Erratum: Polarization-resolved extinction and scattering cross-section of individual gold nanoparticles measured by wide-field microscopy on a large ensemble [Appl. Phys. Lett. 102, 131107 (2013)]

Lukas M Payne, Wolfgang Langbein, and Paola Borri

1) School of Biosciences, Cardiff University, Cardiff CF24 3AA, United Kingdom
2) School of Physics and Astronomy, Cardiff University, the Parade, Cardiff CF24 3AA, United Kingdom

(Dated: 18 May 2017)

The numerical values of the noise calculated using equation (1) should read $\hat{\sigma}_{\text{noise}} = 166 \text{nm}^2$ instead of $\hat{\sigma}_{\text{noise}} = 589 \text{nm}^2$ for the $M = 60$ estimate, and $\hat{\sigma}_{\text{noise}} = 6 \text{nm}^2$ instead of $\hat{\sigma}_{\text{noise}} = 43 \text{nm}^2$ for the $M = 150$ estimate. Furthermore, shot noise in the data is a factor of $\sqrt{2}$ larger since the difference between two images I_f and I_d is used, and an additional factor $\sqrt{4/3}$ larger due to the noise in the background Δ_b. The equation (1) should thus read

$$\hat{\sigma}_{\text{noise}} = \frac{\lambda d_{\text{px}}}{M N A} \sqrt{\frac{6\pi}{N_a N_{\text{fw}} \nu}}$$

yielding $\hat{\sigma}_{\text{noise}} = 271 \text{nm}^2$ for the green channel, for which we measured $\hat{\sigma}_{\text{noise}} = 590 \text{nm}^2$. The measured noise is therefore close to shot noise, but still limited by background fluctuations.

\(^{a)}\) Electronic address: BorriP@cardiff.ac.uk