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Fig. 6. Wnt signalling regulates gastric repopulation. (A) gqRT-PCR of Wnt/B-catenin target genes from the genotypes and time points indicated (dpi, days post
induction) (*P<0.05, **P<0.01; data are meanzts.e.m., n=4 mice, Mann—Whitney). (B) Immunohistochemical staining for PCNA (proliferation) on sections
from the antral stomach of the genotypes and time points indicated. Brackets indicate stained proliferative zone. Scale bar: 100 um. (C) Enumeration of
immunohistochemistry in 6B (*P<0.05; data are meants.e.m., n=4 mice, Mann—Whitney). (D) Organoids cultured from the antral epithelium of genotypes
indicated and treated with both 4-OHT and vehicle or 4-OHT and CHIR. Green arrows indicate live organoids; red arrows identify dead/dying organoids. Scale bar:
100 pm. (E) MTT assay of cell viability of the organoids described in D. Three mice were used per experimental condition; each experiment was performed
separately three times using six replicates of each condition (*P<0.05, **P<0.01; meants.e.m., =3 mice, Mann—-Whitney). (F) qRT-PCR for Wnt/B-catenin target
genes on cDNA isolated from organoids described in D (*P<0.05; data are meants.e.m., n=3 mice, Mann—-Whitney).

recombined Fzd7-deficient cells, we were able to track a repopulation  over the course of 7-10 days. This is consistent with previous lineage
event in the gastric epithelium for the first time, in which non- tracing showing full glands could be generated from Lgr5™ cells in the
recombined, Fzd7-proficient cells replaced the Fzd7-deficient cells same way in 7-10 days (Barker et al., 2010). Repopulation does not
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occur from a denuded epithelium, as in regeneration, and therefore
does not preclude that a large apoptotic event is associated with it. We
and others have previously reported that the intestinal epithelium is
able to repopulate after deletion of crucial genes such as Myc (Muncan
et al., 2006), Stat3 (Matthews et al., 2011) or Chekl (Greenow et al.,
2009). Indeed, we also recently observed repopulation when we
deleted Fzd7 in the intestinal epithelium, again suggesting a common
role for this receptor in gastric and intestinal homeostasis. This
mechanism of repopulation is an important adaptation to allow these
epithelial layers to rapidly respond to damaging molecular events that
could otherwise disrupt the delicate homeostasis of these tissues,
resulting in possible pathologies that include colitis/gastritis and
neoplasia (Clevers et al., 2014). Repopulation of the gastric epithelium
with bone marrow-derived cells (BMDCs) has been previously
reported in vivo, but only 30 weeks after experimental infection with
Helicobacter, which eventually resulted in the development of gastric
tumours, with no repopulating cells observed at earlier time points
(Houghton et al., 2004). This then represents a very different kind of
repopulation to the rapid event we describe here, which results in the
gastric epithelium returning to a normal homeostatic state after the
repopulation event, rather than any associated pathology as observed
with the slow BMDC repopulation. Epithelial damage and gastric
ulceration are common pathologies associated with radiotherapy in
humans (Coia et al., 1995; Henriksson et al., 1999). This suggests that
manipulation of the Wnt pathway following irradiation could be of
therapeutic benefit for individuals receiving radiotherapy, as has been
suggested in the intestine (Ashton et al., 2010; Phesse and Sansom,
2013; Zhou et al., 2013).

Gastric repopulation is not observed until 5 days after Fzd7
deletion. Therefore, before this time point we can analyse the
requirement for Fzd7 in the gastric epithelium. At 3 days post-
deletion we could demonstrate robust deletion of Fzd7 from the
gastric epithelium, observed as perturbed differentiation of Muc5a*
mucus-secreting cells, which was also previously reported in mice
with hyperactive Notch signalling (Demitrack et al., 2015). However,
neither inhibition nor hyperactivation of Notch signalling triggered
repopulation in the gastric epithelium, suggesting that this
mechanism is exquisitely sensitive to loss of Wnt signalling. These
data suggest that Notch and Wnt signalling work in parallel to
regulate gastric homeostasis, with distinct functions from one
another. In support of this, proliferation is also altered in the gastric
epithelium in response to modulated Notch signalling (Demitrack
etal., 2015; Kim and Shivdasani, 2011), which we did not observe in
the Fzd7-deficient gastric epithelium 3 days after Fzd7 deletion.
Transient changes in proliferation were observed only during the
gastric epithelial repopulation event, which was characterised by the
return of Fzd7-proficient cells and increased Wnt activation. A small
increase in the number of apoptotic cells per gland was also observed
following Fzd7 deletion. These apoptotic events were located in the
isthmus of antral glands, which is the location of a population of stem
cells marked by either Lrig!, Sox2 or Cckbr (Hayakawa et al., 2016).
This suggests that deletion of Fzd7 may be deleterious to these stem
cells, and consequently triggers repopulation, which will be
important to investigate in future studies. Furthermore, Lgr5™ cells
are located in the base rather than in the isthmus of the antrum,
suggesting that, in contrast to the intestine, Fzd7 may be regulating a
population of stem cells that are not expressing Lgr35.

Regulation of differentiation by Wnt signalling is also observed
in the intestinal epithelium, where activation or inhibition of the
pathway can result in perturbed differentiation and mislocalisation
of Paneth cells (Phesse et al., 2008; Sansom et al., 2004). Indeed, G
cells are mislocalised throughout the gastric antral glands after Fzd7
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deletion, rather than located at their usual position at the base of the
glands. These data strongly suggest a conserved function for Wnt
signalling in regulating the location of differentiated cells within the
gastric and intestinal epithelium.

Deletion of Fzd7 perturbs gastric organoid viability. In contrast,
treatment of gastric organoids with the Wnt pathway activator CHIR,
which inhibits Gsk3, increases Wnt target gene expression and cell
viability. These data identify Wnt as an important regulator of gastric
epithelial cell function. Intriguingly, the deletion of Fzd7 in these
gastric organoids prevents CHIR treatment from activating Wnt target
genes to the levels observed in Fzd7-proficient organoids. These
results demonstrate that modulation of Wnt/Fzd receptor interactions
can still influence the outcome of cells in which the cytoplasmic
downstream signal transducers of the pathway have been mutated. This
is consistent with previous findings in which we and others have
shown that Wnt pathway activity can still be modulated in colon cancer
cells with mutant APC (Caldwell et al., 2004; Suzuki et al., 2004;
Vincan et al., 2007, 2005). As the Wnt pathway is also deregulated in
gastric cancer (Phesse et al., 2016), these data also suggest that Fzd
receptors could be a target for therapeutic intervention for this disease.

MATERIALS AND METHODS

Mice

The BAC transgenic Tg(Tff1Cre"R™?) (Thiem et al., 2016), Fzd7™"
(Flanagan et al., 2015), Fzd7"“? (Yu et al., 2012), Fzd5"" (van Es
et al., 2005) and Rosa26LacZ"" (Soriano, 1999) have all been previously
described. Mice were interbred to generate compound mice with appropriate
alleles. All mice were co-housed, and with the exception of Fzd 7% mice,
all mice were on an inbred C57B1/6 genetic background, using males and
females and appropriate littermates as controls. The Fzd7"2“% mice were on
a mixed C57Bl/6xSv129 background. All animal experiments were
approved by the Animal Ethics Committee, Office for Research Ethics
and Integrity, University of Melbourne, Australia.

Tamoxifen administration

Short-term in vivo Cre induction (<7 days post induction) was performed in
6- to 10-week-old mice with a single intraperitoneal (i.p.) injection of 2 mg of
tamoxifen per mouse. Long-term in vivo Cre induction (>14 days post
induction) was performed in 6- to 10-week-old mice with a single daily i.p.
injection of 2 mg of tamoxifen per mouse per day over four consecutive days.

p-Galactosidase (X-gal) staining

Freshly isolated stomachs were cut along their greater curvature, washed
with PBS and immediately fixed (1% formaldehyde, 0.2% gluteraldehyde,
0.02% NP-40 in PBS) for 2 h at 4°C. The fixative was removed and
stomachs were washed in PBS. Stomachs were incubated in B-galactosidase
detection substrate [5S mM K3Fe(CN)g, 5 mM KyFe(CN)g.3H,0, 2 mM
MgCl,, 0.02% NP-40, 0.1% sodium deoxycholate, 1 mg/ml X-gal in PBS]
in the dark, overnight at room temperature. The detection substrate was
removed the following day and stomachs were washed in PBS, followed by
an overnight incubation in 4% PFA at 4°C in the dark. The PFA was
removed and stomachs were washed in PBS. Stained stomachs were placed
into histological cassettes, embedded in paraffin wax, sectioned at 5 um,
mounted onto slides and counterstained with Neutral Red.

Tissue collection and histological analysis

Freshly isolated mouse stomachs were flushed with PBS and fixed overnight
at 4°C in 10% neutral buffered formalin (NBF) and washed twice in 70%
ethanol at room temperature. Tissues were placed into histological cassettes,
embedded in paraffin wax, sectioned at 5 um and mounted onto slides as
described previously (Flanagan et al., 2015). Paraffin sections were de-
waxed, re-hydrated, blocked and incubated in primary antibody overnight at
4°C. Sections were washed and incubated in secondary antibody (polymer
horse radish peroxidase-conjugated mouse/rabbit/goat) for 30 min at room
temperature. Sections were rinsed in and bound peroxidase was detected
and developed by adding diaminobuteric acid substrate (DAB) at room
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temperature. Slides were washed in MilliQ water and nuclei counterstained
with Mayer’s haematoxylin. Antibodies used were mouse anti-Muc5aC
(1:400, Thermoscientific, MS-145B0), rabbit anti-PCNA (1:300, Santa
Cruz, SC-7907), rabbit anti-caspase 3 (1:1000, R&D systems, AF-835) and
goat anti-gastrin-C20 (1:400, Santa Cruz, SC-7783).

Isolation and culture of gastric organoids

The stomachs from mice were dissected out, cut along the greater curvature and
flushed in ice-cold PBS, then incubated in a 50 mM EDTA (pH 8.0) in PBS
chelating solution for 1 h on a roller at 4°C. Stomachs were then transferred to
tubes containing PBS and vigorously shaken to dissociate gastric glands from
the underlying stroma (Flanagan et al., 2016). Isolated gastric gland suspension
was filtered through a 70 uM cell strainer (BD Biosciences, #352350), which
was collected and counted using a haemocytometer. The gastric glands were
resuspended in Matrigel (~100 glands/50 ul of Matrigel) and plated onto a
24-well tissue culture plate. Once the Matrigel had set at 37°C, organoids were
covered with 500 pl of gastric culture medium as previously described (Barker
etal., 2010; Flanagan et al., 2016). Gastric medium containing growth factors
was replenished every other day and cultures were passaged and split once a
week. In vitro Cre recombinase was activated by treating gastric organoid
cultures with 100 nM 4-hydroxytamoxifen (4-OHT) as previously described
(Barkeret al., 2010; Flanagan et al., 2016). Organoid cultures were imaged on
a Nikon Ti-E microscope using DIC (differential interference contrast) with a
4x PlanApo NA 0.3 objective. A focal stack of images was collected 10 pm
apart and processed through the ‘Best Focus’ function of MetaMorph v7.7.7
(Molecular Devices) to generate the final image of individual organoids as
previously described (Flanagan et al., 2015; Phesse et al., 2014).

RNA extraction and analysis

Gastric glands were homogenised in TRizol and total RNA was purified and
DNAse treated on Qiagen columns (Promega) and quantified using a DNA/
RNA nanodrop spectrophotometer. Four pug of each RNA sample was
reverse transcribed using anchored oligodT primers (Promega) and
Moloney Murine Leukemia Virus Reverse Transcriptase (M-MLV RT,
Promega, #M1705) following the manufacturers’ instructions in a final
volume of 100 pl, as previously described (Vincan et al., 2007). Real-time
RT-PCR was performed using the SYBR green PCRmaster mix and the
ABI PRISM 7500 sequence detection system (Applied Biosystems) on
cDNA synthesized from DNase-treated total RNA as previously described
(Flanagan et al., 2015). Gene expression levels were calculated relative to
the housekeeping gene 18S. The 2-*2T method (Bustin et al., 2009) was
used to calculate the fold change as previously described (Phesse et al.,
2008; Vincan et al., 2007). Primer sequences are available in Table S1.

MTT assay

Following treatment, gastric organoids were mechanically dissociated,
washed with ADF, counted, resuspended in fresh Matrigel and seeded in a
flat-bottomed 96-well tissue culture plate and incubated for 24 hat 37°C ina
5% CO, chamber. Organoids were incubated with MTT (thiazolyl blue
tetrazolium bromide, Sigma, #M2128) for 4 h at 37°C in 5% CO, chamber.
Gastric culture medium was removed from organoids and replaced with lysis
buffer (50% DMF, SDS, acetic acid+2.5% 1M HCI) and incubated
overnight at 37°C. Solution (100 pl) was transferred to a clean flat-bottomed
96-well plate and optical density determined using BMG lumistar plate
reader (Hansen et al., 1989).

Statistical analysis

Data are expressed as means.e.m., where mean represents number of mice
(=3 per genotype) or number of independent experiments (>3). Statistical
tests used were Mann—Whitney with Prism7 (GraphPad software) where
P<0.05 was considered significant.
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