much dependent on the
training/test data set used. Any change in building use will render this520

model inaccurate, requiring us to restart from Phase 1.
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Algorithm 1 ANN based optimisation

1: completed = false;
2: Execute EnergyPlus (30 times);
3: Train ANN model with EnergyPlus results;
4: Proc Optimisation()
5: while !completed do

6: Acquire building data;
7: Update ANN input/output data
8: Test ANN output;
9: Update ANN model;

10: if accuracy>threshold then

11: completed = true;
12: else

13: Repeat Optimisation();
14: end if

15: end while

The ANN training process has two important parameters: (i) number of
EnergyPlus simulations needed to train the ANN and (ii) time period over which
building data has been acquired (corresponding to different seasons/weather
patterns in which the building has been used), identifying the time period after525

which the ANN needs to be re-trained. The number of EnergyPlus simulations
(reported as “threshold” in Algorithm 2) required to train the ANN model is a
factor of total time over which data has been acquired and building size. In the
FIDIA pilot used for experiments reported in Section 7.1, the ANN training is
based on data from 30 EnergyPlus simulations. Effect of weather on the building530

parameters (outdoor temperature, outdoor humidity, etc.) triggers re-training
(two weather patterns were considered in this work). An ANN execution takes
(on average) around 5 seconds, compared to an EnergyPlus simulation time of
around 2 minutes.

Algorithm 2 presents the steps required to deploy the ANN model over the535

in-transit architecture. In Algorithm 2, EnergyPlus input is formed of sensor
readings, whereas ANN training input comprises a combination of sensor read-
ings and EnergyPlus simulation outputs. ANN output generates optimisation
results to implement as building set-points.

In our experimental setup we consider three categories of jobs: a) EnergyPlus540

jobs, b) ANN training jobs and c) ANN execution jobs.

• EnergyPlus jobs – are regular EnergyPlus simulations which can lead to
an optimized model of the building. Their characteristics are described in
Table 3 and their computational complexity in Table 4.

• ANN training jobs – are used to (re)train the ANN up to the required545

error rate. The number of iterations involved can vary depending on
the complexity of the building being considered. The characteristics of
a training job are shown in Table 5 and its computational complexity in
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Algorithm 2 In-transit workflow with ANN

1: Update ANN model
2: Move ANN model to in-transit nodes;
3: for i=1 to number of weather patterns do

4: Refresh sensor reading;
5: Execute EnergyPlus with new data;
6: while EnergyPlus output >= threshold do

7: Move EnergyPlus output data to in-transit nodes;
8: end while

9: Run ANN in-transit;
10: end for

11: Write output data to set-points;

Table 6. We consider that EnergyPlus simulations leave their results in the
cloud data center and therefore training jobs do not required to transfer550

any data.

• ANN jobs – execution of a trained ANN model at a lower accuracy than
EnergyPlus jobs. These types of jobs are of low complexity as the ANN
execution does not necessitate high computing specifications. In practice,
any of our EnergyPlus jobs can be replaced with an ANN job. As in555

the case of regular EnergyPlus simulations, the ANN jobs can also be of
three types (JobType1, JobType2, and JobType3). Their characteristics
are shown in Table 3 – the computational complexity of the ANN jobs is
described in Table 6. The computation of an ANN job is always completed
at 100%, unlike regular EnergyPlus jobs.560

Table 5: EnergyPlus ANN Training Job Information.

JobType Data Size(MB) Budget Deadline(s) Tasks†

Training 0 ∞ ∞ 30

† – A job is composed by a set of tasks

Table 6: Time to completion of each ANN job type.

JobType c4.2xlarge c4.4xlarge c4.8xlarge

Training 1200 s 1200 s 1200 s
JobType{1-3} 5 s 2.5 s 1.25 s

These experiments used the same workload, computational strategies (No In-
transit, In-Transit, and In-Transit2), and scenarios (Base, Higher, and Higher)
as before. The only difference was that an ANN training job was inserted
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at the beginning of the execution to train the ANN (it is assumed that we
already had enough EnergyPlus simulations to have data for training). Once the565

training job was completed, approximately 20 minutes, the trained ANN was
made available to replace EnergyPlus simulations when needed. Thus, every
time a regular EnergyPlus job was going to be rejected, the system evaluated if
it could complete such job using the trained ANN.

First, we studied the acceptance ratio of jobs. Figure 11 collects the re-570

sults and differentiate EnergyPlus jobs (E+) from ANN jobs (ANN). The base
scenario, which had low computational performance, shows that a significant
number of jobs were computed using ANN instead of EnergyPlus. In total,
between 21% to 33% of the jobs were accepted and completed using Energy-
Plus, and between 26% to 39% were accepted and completed using ANN. Our575

in-transit strategies helped to increase the number of jobs completed using En-
ergyPlus between 21% to 36%, but at the cost of decreasing the overall number
of accepted job by up to an 8%. In the Higher and Highest scenarios, the system
also used ANN jobs to increase the overall acceptance ratio. In these cases, our
in-transit strategies increased the overall acceptance ratio between 14% to 19%.580
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Figure 11: Job Acceptance Ratio. “in-transit” corresponds to the strategy Traditional client

and “in-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Ta-
ble 1.

Figure 12 combines data about the core/hours used by the system to compute
the accepted jobs. The results for the Base scenario show that the In-transit
strategies used between 23% to 47% more core/hours than the No In-transit
strategy. However, both the No In-transit and the In-transit2 accepted a simi-
lar number of jobs, which shows that the increase in the number of core/hours585

was mainly caused by the number of EnergyPlus jobs computed, as the compu-
tational complexity of ANN jobs was low. In general, the Higher and Highest
scenarios were able to perform more computation in transit, by using resources
located at the network data centers (Middle). Specifically, between a 30% to
43% of the overall computation took place at the network data center resources590

for the Higher and Highest scenarios. In the Base scenario only between 18%
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and 20% of the total core/hours were used at resources in the Middle. This
was mainly caused by lower performance of computational resources through
the whole federation, resulting in rejection of numerous jobs.
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Figure 12: Normalized Core/Hours. “In-transit” corresponds to the strategy Traditional

client and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to
Table 1.

Figure 13 collects the average completion ratio of the EnergyPlus jobs (ANN595

jobs are always completed at 100%). These results show that the in-transit
strategies help to achieve higher job completion ratios, which in this case the
average job completion ratio increased between 8% to 25%.
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Figure 13: Job completion ratio. “In-transit” corresponds to the strategy Traditional client

and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Ta-
ble 1.

We also collected information regarding the overheads involved when com-
puting jobs in the system. These overheads include the time a job spent trans-600

ferring data in the system (network overhead), shown in Figure 14, and the time
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that a job was waiting idle to be computed (queue time), shown in Figures 15a,
and 15b for jobs computed using EnergyPlus and for jobs computed using ANN,
respectively.

Figure 14 shows that, on average, the use of our in-transit strategies in-605

creased the time jobs spent transferring data by up to 34%. As it was mentioned
in the previous section, this was due to the fact that our use case required all
data to be fully transferred before starting execution and to increase the number
of accepted jobs.
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Figure 14: Network Overheads per Job. “In-transit” corresponds to the strategy Traditional

client and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to
Table 1.

Since the computational time required to compute a job using EnergyPlus610

and ANN were significantly different, while the deadline was the same, we used
two figures to collect the waiting time overheads of the jobs computed using
EnergyPlus, Figure 15a, and those that were computed using a trained ANN
model, Figure 15b. Comparing both figures, it can be observed that the ANN
jobs experienced longer queue times as the scheduler tried to place them in the615

appropriated place. It can also be observed that using the in-transit strategies
decreases the average waiting time by up to 79%, in the case of EnergyPlus
jobs, and up to 63%, in the case of ANN jobs.

Figure 16 illustrates the monetary cost required to compute jobs in our
experiments. Results show that when using the in-transit strategies, the cost620

of computing a job increased on average. The main reasons were that the
average completion ratio of the jobs is higher and that more EnergyPlus jobs are
accepted, as we mentioned earlier. Since EnergyPlus jobs are computationally
expensive, the associated monetary cost also increases. In general the average
monetary cost of completed jobs increased by up to 58%. Additionally, the625

dispersion of the cost per job type increased significantly, which was caused not
only by the completion ratio of the EnergyPlus jobs, but also by the reduced
cost of the ANN jobs.

Finally, Figure 17 shows the overall revenue of the federation for the different
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(a) EnergyPlus

 0

 50

 100

 150

 200

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

JobType1

JobType2

JobType3

W
a

it
in

g
 T

im
e

 (
S

)

Scenario

No In-Transit
In-Transit

In-Transit2

HighestHigherBase

(b) ANN

Figure 15: Idle Time Overheads per Job. “In-transit” corresponds to the strategy Traditional

client and “In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to
Table 1.
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Figure 16: Average Job Cost. “In-transit” corresponds to the strategy Traditional client and
“In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Table 1.

scenarios. Results show how in these experiments, the use of in-transit resources630

does not affect negatively the total revenue obtained by the end sites. On the
contrary, when comparing the No In-transit strategy against the two in-transit
ones (In-Transit and In-Transit2), it can be observed that the overall revenue of
the sites increased by up to 35% in the Base scenario, up to 42% in the Higher
scenario, and around 34% in the Highest scenario. Additionally, the network635

data center resources (Middle) were able to generate significant revenue for the
federation, amounting to a 48% increase in total.
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Figure 17: Overall Revenue. “In-transit” corresponds to the strategy Traditional client and
“In-transit2” corresponds to the strategy in-transit aware client. Scenarios refer to Table 1.

7.4. Discussion

The results presented in this paper show the benefits of exploiting compu-
tational capabilities found at the network data centers. The proposed compu-640

tational model allowed us to leverage these in-transit capabilities to increase
the number of computation that the infrastructure was able to perform as well
as the supported QoS levels. We used a smart building energy calculation use
case and tested several scenarios to show the feasibility and benefits of our
proposed computational model by making use of in-transit data analysis. We645

performed two sets of experiments, one where energy optimization jobs were
computed exclusively using EnergyPlus and another where energy optimization
jobs could be computed using EnergyPlus and alternatively a trained ANN for
those cases where the EnergyPlus computation could not meet the SLA. In
both experiments, the use of in-transit strategies had a significant impact on650

the computation. This was shown using different metrics, such as the number of
accepted jobs, the completion ratio, overall core/hours used by the experiment,
overheads, monetary costs, and overall revenue of the experiment.

In this section we discuss the effects of using a trained ANN to compute
energy optimization jobs when using EnergyPlus is not feasible due to SLA655

constraints. Comparing the acceptance ratio, experiments showed that when
using ANN optimization, the number of EnergyPlus jobs accepted decreased
by up to 22% for the No In-transit strategy. The scenarios that used the in-
transit strategies also experienced a decrease in the number of jobs computed
using EnergyPlus by up to 21%. This was caused by a higher utilization of the660

resources affected by two factors: i) the scheduler used ANN jobs to replace
certain EnergyPlus jobs, and ii) we had to compute the ANN training job that
were computationally intensive. However, the overall acceptance rate increased
between 11% to 55% when combining the use of EnergyPlus and the trained
ANN model. The biggest improvement was observed in the Base scenario, where665
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about half of the accepted jobs were computed using the ANN model.
There were almost no changes in the completion ratio of the EnergyPlus jobs

that were accepted and processed by the system. However, we observed some
variations in the number of core/hours and revenue of the system. In general,
we observed that the amount of core/hours and revenue decreased by up to670

11% when using the No In-transit strategy. On the other hand, when using the
in-transit strategies, both the overall number of core/hours and revenue of the
system increased by up to 47% .

8. Related Work

Software Defined Networks (SDNs) are efficacious instruments for network675

intensive applications. Many related studies have implemented SDN oriented
solutions in order to ease the communication between different networking do-
mains or to optimize various performance parameters within a complex system.
Nunes et al. [12] have described the concept of SDN and the various layers in-
volved in such systems. Others have described security challenges faced by SDN680

[13, 14]. The most recognized protocol to enable a server (SDN controller) to
control network elements (such as switches) is OpenFlow [15].

In relation to SDNs, the SWITCH project[16] addresses a number of existing
industrial requirements for developing and executing time critical applications
in Clouds. SWITCH provides an interactive environment for developing appli-685

cations and controlling their execution, a real-time infrastructure planner for
deploying applications in Clouds, and an autonomous system adaptation plat-
form for monitoring and adapting system behavior. The work outlined here
differs from the SWITCH project in utilizing a combination of edge, in-network
capability alongside data center/Cloud infrastructure.690

In the field of active networking, communication patterns are used for ad-
dressing specific user requirements [17]. An active network refers to a spe-
cific capability to execute tasks within the network over active elements such
as switches that have processing capability. Lefevre et al. [18] developed an
active network architecture (A-Grid) to support QoS-related metrics for Grid695

data transport services in addition to other data transport services such as reli-
able multicast and dynamic service deployment. The architecture employs QoS
management at intermediate active routers, and in principal, it is similar to the
in-transit processing employed in our approach. Understanding how application
requirements get mapped to such an architectue has not been fully addressed700

in existing work. The proposed work maps constraints associated with an ap-
plication into capability of each component.

Another emerging research topic is the availability of network resource reser-
vation systems such as ESNET’s OSCARS [19] and UltraScience Net [20]. These
types of systems can provide on-demand dedicated bandwidth channels to user705

applications. The main idea in resource reservation systems is that a virtual
single-switch abstraction is added on top of networks facilitating both a band-
width reservation system and SDN processing.
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This paper primarily focuses on mechanisms that make use of SDN-based
processing capability to improve cloud federation performance. Using SDN to710

improve the performance of applications that need to process large amounts
of data has been discussed by other authors. Wang et al. have analyzed the
potential performance improvement of big data application by integrating net-
work control directly within the application [21]. In [22] Xiong et al. show how
performance of data analysis applications can be improved using SDN within715

distributed data storage environments. Das et al. propose improving applica-
tion performance by choosing particular routes and making more effective use
of dynamic links [23]within a network. In [24] Wang et al. integrate network
resources into datacenter orchestration and provide isolated virtual networks for
improving service quality. Similarly, Luo et al. [25] and Miyamoto et al. [26]720

propose to transform network bandwidth into manageable resources, and pro-
vide guaranteed virtual networks. Furthermore, in-transit computation has been
used to aid HPC computation [27, 28]. In our research, the focus is on improving
performance of federated cloud systems by using SDN-based approaches, and
unlike mentioned papers our target is not only considering networking resource725

but also dealing with other computational and storage resources through the
use of an SDN controller.

Our work shares commonalities with these related studies from the per-
spective of achieving performance improvements, through federated systems at
different computational capabilities (at the network edge, in-transit and within730

a data center). The proposed work also has similar interests in achieving the
overall objective of providing greater transparency into the network’s state, en-
abling users to make more informed decisions and to adapt to changes that may
appear in the network. However, the main differentiating aspect of the work
reported here is the adoption of an application-centric methodology, whereby735

SDN capability can be employed efficiently based on a set of user-defined con-
straints, subsequently validated in a building energy scenario. The proposed
work also contributes to supporting in-transit processing to enable maximizing
job acceptance and completion ratios (within an application specific deadline).
These metrics (acceptance and completion ratios) are often critical in real-time740

applications, with increasing impact on cost and business value.

9. Conclusions

This paper introduced a computational model that enables the use of latent
computational capacities and capabilities found in network data centers. We
showed how integrating software-defined network (SDN) technology in our fed-745

erated infrastructure can enable the use of resources located at the network data
centers to perform in-transit computation of data that is being transferred. We
used a smart building energy calculation use case and tested several scenarios
to show the feasibility and benefits of our proposed computational model by
making use of in-transit data analysis.750

Experimental results showed that when the computational capacity of re-
source providers is limited, enabling in-transit computation can improve job ac-
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ceptance ratio and their average completion ratio. This holds even in cases where
in-transit resources are not very powerful compared with the computational re-
source providers’ resources. The main reason is that the computational capacity755

available in the federation increased, which proves that our approach was able to
extract latent computational cycles from in-transit resources. However, experi-
ments showed that only using the idle/waiting time of jobs to perform in-transit
computation limits the practicability of the in-transit approaches. For this rea-
son, we are currently working to explore additional in-transit strategies in which760

both in-transit resources and end sites are part of an optimization problem to
decide how computation can be effectively distributed across each. Moreover,
we are defining a new business model that takes into account not only the capa-
bilities of the resources, but also their location in the infrastructure (e.g., at the
edge vs. deep into the infrastructure). We also plan to extend our prototype765

to consider more than one in-transit resource to enable allocating resources in
more complex data path. Finally, we would like to explore scenarios in which
the computation of certain jobs or buildings have different priorities.
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