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Abstract

Backflow is the phenomenon that the probability current of a quantum particle
on the line can flow in the direction opposite to its momentum. In this article,
previous investigations of backflow, pertaining to interaction-free dynamics or purely
kinematical aspects, are extended to scattering situations in short-range potentials.
It is shown that backflow is a universal quantum effect which exists in any such
potential, and is always of bounded spatial extent in a specific sense. The effects of
reflection and transmission processes on backflow are investigated, both analytically
for general potentials, and numerically in various concrete examples.

1 Introduction

Backflow is the striking quantum mechanical effect that for a particle with momentum
pointing to the right (with probability 1), the probability of finding the position of
the particle to the right of some reference point may decrease with time. That is,
probability can “flow back”, in the direction opposite to the momentum. This effect
was first described by Allcock in the context of the arrival time problem in quantum
mechanics [1], and then discussed in detail by Bracken and Melloy [2]. More recently,
the backflow effect has attracted renewed interest [3, 4, 5, 6, 7], partially related to a
proposed experiment to measure it [8], and partially because of its connection to other
“quantum inequalities” appearing in quantum field theory [3, 9] .

To describe backflow more precisely, consider a wave function ψ defining the state
of a single quantum-mechanical particle in one dimension, and its probability current
density jψ. Intuitively, both the statements (with ψ̃ the Fourier transform of ψ)

a) ψ contains only positive momenta, i.e., supp ψ̃ ⊂ R+

b) jψ(x) > 0 for all x ∈ R
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correspond to “probability flowing from the left to the right”. However, a) and b)
are logically independent of each other. Backflow is the observation that a) does not
imply b), that is, the current jψ(x) can take negative values (for certain x), even if ψ
contains only positivemomenta. (Note that, less surprisingly, b) does not imply a) either:
Any wave function of the form ψ(x) = eipxϕ(x), where ϕ(x) is real and p > 0, satisfies
b) but in general not a).) Backflow can be seen as a consequence of the uncertainty
relation between position and momentum [3].

Of the various aspects of backflow that have been analyzed in the literature, let
us recall what is known about the temporal and spatial extent of this phenomenon.
In the form presented above, backflow is a purely kinematical effect, independent of
a choice of dynamics/Hamiltonian. However, when a time evolution given by a self-
adjoint Hamiltonian H according to Schrödinger’s equation i~∂tψt = Hψt is fixed, one
may study, for example, the amount of probability flowing across a reference point, say
x = 0, during a time interval [0, T ]. Writing jHψ (t, x) = jHψt

(x) for the time-dependent
current given by the Hamiltonian H, this probability is given by

pHψ (T ) =

∫ T

0
dt jHψ (t, 0) . (1.1)

For the free Hamiltonian H0 = 1
2mP

2 without potential, Bracken and Melloy found [2]
that there exists a universal dimensionless constant 0 < λH0 < 1 such that

pH0

ψ (T ) ≥ −λH0 (1.2)

for all normalized right-moving wave functions ψ in the sense of a), and all T > 0. The
minus sign indicates that probability flows from the right to the left, i.e., this inequality
is a bound on the (averaged) temporal extent of backflow.

The backflow constant λH0 arises as the largest positive eigenvalue of an integral
operator, and has been calculated numerically to be λH0 ≈ 0.0384517 with growing
accuracy over the years [2, 3, 4]. For the construction of “backflow states” ψ that
approximate this maximal backflow, see the recent articles [6, 7]. Backflow constants
λH similarly exist for interacting Hamiltonians H; but the kernel of the related integral
operator is not explicitly known in general, and we are not aware of results on λH in the
interacting situation.

Whereas the inequality (1.2) provides a bound on the (averaged) temporal extent of
backflow, one can also study its (averaged) spatial extent by considering spatial integrals
of the (kinematical) current jψ(x). Eveson, Fewster, and Verch have shown that

∫

dx f(x) jψ(x) ≥ cf > −∞ (1.3)

for all normalized right-movers ψ and all positive averaging functions f(x) ≥ 0. Here
the function f models an extended detector, generalizing the step function used in (1.1).
Their constant cf (which has dimension of inverse time) depends on f , it is recalled in
Eq. (2.12) in the main text.

In this article, we extend the analysis of backflow to interacting systems, given by
fairly general Hamiltonians of the form H = 1

2mP
2 + V (X). We begin by recalling and

refining some results on kinematical probability currents and their spatial averages in
Section 2. Since the space of right-movers is no longer invariant under the time evolution
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if V is not constant, we then propose to look at asymptotic right-movers in the sense
of scattering theory, i.e., states that at very early times contain only positive momenta
before scattering with the (short-range) potential. Each interaction-free right-mover
ψ is the incoming asymptote of an interacting state ΩV ψ, where ΩV is the incoming
Møller operator of the Hamiltonian H with potential V . This familiar scattering setup
is recalled in Section 3. That section also contains our main analytical results, which we
briefly outline here.

In a scattering situation, we consider the current jΩV ψ(x) in the interacting system
that has right-moving incoming asymptote ψ, and study its spatial backflow, i.e., aver-
ages of the form

∫

dx f(x)jΩV ψ(x) for positive smearing functions f . We show that in
any short-range potential, these averages can be negative despite ψ being right-moving,
i.e., backflow is a universal effect which exists for any such interaction (Thm. 3.3). This
is not surprising for potentials with reflection, because reflection processes clearly in-
crease backflow. But our result also holds for reflectionless (transparent) potentials, in
which backflow exists, but turns out to be weaker than in the free case.

Generalizing (1.3), we next study state-independent lower bounds on the averages
∫

dx f(x) jΩV ψ(x) that hold for all normalized incoming right-movers ψ, with fixed av-
eraging function f(x) ≥ 0. Since reflection processes amplify backflow, it is not clear a
priori whether

βV (f) := inf

{
∫

dx f(x) jΩV ψ(x) : ‖ψ‖ = 1 , ψ right-moving

}

(1.4)

is finite. However, our analysis shows that backflow is always bounded, 0 > βV (f) > −∞
for all short-range potentials V and all positive smearing functions f (Thm. 3.5). We also
derive explicit analytic estimates on the constants βV (f) from the spatial asymptotic
behavior of the scattering solutions to Schrödinger’s equation with potential V . Going
through the analysis, it turns out that backflow can only become unbounded at large
momentum. At large momentum, however, reflection is sufficiently well suppressed,
which provides a heuristic understanding of this result.

Our analytic results are complemented by examples and numerical studies, presented
in Section 4. With custom computer code, supplied with this article [10], we study
four example potentials: The zero potential as a reference, a delta potential as a simple
extremely short range example, a rectangular potential, and a reflectionless Pöschl-Teller
potential. Their backflow constants are calculated numerically, and their dependence
on the potential strength and the position of the (Gauß type) smearing function f is
visualized. We also show the corresponding backflow maximizing states in that section,
and discuss their properties. The numerics underlying these results is explained in more
detail in Appendix A. In particular, the code can be adapted to study backflow in
arbitrary short range potentials.

A summary and outlook is given in Section 5.

2 Bounds on probability currents

The setting of our investigations is the standard framework of quantum mechanics of
one particle of mass m > 0 in one spatial dimension. It will be convenient to work
with dimensionless variables x, p, etc., and dimensionless functions (such as the wave
function ψ and the current jψ) by using a length scale ℓ as the unit of length, ~

ℓ as the
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unit of momentum, mℓ2

~
as the unit of time, and ~2

mℓ2
as the unit of energy, effectively

setting ~ = m = 1. Thus, a square integrable wave function ψ ∈ L2(R) defines a position
probability density |ψ(x)|2, in particular, ‖ψ‖2 =

∫

dx |ψ(x)|2 = 1. Its Fourier transform
ψ̃(p) = (2π)−1/2

∫

dx e−ipxψ(x) defines the momentum probability density |ψ̃(p)|2. The
operators of position, momentum and kinetic energy areX, P = −i∂x, and 1

2P
2 = −1

2∂
2
x.

With any (differentiable) wave function function ψ, we associate its probability cur-
rent density

jψ(x) =
i

2

(

ψ′(x)ψ(x)− ψ(x)ψ′(x)
)

, (2.1)

where a prime denotes a derivative w.r.t. x ∈ R.

In the context of backflow, “right-moving” wave functions are important, and we
will write E± for the spectral projections of the momentum operator, corresponding to
positive/negative momentum, i.e.,

(̃E±ψ)(p) = Θ(±p)ψ̃(p), (2.2)

where Θ is the Heaviside step function. With this notation, the right-moving wave
functions in statement a) in the Introduction are characterized by E+ψ = ψ.

It is well known that locally, the backflow effect can be arbitrarily large: Given any
x ∈ R and any c > 0, there exists a normalized right moving wave function ψ = E+ψ
such that jψ(x) < −c. Similarly, one can also arrange for arbitrarily large “forward
flow”, i.e., find normalized ψ = E+ψ with jψ(x) > c.

These facts can be shown by a scaling argument (note that the (dimensionful) prob-
ability current density has the physical dimension of inverse time, so that a change of
units scales its numerical value) [2]. We give here a different proof which results in more
specific bounds that will be needed in the next section.

Proposition 2.1. (Unboundedness of jψ(x)) Let x ∈ R. Then there exist sequences
ψ±
n ∈ E+L

2(R) of right-moving wave functions such that

lim
n→∞

jψ±
n
(x) = ±∞ , (2.3)

and the norms ‖ψ±
n ‖2 =

∫

dx |ψ±
n (x)|2 and ‖ψ̃±

n ‖1 =
∫

dp |ψ̃±(p)| are independent of n.

Proof. The unboundedness from above is a high momentum effect. To construct the
sequence ψ+

n , we select a right-moving wave function ψ+ such that E+ψ
+ = ψ+ and the

current jψ+ exists, and shift it to higher and higher momentum, ψ̃+
n (p) := ψ̃+(p − n),

n ∈ N. From this construction, it is clear that ψ+
n = E+ψ

+
n , and the norms ‖ψ+

n ‖ and
‖ψ̃+

n ‖1 are independent of n. Furthermore, the current of ψ+
n is

jψ+
n
(x) = jψ+(x) + n |ψ+(x)|2 , (2.4)

as can be quickly checked on the basis of (2.1). When we choose ψ+ such that ψ+(x) 6= 0
(which is clearly possible), we find jψ+

n
(x) → ∞ as n→ ∞.

To demonstrate unboundedness from below, we construct a sequence ψ−
n by super-

position of a high and a low momentum state. We choose a function χ such that χ̃ has
compact support on the right half line, and χ(x) 6= 0, jχ(x) 6= 0. Such functions exist

4



for any x, and are by construction right-movers, E+χ = χ. We then consider the linear
combinations ψ̃−

n (p) := αχ̃(p)+βχ̃(p−n), where n ∈ N, and α, β ∈ C. By construction,
E+ψ

−
n = ψ−

n , and by the compact support property, we have for large enough n the
equalities ‖ψ−

n ‖2 = (|α|2 + |β|2)‖χ‖2 and ‖ψ̃−
n ‖1 = (|α|+ |β|)‖χ̃‖1.

It remains to choose α, β in such a way that jψ−
n
(x) → −∞ as n→ ∞. To do so, we

calculate

jψ−
n
(x) =

(

α

β

)t
(

jχ(x) · ✶+ nAn
)

(

α
β

)

, (2.5)

where

An :=

(

0 einx(
jχ(x)
n + |χ(x)|2

2 )

e−inx(
jχ(x)
n + |χ(x)|2

2 ) |χ(x)|2

)

. (2.6)

The (2 × 2) matrix An is hermitian, has trace |χ(x)|2, and determinant detAn →
−|χ(x)|4/4 < 0 as n → ∞. Thus the eigenvalues λ±(n) of An converge to λ±(n) →
±|χ(x)|2/2 as n → ∞. Choosing α, β as the coordinates of an eigenvector with the
negative eigenvalue −|χ(x)|2/2 then results in jψ−

n
(x) → −∞ as n → ∞ because of the

explicit prefactor n in front of An.

The superposition states constructed in the second part of the proof are examples of
states in which backflow occurs (“backflow states”). For other examples, see [6, 7].

On the mathematical side, the observable J(x), defined as

〈ψ, J(x)ψ〉 := jψ(x) (2.7)

exists only as a quadratic form, and is unbounded above and below on E+L
2(R) by the

results above. This quadratic form will be our main tool in studying the dependence of
the probability current density on the wave function. In particular, J encodes bounds
on spatial averages of the backflow against (positive) Schwartz-class test functions f ∈
S (R), written as

〈ψ, J(f)ψ〉 :=
∫

dx f(x) jψ(x) . (2.8)

It is readily checked that J(f) exists as an (unbounded) operator, hermitian for real f ,
and can be expressed in terms of the position and momentum operators as

J(f) =
1

2
(Pf(X) + f(X)P ) . (2.9)

The fact that backflow exists is reflected in the fact that E+J(f)E+, the averaged
current evaluated in right-moving states, is not positive. To formulate this concisely, let
us denote by

inf〈A〉 := inf
‖ψ‖=1

〈ψ,Aψ〉 ∈ [−∞,∞) (2.10)

the bottom of the spectrum of a hermitian operator A, i.e., the infimum of all its gener-
alized eigenvalues. Then the maximal amount of backflow, spatially averaged with f , is
defined as

β0(f) := inf〈E+J(f)E+〉 . (2.11)
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In the following Theorem 2.2, we summarize the properties of J(f) that are relevant
to our investigations in three parts i)–iii). Part i) is concerned with the existence of
backflow: By Prop. 2.1, we can pick positive test functions f such that E+J(f)E+ is
not positive. Below we give a stronger argument, showing that β0(f) < 0 for each real
f 6= 0.

After having settled the existence of backflow, the next question is about estimating
the strength of this effect. In part ii), we remark that E+J(f)E+ is unbounded above
(for positive f), just as E+J(x)E+. This is intuitively clear, saying that there is no
restriction on probability flow to the right for right-moving waves, and follows in a
similar manner as in the first part of Prop. 2.1.

A more delicate question is if there exist lower bounds on the spectrum of the
smeared probability current E+J(f)E+, i.e., whether β0(f) > −∞. In fact, E+J(f)E+

is bounded below, in contrast to E+J(x)E+. Part iii) recalls a result proven by Eveson,
Fewster, and Verch [3] in this context.

Theorem 2.2. (Existence and boundedness of spatially averaged backflow)

i) For any real f 6= 0, the smeared probability flow in right-moving states, E+J(f)E+,
is not positive, β0(f) < 0.

ii) Let f > 0. Then there is no finite upper bound on E+J(f)E+.

iii) [3] Let f > 0. Then E+J(f)E+ is bounded below, i.e., β0(f) > −∞. For test
functions of the form f = g2 for some real g ∈ S (R), one has

β0(g
2) ≥ − 1

8π

∫

dx |g′(x)|2 > −∞ . (2.12)

Proof. i) The operator E+J(f)E+ defines an integral operator on L2(R+, dp). In view
of (2.9), its (momentum space) integral kernel is

Kf (p, q) =
p+ q

2
√
2π

f̃(p− q), p, q ≥ 0. (2.13)

If E+J(f)E+ is positive, then for any p, q > 0, the hermitean matrix

(

Kf (p, p) Kf (p, q)
Kf (q, p) Kf (q, q)

)

(2.14)

has only non-negative eigenvalues, and in particular a non-negative determinant

0 ≤ Kf (p, p)Kf (q, q)− |Kf (p, q)|2 =
pq

2π
|f̃(0)|2 − (p+ q)2

8π
|f̃(p− q)|2 . (2.15)

This implies

|f̃(p− q)| ≤ 2
√
p q

p+ q
|f̃(0)| . (2.16)

Now taking p → 0 at fixed q > 0 shows that |f̃(−q)| = 0 for all q > 0. But since f is

real, f̃(−q) = f̃(q), so that f̃(q) = 0 for each q 6= 0. As the test function f is continuous,
this implies that f = 0 has to vanish altogether. So we conclude that for any real f 6= 0,
the operator E+J(f)E+ is not positive.
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ii) Similar to the proof of the first part of Prop. 2.1, we take a normalized and
right-moving E+ψ = ψ ∈ L2(R), and define shifted momentum space wave functions,
ψ̃n(p) := ψ̃(p− n), where n > 0. Then also ψn is normalized, E+ψn = ψn, and has the
expectation value (cf. (2.4) integrated against f(x) over x)

〈ψn, E+J(f)E+ψn〉 = 〈ψ,E+J(f)E+ψ〉+ n

∫

dy f(y) |ψ(y)|2 . (2.17)

For f > 0, it is clear that we can choose ψ in such a way that the last integral is not
zero. In that case, 〈ψn, E+J(f)E+ψn〉 → ∞ as n → ∞, showing that there is no finite
upper bound on the spectrum of E+J(f)E+.

The spectrum of the operator E+J(f)E+ cannot be determined explicitly, and an-
alytic methods are restricted to providing bounds on the backflow effect. (Numerical
results will be presented in Section 4.)

The significance of the mild additional assumption f = g2 in Thm. 2.2 iii) in this
context is due to the fact that in this case, J(f) takes a simpler form. Namely, in view of
Heisenberg’s commutation relation [X,P ] = i, one obtains the more symmetric formula
J(g2) = g(X)Pg(X). With the help of the spectral projections E± of P , one may then
write J(g2) as a difference of two positive operators,

J(g2) = J+(g
2)− J−(g

2) , J±(g
2) := ±g(X)PE±g(X) , (2.18)

which yields the estimate β0(g
2) ≥ −‖E+J−(g

2)E+‖. The inequality (2.12) can then be
established by estimating this norm [3].

From (2.18) we see that the negative part −J−(g2) (without restriction to right-
moving waves) is unbounded, but the unboundedness occurs, roughly speaking, only at
high momentum. This will be important in our subsequent investigation of backflow in
scattering situations.

3 Backflow and scattering

Let us now consider a quantum mechanical system as before, but with nontrivial inter-
action given by a time-independent external potential V , so that the Hamiltonian is of
the form H = 1

2P
2 + V (X).

In this situation the time evolution does no longer leave the space of right-movers
E+L

2(R) invariant. Hence, what constitutes a particle that “travels to the right” is less
clear. As a substitute, we propose to look at asymptotic momentum distributions in the
sense of scattering theory, that is, states whose incoming asymptote is a right-mover.
This space is invariant under the time evolution; it describes particles scattering “from
the left” onto the potential. The connection between an asymptotic state ψ and the
“interacting state” ΩV ψ is given by the incoming Møller operator

ΩV := s-lim
t→−∞

eiHte−iH0t, (3.1)

where s-lim denotes the strong operator limit. We remark that, although ΩV is not
unitary in the presence of bound states, we still have ‖ΩV ‖ = 1.

We will now look at the averaged probability current J(f) in states with right-
moving asymptote ψ = E+ψ. That is, we consider the operator E+Ω

∗
V J(f)ΩVE+ and
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investigate its spectral properties – whether it is unbounded above (unlimited forward
flow), bounded below (limited backflow), and how to estimate

βV (f) := inf〈E+Ω
∗
V J(f)ΩVE+〉, (3.2)

the “asymptotic backflow constant”. For V = 0, one has ΩV = 1 and hence recovers the
previously discussed β0(f), see (2.11). Our main result will be that also for short-range
potentials V 6= 0, one has βV (f) > −∞ for any nonnegative test function f .

To that end we pass to the stationary picture of scattering theory, which is possible
if V (x) vanishes sufficiently fast as x → ±∞. Specifically, we consider real-valued
potentials V for which the norm

‖V ‖1+ :=

∫

dx (1 + |x|)|V (x)| <∞ (3.3)

is finite; we refer to this class as L1+(R). In this case solutions of the time-independent
Schrödinger equation on the line,

(−∂2x + 2V (x)− k2)ψ(x) = 0, k ∈ R, (3.4)

are scattering states. For each k > 0, of particular interest are the solutions x 7→ ϕk(x)
of this equation with the asymptotics

ϕk(x) =

{

TV (k)e
ikx + o(1) for x≫ 0,

eikx +RV (k)e
−ikx + o(1) for x≪ 0,

(3.5)

where RV (k) and TV (k) denote the reflection and transmission coefficients of the poten-
tial V , respectively. Let us recall the basic results of scattering theory in this context;
see, e.g., [11].

Lemma 3.1. Let V ∈ L1+(R). Then the operator ΩV defined in (3.1) exists. Further,
the solution x 7→ ϕk(x) (k > 0) of (3.4) with the asymptotics (3.5) exists and is unique,
and for any ψ̃ ∈ C∞

0 (R),

(ΩVE+ψ)(x) =
1√
2π

∫ ∞

0
dk ϕk(x)ψ̃(k). (3.6)

Existence and uniqueness of ϕk are a consequence of [11, Chapter 5, Lemma 1.1].
The proof of existence of ΩV under a weaker assumption on V can be found in [11,
Chapter 5, Theorem 1.12], as well as the relation (3.6). Note that our ϕk(x) is denoted
ψ1(x, k) there.

By Eq. (3.6), the expectation values of the asymptotic current operator are

〈ψ,E+Ω
∗
V J(f)ΩVE+ψ〉 =

∫

dxf(x)

∫ ∞

0
dp

∫ ∞

0
dq ψ̃(p)KV (p, q, x) ψ̃(q), (3.7)

where

KV (p, q, x) =
i

4π

(

∂xϕp(x)ϕq(x)− ϕp(x)∂xϕq(x)
)

. (3.8)

For estimating this operator, we will rely on the following pointwise bounds on ϕk
and KV which compare them with their spatial asymptotics (transmitted wave).
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Lemma 3.2. [12] Let V ∈ L1+(R). There exist constants cV , c
′
V , c

′′
V , c

′′′
V > 0 such that

for all x ∈ R and k > 0,

|ϕk(x)| ≤ cV (1 + |x|), (3.9)

|ϕk(x)− TV (k)e
ikx| ≤ c′V

1 + |x|
1 + k

, (3.10)

|∂xϕk(x)− ikTV (k)e
ikx| ≤ c′′V

1

1 + k
, (3.11)

|KV (p, q, x)−K0(p, q, x)| ≤ c′′′V (1 + |x|). (3.12)

The estimates (3.10) and (3.11) can be deduced from [12, Lemma 1], noting that the
function m(x, k) there corresponds to our ϕk(x)e

−ikx/TV (k). Eqs. (3.9) and (3.12) are
direct consequences of (3.10) and (3.11), since |TV (k)| ≤ 1. The constants cV etc. can
in principle be deduced from [12] as functions of V , but we will not need these explicit
expressions. In Sec. 4, we will consider specific examples for V where ϕk and an optimal
cV can be computed.

With this information at hand, we first investigate unboundedness from above and the
existence of negative parts of the spectrum, generalizing the results of the free situation.

Theorem 3.3. (Existence of backflow in scattering situations)
Let V ∈ L1+(R).

i) For every f > 0, there is no finite upper bound on the operator E+Ω
∗
V J(f)ΩVE+.

ii) For every x ∈ R, there is a sequence of normalized right-movers ψn = E+ψn such
that 〈ψn,Ω∗

V J(x)ΩV ψn〉 → −∞ as n→ ∞.

Point ii) implies in particular that βV (f) < 0 for certain positive f , that is, averaged
backflow exists in all scattering situations. In the free case, we were able to show that
β0(f) < 0 for all positive f (Thm. 2.2i)); we are currently unsure whether this generalizes
to the interacting situation.

Proof. i) As in the proof of Thm. 2.2 ii), we pick a right-mover ψ and shift it to higher and
higher momentum, ψ̃n(p) := ψ̃(p−n). Then all ψn are right-movers and ‖ψn‖ = ‖ψ‖ for
all n. In view of the unboundedness of E+J(f)E+ from above (Thm. 2.2 ii)), it suffices
to show that 〈ψn, (Ω∗

V J(f)ΩV − J(f))ψn〉 is bounded as n→ ∞. In fact, from (3.7), we
have
∣

∣〈ψn, (Ω∗
V J(f)ΩV − J(f))ψn〉

∣

∣

=
∣

∣

∣

∫

dx f(x)

∫

dp dq ψ̃n(p)ψ̃n(q)
(

KV (p, q, x)−K0(p, q, x)
)

∣

∣

∣

≤
∫

dx f(x)c′′′V (1 + |x|) ‖ψ̃n‖21

(3.13)

where (3.12) has been used. But by our construction of the ψn, the norms ‖ψ̃n‖1 are
independent of n, and we see that (3.13) is bounded.—Similarly for ii), with ψn the
sequence ψ−

n from Prop. 2.1, it suffices to show that 〈ψn, (Ω∗
V J(x)ΩV − J(x))ψn〉 is

bounded, which follows with the same technique as in i).
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Let us now turn to our main result: the boundedness of the backflow constant βV (f)
for every fixed nonnegative test function f . To that end, we use E+ +E− = 1 and split
the expression E+Ω

∗
V J(f)ΩVE+ into several terms. Here the product E−ΩVE+ can

be rewritten as E−(ΩV − TV )E+, where TV acts by multiplication with TV (k) in mo-
mentum space. (Hence, TV commutes with the spectral projection E± and E−TVE+ =
E−E+TV = 0.) Additionally, with the aim of controlling the unboundedness of J(f), we
multiply it on one side with the operator (i+ P )−1. We obtain

E+Ω
∗
V J(f)ΩVE+ = E+Ω

∗
VE+J(f)E+ΩVE+

+ E+Ω
∗
VE+J(f)(i+ P )−1E−(i+ P )(ΩV − TV )E+

+ E+(Ω
∗
V − T ∗

V )(−i+ P )E−(−i+ P )−1J(f)ΩVE+.

(3.14)

The first term on the r.h.s. is bounded below by β0(f), as known from Thm. 2.2 iii)
and ‖E+‖ = ‖ΩV ‖ = 1. This yields

E+Ω
∗
V J(f)ΩVE+ ≥ β0(f)− 2‖J(f)(i+ P )−1‖ ‖(i+ P )(ΩV − TV )E+‖

≥ β0(f)− 2‖J(f)(i+ P )−1‖(2 + ‖P (ΩV − TV )E+‖).
(3.15)

It remains to show that the two norms on the right-hand side are finite. From (2.9), one
finds J(f) = f(X)P − i

2f
′(X) and hence

‖J(f)(i+ P )−1‖ ≤ ‖f‖∞ +
1

2
‖f ′‖∞, (3.16)

where ‖f‖∞ = supx∈R |f(x)| denotes the supremum norm.
In order to estimate ‖P (ΩV − TV )E+‖, it will be helpful to express the Schrödinger

equation in suitable integral form (Lippman-Schwinger equation). It is easily checked
that

Gk(x) :=
sin(kx)

k
Θ(x) (3.17)

is a Green’s function for the free Schrödinger equation, i.e., −G′′
k(x) = k2 ·Gk(x)− δ(x)

in the sense of distributions. The solution ϕk is then uniquely determined by

ϕk(x) = TV (k)e
ikx +

∫

dx′ 2V (x′)Gk(x
′ − x)ϕk(x

′). (3.18)

With this information, we now prove the following proposition.

Proposition 3.4. Let V ∈ L1+(R). Then

‖P (ΩV − TV )E+‖ ≤ 2cV ‖V ‖1+ (3.19)

with the constant cV from Lemma 3.2.

Proof. Let ψ̃, ξ̃ ∈ C∞
0 (R) with E+ψ = ψ. Using (3.6), we can write

〈ξ, P (ΩV − TV )ψ〉 =
i√
2π

∫

dx ξ′(x)

∫ ∞

0
dk
(

ϕk(x)− TV (k)e
ikx
)

ψ̃(k). (3.20)

In view of the Lippman-Schwinger equation (3.18), we may rewrite the above expression
as

〈ξ, P (ΩV − TV )ψ〉 =
i√
2π

∫

dx ξ′(x)

∫ ∞

0
dk

∫

dx′ 2V (x′)Gk(x
′ − x)ϕk(x

′)ψ̃(k)

=
2i√
2π

∫

dx dx′
∫ ∞

0
dk ξ(x)V (x′) cos(k(x′ − x))Θ(x′ − x)ϕk(x

′)ψ̃(k), (3.21)

10



where we have used Fubini’s theorem and integrated by parts. To estimate this integral,
let us introduce the multiplication and integral operators (Mx′ψ)(k) := ϕk(x

′) · ψ̃(k)
and (Ix′ψ̃)(x) := Θ(x′ − x)

∫∞
0 dk cos(k(x′ − x))ψ̃(k). Then, by Lemma 3.2, we have

‖Mx′‖ ≤ cV (1 + |x′|) for all x′ ∈ R. The integral operator Ix′ consists of a projection
onto the even and positive momentum part of ψ, a multiple of the Fourier transform,
multiplication by the Heaviside function and the coordinate change x → x′ − x. This
implies ‖Ix′‖ ≤

√
2π for all x′ ∈ R, which then yields

|〈ξ, P (ΩV − TV )ψ〉| ≤
2‖ξ‖‖ψ‖√

2π

∫

dx′ |V (x′)|‖Ix′‖‖Mx′‖ ≤ 2cV ‖V ‖1+ · ‖ξ‖‖ψ‖. (3.22)

As ξ and ψ were taken from a dense subspace of L2(R) and E+L
2(R), respectively, this

finishes the proof.

Combining Eqs. (3.15) and (3.16) and Prop. 3.4, we arrive at the following result.

Theorem 3.5. (Boundedness of backflow in scattering situations)
For any potential V ∈ L1+(R) and any non-negative f , there exists a lower bound on
the backflow:

βV (f) ≥ β0(f)− (2‖f‖∞ + ‖f ′‖∞) · (2 + 2cV ‖V ‖1+) > −∞. (3.23)

Here cV is the constant from Lemma 3.2.

Thus the backflow effect is limited for short-range potentials in the class L1+(R).
Here the falloff of V at large |x| was important for our argument, as otherwise several of
the integrals considered would not be finite. On the other hand, the specified behavior
at short distances, namely, that V is a locally integrable function, is not strictly re-
quired, and it is not too hard to generalize the result for situations with delta-like point
interactions.

Let us illustrate this for a finite sum of delta potentials, V (x) =
∑

j λjδ(x − xj).
In this situation, the Møller operator ΩV still exists and has the form (3.6) [13]; the
solutions ϕk of the Schrödinger equation, which are piecewise a superposition of two
plane waves, fulfill the bound |ϕk(x)| ≤ cV with some constant cV , and they satisfy the
Lippman-Schwinger equation (3.18) in the sense of distributions. We can then follow a
similar argument as above, and conclude

(

P (ΩV −TV )E+ψ
)

(x) = −
∑

j

2λj√
2πi

∫ ∞

0
dk cos(k(x−xj))Θ(xj−x)ϕk(xj)ψ̃(k). (3.24)

The multiplication and integral operatorsMx′ and Ix′ assume the expressions (Mjψ)(k) :=
ϕk(xj) · ψ̃(k) and (Ijψ̃)(x) := Θ(xj − x)

∫∞
0 dk cos(k(x − xj))ψ̃(k), and we obtain

‖Mj‖ ≤ cV and ‖Ij‖ ≤
√
2π. Hence, we have

‖P (ΩV − TV )E+‖ ≤ 2√
2π

∑

j

|λj |‖Ij‖ · ‖Mj‖ ≤ 2cV
∑

j

|λj |, (3.25)

and (3.23) becomes

βV (f) ≥ β0(f)− (2‖f‖∞ + ‖f ′‖∞) · (2 + 2cV
∑

j

|λj |). (3.26)
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Thus our lower bounds also hold for point interactions.
It may seem surprising at first that βV (f) > −∞ even in the presence of a reflecting

potential. One can understand this qualitatively as follows. As discussed in Sec. 2, un-
boundedness of the smeared current J(f) is a high-momentum effect, with contributions
growing like O(p). In our class of potentials, however, the reflection coefficient R(p)
approaches zero at high momenta, at least like O(1/p) [12]. This exactly compensates
the high-momentum divergence of J(f) and leads to limits on backflow like in the free
case.

4 Examples

In the previous section, we have shown that the backflow effect is limited in generic
scattering situations, i.e., that the operator E+Ω

∗
V J(f)ΩVE+ is bounded below, but

little was said about the actual value of the bound. We now want to investigate this
further in specific examples of potentials, both starting from the analytic estimates in
Sec. 3 and with numeric methods. We will investigate the asymptotic backflow in the
following potentials:

i) the zero potential (V = 0, free particle) as a reference;

ii) a single delta potential, V (x) = λδ(x), both in the attractive (λ < 0) and repulsive
(λ > 0) case;

iii) the rectangular potential, V (x) = λΘ(1−x)Θ(1+x), again repulsive or attractive;

iv) the Pöschl-Teller potential [14], given by

V (x) = −µ(µ+ 1)

2 cosh2 x
with µ > 0. (4.1)

This has the particular property [15] that for integer µ, the potential becomes
reflectionless, that is, the reflection coefficient vanishes for all momenta. This will
allow us to specifically investigate the influence of reflection on the backflow.

For simplicity, we will always take our smearing function f to be a Gaussian with a
fixed width σ and center x0, i.e.,

f(x) =
1

σ
√
2π

exp

(

−(x− x0)
2

2σ2

)

. (4.2)

Let us first concretize our analytic estimates. For the free particle, (2.12) gives

β0(f) ≥ − 1

32πσ2
. (4.3)

For the single delta potential, the solution ϕk equals eikx + RV (k)e
−ikx for x < 0, and

TV (k)e
ikx for x > 0; thus we can choose cV = 2, and (3.26) yields

βV (f) ≥ − 1

32πσ2
−
( 2

σ
√
2π

+
1

σ2
√
2πe

)

· (2 + 4|λ|). (4.4)
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(b) Delta potential, λ = 1

Figure 1: Lowest eigenvector of the asymptotic current operator. Parameters: n = 2000,
pmax = 200, x0 = 0, σ = 0.1.

In the Pöschl-Teller case, let us restrict ourselves to the case µ = 1. Here the solution of
the Schrödinger equation can be explicitly written as ϕk(x) = eikx(k+ i tanhx)/(k− i),
so that |ϕk| ≤ 1; that is, in Lemma 3.2, we can set cV = 1, and Theorem 3.5 yields

βV (f) ≥ − 1

32πσ2
−
( 2

σ
√
2π

+
1

σ2
√
2πe

)

· (6 + 4 ln 2) (4.5)

for this potential. The rectangular potential can be treated with similar methods, using
bounds on the explicitly known solution ϕk, though we skip the details here.

All these are only lower bounds to the backflow βV (f) – and as we shall see below,
they are quite rough estimates. The actual value of βV (f) is not accessible to our explicit
computations, even in concrete examples of the potential; it can be obtained only by
numerical approximation. In view of Eq. (3.7), βV (f) is the lowest spectral value of the
integral operator on L2(R+) with kernel

KV,f (p, q) =
i

4π

∫

dx f(x)
(

∂xϕp(x)ϕq(x)− ϕp(x)∂xϕq(x)
)

. (4.6)

Knowing the solutions ϕp(x) for a given potential V , we can use a discretization of the
wave functions in momentum space L2(R+) to approximate the integral operator by
a hermitean matrix; the lowest eigenvalue of this matrix is then an approximation for
βV (f), and we can obtain an approximation of the corresponding eigenfunction as well.
Details of the numerical method are described in Appendix A. Let us just mention at this
point that this involves an upper cutoff pmax for the momentum of the wave functions,
and a number n of discretization steps; these parameters will enter the approximations
below.

We will now analyze the dependence of βV (f) and of the corresponding lowest eigen-
vector on parameters of the system, both with numeric and analytic methods.

Eigenfunctions To start, let us look at the momentum space wave function of the
eigenvector for the lowest eigenvalue. In the free particle case, the numerically obtained

13
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Figure 2: Backflow bound depending on position. Parameters: n = 1000, pmax = 150,
σ = 0.1.

eigenfunction is real-valued and shown in Fig. 1a. The corresponding eigenvalue is
β0(f) ≈ −0.241, while the estimate in (4.3) gives β0(f) ≥ −0.995, almost an order of
magnitude from the numerical result. (Here and in the following, the numeric values
for β0(f) and βV (f) need to be read in units of ~/mℓ2, where ℓ was the chosen unit of
length.) The oscillating graph confirms that, as expected from the analytic derivation,
backflow is an interference effect between low-momentum and high-momentum portions
of the wave function. Also, the eigenfunction decays quite rapidly at large momenta,
showing that our cutoff pmax in momentum space is at least self-consistent. For a delta
potential, Fig. 1b, which we take here as a simple example of the interacting situation,
the eigenvector has similar qualitative features.

Position of measurement Next, we investigate the dependence of the backflow effect
on the position of measurement within a potential. That is, we vary the center point x0
of our Gaussian f , while its width σ remains fixed.
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Fig. 2a shows the results for a delta potential, both in the attractive and the repulsive
case. While these two cases differ, they both have in common that the backflow to the
left of the potential barrier is larger than in the free case, which can be interpreted as
an effect of reflection at the barrier. The backflow to the right of the barrier is lower
than for a free particle, owing to low-energy contributions being reflected and hence
not contributing to the interference effect. For a comparison of the analytic estimate
(4.4) with the numerical result, we note that for the chosen parameters, (4.4) gives
βV (f) ≥ −194.050 in all cases, which is compatible with Fig. 2a but certainly a very
rough estimate.

In a rectangular potential, Fig. 2b, we can observe similar effects: higher backflow
to the left, lower backflow to the right of the potential. The differences between the
repulsive and attractive case are more pronounced however, in particular one observes
resonance effects in the interaction region of the attractive potential. Note that the
attractive potential in question, with λ = −2, has two bound states.

The situation is different in a reflectionless Pöschl-Teller potential (Fig. 2c; we con-
sider µ = 1). Here the backflow constant approaches the free value ≈ 0.241 both left and
right of the potential, which may be explained by the absence of reflection: the particle
behaves like a free one far away from the potential, except for a momentum-dependent
phase shift, which does not influence the lowest eigenvalue. Inside the interaction region,
the backflow effect is smaller than in the free case, which is not surprising given that
the potential is attractive, i.e., classically the particle velocity is higher than in the free
case. The analytic estimate (4.5) yields βV (f) ≥ −283.261.

Strength of potential Fig. 3a shows the backflow far to the left and far to the right
of a delta potential with varying amplitude λ. As expected, backflow on the left of
the potential grows with increasing |λ|, regardless whether attractive or repulsive, while
backflow on the right decreases in these situations. The slight asymmetry of the curve
near λ = 0 can likely be attributed to the fact that x0 = −5 is not sufficiently “far away”
from the interaction zone in this parameter region. The analytic estimate (4.4), for fixed
σ = 0.1 and varying λ, yields βV (f) ≥ −65.347 − 128.704|λ|. While this is again very
rough in absolute terms, the linear increase for large λ appears to match the numeric
results.

Next let us turn to the rectangular potential for varying strength λ, see Fig. 3b. In
the repulsive case (λ > 0), the behavior far away from the potential is similar to the delta
potential case; the backflow in the interaction region at x0 = 0 interpolates between the
left and right asymptotics. For attractive potentials, however, resonance effects appear
to contribute significantly. Note in particular the cusps in the graph near λ ≈ −1.2 and
λ ≈ −4.9, which are the points where the number of bound states changes, and hence
zero-energy resonances occur.

Finally, Fig. 3c shows the backflow to the left, to the right, and within the interaction
zone of a Pöschl-Teller potential, for not necessarily integer values of µ. One readily
observes that the integer values, where the potential becomes reflectionless, are special
in that the backflow far away from the potential matches the free value; for non-integer
values of the constant µ, backflow is generally larger to the left and smaller to the right,
which as before can be interpreted as an effect of reflection. The backflow within the
interaction zone (x0 = 0) behaves very differently, and mostly becomes smaller as the
strength of the potential increases.
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Figure 3: Backflow depending on strength of the potential. Parameters: n = 1000,
pmax = 150, σ = 0.1.
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Figure 4: Probability distribution and probability current for the maximum backflow
vector in configuration space at t = 0. Dashed vertical lines indicate the position of
measurement x0, dotted vertical lines the position of the potential. Parameters: n =
2000, pmax = 200, σ = 0.1. See the animations [16] for evolution with time t.
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Probability current and time evolution Lastly, let us look at the shape of the
maximum backflow eigenvector ψ in position space. We consider the probability density
ρ(x) = |ψ(x)|2 and the probability current jψ(x) = 〈ψ, J(x)ψ〉 as a function of x, both
plotted at time t = 0 (Fig. 4) and as an animation showing the time evolution [16].

In the free case, Fig. 4a, the situation looks much like the time-smeared backflow
eigenvector [3, Fig. 1]: The wave packet consists of two forward-moving parts, but there
is a negative probability current from the right part to the left part.

We now pass to the interacting case, but restrict ourselves to a simple example:
a repulsive delta potential, once optimizing for maximum backflow to the left of the
potential (x0 = −2, Fig. 4b) and once to the right (x0 = 2, Fig. 4c). It turns out
that the behavior is rather similar to the free case, only that the reflected, respectively,
transmitted part of the wave function now splits into two wave packets, between which a
negative probability current exists. Note that in Fig. 4c, even if we optimized the vector
for maximum backflow around x0 = +2, it still happens to exhibit substantial backflow
around x = −2.

5 Summary and Outlook

The purpose of this paper was to explore aspects of the backflow effect that go beyond
the well-known interaction-free or purely kinematical situation. We have formulated
backflow in a general scattering setup by considering states with incoming right-moving
asymptotes, interacting with an arbitrary short-range potential. Our results show that
the features of the current operator that are typical for backflow in the interaction-free
case also persist in the presence of a potential: First of all, the averaged current may
produce negative expectation values in asymptotically right-moving states. Moreover,
the averaged backflow remains unbounded above but bounded below in this setting,
which shows that also the spatial extent of this phenomenon has the same behavior as
in the free case.

These findings may be summarized by saying that the main features of backflow are
stable under the addition of a potential term to the kinetic Hamiltonian. In the case at
hand, this stability even holds for arbitrarily strong potentials, meaning that backflow
is a universal quantum effect.

Although the main features of backflow are the same in the free and interacting
case, we saw in examples that the effect becomes more intricate in the presence of a
potential. In particular, the maximal amount of backflow βV (f) in scattering situations
depends now on the position of the potential V relative to the position of measurement,
corresponding to the center of the averaging function f . The plots in Fig. 2 show that
far to the right or left of the potential, the maximal backflow converges to a fixed value.
Whereas the limit to the right is easy to describe analytically as well, the limit to the
left is more complicated: Here an incoming and a reflected wave are superposed, which
leads a sum of integral operators, the spectrum of which is difficult to estimate.

The present work was focused entirely on spatial averages of probability currents.
Just as well one could study how temporal averages respond to the addition of a potential
term in the Hamiltonian, thus investigating the Bracken-Melloy constant λH0 for more
general time evolutions. Although we did not discuss this point here, let us mention
that with the numerical methods at hand, it is easily possible to obtain approximations
to λH0+V (X) once a potential V has been fixed. Non-trivial analytical bounds on this
number are however not even known in the free case, and would require new ideas.
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We expect that backflow, ultimately being connected to the uncertainty principle,
exists in one form or another in various other systems of quantum physics. For example,
one could consider a particle with internal degrees of freedom, scattering processes in
higher dimensions, or multi-particle systems. On the quantum field theoretic level, so-
called quantum energy inequalities describe phenomena which are similar to backflow [3,
17]. To formulate and investigate the whole spectrum of such quantum phenomena in a
common framework would, however, require a better understanding of the mathematical
core of these effects. We hope to return to this question in the future.

A Numerical methods

The custom computer code which was used to produce the approximations in Sec. 4 is
supplied with this article [10], along with documentation. We invite the reader to run it
with changed parameters, or indeed to modify the code to accommodate other choices
of potentials, etc. Here we briefly describe the numerical methods employed and their
relation to the code.

The essential purpose of the code is to approximate the lowest eigenvalues of integral
operators, in particular with the kernel (4.6). Let us consider a generic operator T on
L2(R+, dp) with smooth kernel K first. Similar to [9, Sec. 7], we choose a momentum
cutoff pmax, divide the momentum interval [0, pmax] equally into n subintervals, and
choose orthonormal step functions ψ̃j (j = 0, . . . , n − 1) supported on one of these
intervals. The operator T is then approximated by the matrix M with entries

Mjk = 〈ψj , Tψk〉 =
∫

dq dq ψ̃j(p)K(p, q) ψ̃k(q) ≈
pmax

n
K(pj , pk), (A.1)

where pj = (j+ 1
2)pmax/n. We find the lowest eigenvalue and -vector ofM , and hence T ,

using the inverse power method: Given an initial lower bound λ0 for the operator, and
a generic guess ξ0 for the lowest eigenvector, we compute the sequence (M − λ0)

−mξ0,
which for m → ∞ converges to the desired lowest eigenvector after normalization. In
fact, in order to obtain a good initial estimate, we use this iteration twice, once with
a rough guess for λ0 and with moderate n, and then for a larger n, with λ0 estimated
from the first run. (See kernels.SpectrumTools.)

Thus we have reduced the question to evaluating the kernel K, which in the case
of the probability current is given by KV,f in (4.6). To evaluate KV,f , we need specific
information about the potential, namely, the function ϕk and its derivative ∂xϕk. (This
is modeled by the abstract class models.ScatteringModel in the code.) Given this, we
can evaluate the integral in (4.6) using Simpson’s rule.

However, the most efficient way of evaluating ϕk and its derivative is highly depen-
dent on the potential in question. For the delta as well as rectangular potentials, the
explicit solutions of the Schrödinger equation are well known and can be used directly,
although their discontinuities need to be taken into account in the numerical integration
(see models.DeltaPotentialModel and models.RectangularPotentialModel). The
same holds for the Pöschl-Teller potential with integer µ; we use this fact for µ = 1
(models.SimpleTransparentModel). For a generic potential, and in particular for
Pöschl-Teller with fractional µ, we solve the Schrödinger equation (3.4) numerically.
To that end, we consider the equivalent equation

∂2xχ(k, x) = 2V (x)χ(k, x)− 2ik∂xχ(k, x) (A.2)
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for the function χ(k, x) := ϕk(x)e
−ikx/T (k), and rewrite it as a system of four real-valued

first order equations. We then solve this ODE system numerically at fixed k using an
adaptive Runge-Kutta scheme, specifically, the Dormand-Prince method of order 8(5,3)
in the form of [18] as implemented in [19]. The initial conditions are χ(k, x) = 1,
∂xχ(k, x) = 0 far to the right of the potential. The result for χ can be cached for each
(discretized) k, limiting the impact of the numerical ODE solver on overall computation
time. See the class models.GenericPotentialModel for details.

In some cases, numerical integration in (4.6) can be avoided if ϕk is a linear com-
bination of plane waves, and the Fourier transform of f is explicitly known, as in the
case of a Gaussian. We make use of this for compactly supported potentials (delta and
rectangular) when the position of measurement x0 is far to the left or to the right of the
potential; see kernels.AsymptoticCurrentKernel.
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